REPRESENTING AND QUERYING SPATIAL NETWORKS IN DATABASES

VIRUPAKSHA KANJILAL AND MARKUS SCHNEIDER UNIVERSITY OF FLORIDA

Computer and Information Science and Engineering University of Florida

Outline

- 1. Motivation
- 2. Current Approaches to Implement Spatial Network
- 3. Spatial Network Data Model
- 4. User View of Spatial Network
- 5. Spatial Network Query Language
- 6. Conclusion

What is a Spatial Network?

- Eg. Road Networks, River Networks, Pipeline Networks
- Any Network which is characterized by a spatial embedding is known as spatial network
- Spatially embedded and labeled (I75, Speed Limit = 30miles per hour) graphs created by the interconnection of spatial elements like spatial lines and spatial points

What is a Spatial Network? (contd.)

- Spatial Networks play a fundamental role in disciplines like geography and cartography
- Geographers commonly encounter problems involving flows in constrained environments like networks
- Transport, navigation assistance systems, and traffic forecasting and city planning
- Spatial network analysis is important in land use planning and city planning for establishing water ways, power grids and planning transport systems

Why Do we Need Database Support?

- Increasing use has led to a huge increase in the generation of spatial networks data (OpenStreetMap data : 21 GB data, weekly changeset: 500 MB)
- Databases support is essential to store the huge volumes of spatial network data and to utilize them in various GIS applications in an efficient way
- A standard, and extensible method of storing, querying, and analyzing the spatial network data is required

Current Approaches for Spatial Networks

Graph Based models

Built around nodes which are zero-dimensional entities and arc which are one-dimensional entities

Partial Geometry Based Models

- Each vertex of the graph is associated with a spatial embedding
- Pure Network Models
 - Pure geometry based models for spatial network
 - Incorporates thematic data as well

Current Approaches for Spatial Networks

- Commercial Approaches
 - ESRI's ArcGIS
 - Has specialized model
 - Middleware layer called GeoDatabase along with commercial RDBMS
 - Oracle Spatial Network Data Model
 - Graph based model with a node table, link table, and metadata table
 - Access and modification can be performed by provided Java APIs

Limitations of Current Approaches

- Limitations in Modeling
 - No three dimensionality
 - No spatial network predicates
- Limitations in Implementation
 - Network Data scattered over numerous tables
 - Middleware layer required
 - Loss of database features like concurrency, data recovery etc.
 - No standard querying support

Limitations of Current Approaches

Goal of our Project

The goal is to design, define, and implement a data model for spatial networks and incorporate it in a database context

Architecture

- Incorporate spatial network data type in spatial database as a single object
- All operations and predicate evaluation happens inside the database
- Release GIS application developer of data management duties

Goal of our Project

Conceptual view

- View spatial network as a single abstract data type
- Spatial network as the first class citizen of the database
- Access, query, and manage the spatial network data using standardized query language

Architectural Change

Figure: Current architecture of Spatial Networks Database (a) and proposed architecture (b)

The Spatial Network Data Model

- 🗆 Channel
- Junctions
- Boundary Points
- Access Points
- Labels

Figure: A Road Network

What are Spatial Network Operations?

- The operations are separated into inter-network operations and intra-network operations
- □ Five classes of operations have been identified:
 - Basic Operation (eg. Length)
 - Auxiliary Operation (eg. Directly Connected Channels)
 - Retrieval Operations (eg. Window)
 - Metric Operations (eg. Node Centrality)
 - Network Set Operations (eg. Network Union)

Spatial Network Predicates

- Predicates in spatial network has not been studied according to our knowledge
- Spatial predicates are used as filter conditions in spatial selections and spatial joins
- Topological predicates characterize the relative position of two spatial network that are preserved under certain continuous transformations including all affine transformations.

Spatial Network Topological Predicate

"Which roads cross the river Mississippi?"

User View of a Spatial Network

- Spatial Networks are directly stored in databases as stand-alone entity as table attribute type snet
- An entire snet object including the geometry, topology and attributes is stored as a single object in the database
- This mechanism avoids the need for making objects of *snet* data type dependent on multiple tables
- Spatial network becomes the first class citizen of the database

User View of a Spatial Network

Network_type:string	Administered_by:string	Road:snet
"Interstate"	"Federal"	Interstate_hwy
"Country Roads"	"State"	Country_rd
"Single Carriageway"	"State"	S_carriageway

 Table 1: Table Structure and Tuples from RoadNetworks table

Spatial Network Query Language

- Spatial Network Definition Language
- Spatial Network Manipulation Language

Spatial Network Definition Language

CREATE LABEL roadLabel(id_attr string l; speed_limit real l); CREATE SNET road(roadLabel);

ADD CHANNEL 13th_Street INTO road AS I1;

ADD ATTRIBUTE speedlimit IN 13th_Street VALUES (0.0 0.2 40; 0.2 0.7 50; 0.7 1.0 40);

Spatial Network Manipulation Language

Four classes of queries have been identified

Network Queries

select Intersection(N.road, M.road)
from RoadNetworks as N, RoadNetworks as M
where M. Network_type = `Interstate' and N. Network_type <> `Interstate'

Component Queries

select ShortestRoute(N.road, p1, p2)
from RoadNetworks as N

Spatial Network Manipulation Language (contd)

Component Attribute Query

select G.sectorName, avg(GetAttribute(sn, number, capacity)
from RoadNetworks as G, GetAllChannels(G.Grid)
group by G.sectorName

Network Attribute Queries

select N.RoadType, N.administered_by **from** RoadNetworks as N

Conclusion

- The spatial network data model is an abstract data model as a specification for later implementation
- Spatial Network is stored in a database as a single object instead of being spread across a number of tables
- Spatial network becomes a first-class citizen of the database
- Users have a standard flexible querying support for spatial network.