Cognitive Adequacy of Topological Consistency Measures

Nieves R. Brisaboa <u>Miguel R. Luaces</u> Database Laboratory University of A Coruña A Coruña, Spain

M. Andrea Rodríguez

University of Concepción Concepción, Chile

- Consistency measures
- Evaluation framework
- Evaluation results
- Conclusions and Future Work

- Consistency measures
- Evaluation framework
- Evaluation results
- Conclusions and Future Work

# Motivation

- GIS and spatial databases are widely used
  In 2011, we all carry a GIS in our mobile phone
- Many tools exist to create, store, analyse and visualize geographic information

□ In 2011, It is fairly easy to create a GIS

- Few tools to check the quality of the information
  - Data quality is a complex problem in GIS
    - Creation, and manipulation is difficult and specialized
    - Definition and evaluation of quality rules is hard

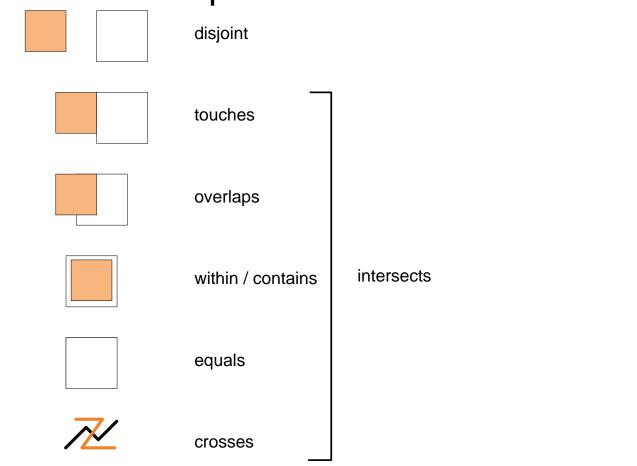
- Dataset consistency in traditional DBMS
  - □ It is usually a binary property
  - □ In GIS, the degree of the error matters
- In a previous work
  - Integrity constraints and consistency measures
  - Definition of measures to evaluate the degree of violation of a dataset w.r.t integrity constraints
- The goal of this work:
  - Do users perceive as errors what we measure?

- Consistency measures
- Evaluation framework
- Evaluation results
- Conclusions and Future Work

Topological integrity constraint

 $\forall \overline{x}_1, \overline{x}_2, g_1, g_2(P(\overline{x}_1, g_1) \land R(\overline{x}_2, g_2) \land \psi \to T(g_1', g_2')$ 

#### Examples


□ A county must be within the state to which it belongs  $\forall idc, ids, g_1, g_2$ (state(ids,  $g_1$ )  $\land$  county(idc, ids,  $g_2$ )  $\rightarrow$  within( $g_1, g_2$ )

Land parcels that intersect must touch

 $\forall id_1, id_2, g_1, g_2$  (parcel( $id_1, g_1$ )  $\land$  parcel( $id_2, g_2$ )  $\land$ 

 $(id_1 \neq id_2) \land \text{intersects}(g_1, g_2) \rightarrow \text{touches}(g_1, g_2)$ 

#### Topological relationships considered

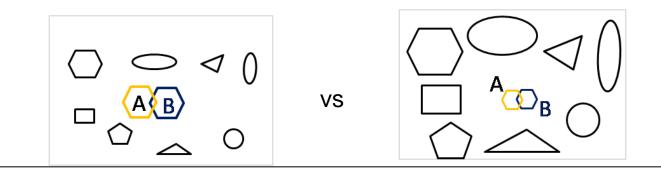


A consistency measure evaluates the degree of violation of a topological integrity constraint

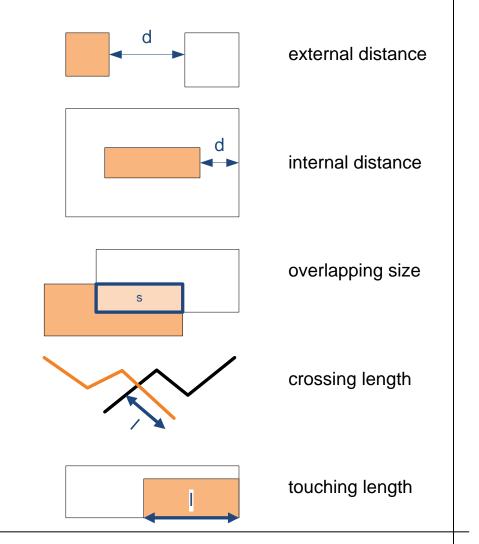
□ We published measures for

surface × surface

Curve × curve


We defined measures the other combinations

- surface × point
- surface × point
- curve × point


- Consistency measures evaluate two aspects
  - □ The magnitude of the conflict



□ The relevance of the conflict

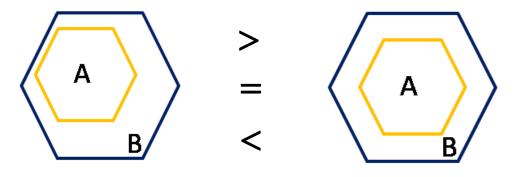


- We defined five parameters to compute the magnitude of the conflict
- In our consistency measures we used the first four but we did not use the touching length

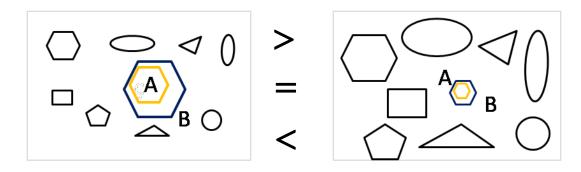


- Motivation
- Consistency measures
- Evaluation framework
- Evaluation results
- Conclusions and Future Work

#### Three hypothesis were formulated:

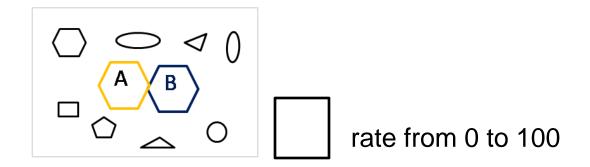

- H1: External distance, internal distance, crossing length, and overlapping size are perceived and used by subjects to evaluate the degree of violation of topological integrity constraints.
- H2: Touching length is not considered by subjects to evaluate the degree of violation of topological integrity constraints.
- H3: The relative size of the geometries that participate in the violation of topological integrity constraints with respect to other objects in the dataset affects the perceived violation degree.

#### Structure of the test:


- Brief description of the topological relationships
- Description of the objective of the test
- Three sections each with a different task
- Background of the subjects
  - Second-year computer science students
  - □ No previous knowledge in GIS
  - No explanation of topological relationships beyond the description on the test
  - □ No rewards for answering the test

- Contents of the test
  - Section I: the parameters used are perceived by the subjects
    - Comparison of two figures with two geometries each

1) A and B should be disjoint




- Contents of the test
  - Section II: influence of the context
    - Comparison of two figures with the same geometries in a different context
      - 1) A and B should be disjoint



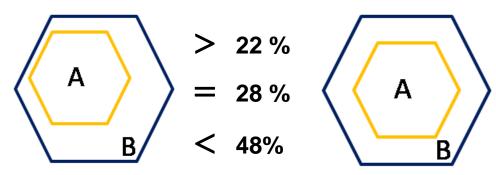
- Contents of the test
  - Section III: evaluation of the violation degree measures
    - Numeric evaluation of the violation degree of two geometries

1) A and B should overlap



- Consistency measures
- Evaluation framework
- Evaluation results
- Conclusions and Future Work

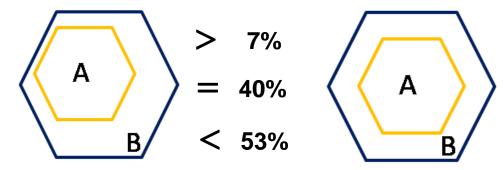
#### Raw data from the tests in section I


| Exercise | Expected | Actual   | Geometries                                         | Parameter         | Impact | Neutral | No impact |
|----------|----------|----------|----------------------------------------------------|-------------------|--------|---------|-----------|
| 5        | Overlaps | Disjoint | surface × surface                                  | External distance | 87 %   | 3 %     | 10 %      |
| 12       | Disjoint | Overlaps | curve × curve                                      | External distance | 83 %   | 5 %     | 12 %      |
| 13       | Disjoint | Overlaps | curve × curve                                      | External distance | 82 %   | 10 %    | 8 %       |
| 14       | Disjoint | Overlaps | curve × curve                                      | External distance | 80 %   | 12 %    | 8 %       |
| 19       | Disjoint | Overlaps | surface $\times$ curve                             | External distance | 87 %   | 12 %    | 7 %       |
| 21       | Disjoint | Overlaps | surface $\times$ curve                             | External distance | 72 %   | 18 %    | 10 %      |
| 24       | Disjoint | Overlaps | $\operatorname{curve} \times \operatorname{point}$ | External distance | 67 %   | 27 %    | 7 %       |
| 1        | Disjoint | Overlaps | surface × surface                                  | Overlapping size  | 83 %   | 8 %     | 8 %       |
| 3        | Touches  | Overlaps | surface × surface                                  | Overlapping size  | 68 %   | 20 %    | 12 %      |
| 8        | Within   | Overlaps | surface × surface                                  | Overlapping size  | 68 %   | 17 %    | 15 %      |
| 10       | Disjoint | Overlaps | $curve \times curve$                               | Crossing length   | 68 %   | 23 %    | 8 %       |
| 16       | Disjoint | Overlaps | surface $\times$ curve                             | Crossing length   | 83 %   | 8 %     | 8 %       |
| 20       | Disjoint | Overlaps | surface × curve                                    | Crossing length   | 68 %   | 23 %    | 8 %       |

#### Raw data from the tests in section I

| Exercise | Expected | Actual   | Geometries        | Parameter         | Impact | Neutral | No impact |
|----------|----------|----------|-------------------|-------------------|--------|---------|-----------|
| 2        | Disjoint | Within   | Surface × surface | Internal distance | 48 %   | 28 %    | 23 %      |
| 4        | Touches  | Within   | surface × surface | Internal distance | 62 %   | 22 %    | 17 %      |
| 7        | Overlaps | Within   | surface × surface | Internal distance | 53 %   | 40 %    | 7 %       |
| 17       | Disjoint | Overlaps | surface × curve   | Internal distance | 45 %   | 45 %    | 10 %      |
| 18       | Disjoint | Overlaps | surface × curve   | Internal distance | 50 %   | 28 %    | 20 %      |
| 22       | Disjoint | Overlaps | surface × curve   | Internal distance | 47 %   | 43 %    | 10 %      |
| 23       | Disjoint | Overlaps | surface × point   | Internal distance | 52 %   | 28 %    | 20 %      |
| 6        | Overlaps | Touches  | surface × surface | Touching length   | 32 %   | 48 %    | 20 %      |
| 9        | Within   | Touches  | surface × surface | Touching length   | 20 %   | 65 %    | 15 %      |
| 11       | Disjoint | Overlaps | curve × curve     | Touching length   | 58 %   | 35 %    | 7 %       |
| 15       | Disjoint | Overlaps | surface × curve   | Touching length   | 40 %   | 52 %    | 8 %       |

- Summary of the results from section I
  - Around 10% of subjects answered incorrectly
  - External distance, overlapping size and crossing length are used by subjects
  - Some tests for internal distance showed misunderstanding of *disjoint*


2) A and B should be disjoint



Summary of the results from section I

Some tests for internal distance showed misunderstanding of overlaps

7) A and B should overlap



Touching length is not used by subjects

#### Results from section II

35%,35% and 30% answered that the size of geometries has a positive, neutral or negative impact on the violation degree (respectively)

#### Results from section III

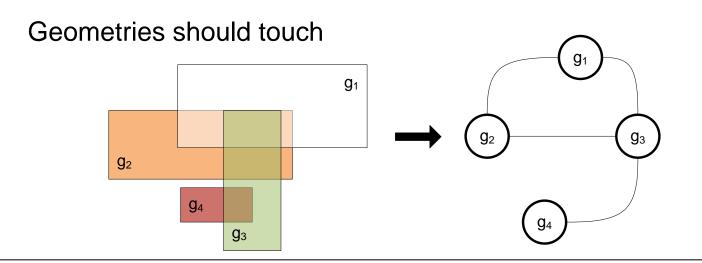
- Violation degrees answered by the subjects vs violation degrees computed with our measures
  - Using the original measures results in a Pearson correlation coefficient of 0.54
  - Removing the relevance of the conflict from the measures results in a coefficient of 0.84

- Consistency measures
- Evaluation framework
- Evaluation results
- Conclusions and Future Work

# Conclusions and future work

- Regarding the definition of the measures
  - H1 is partially confirmed and H2 is confirmed
    - External distance, crossing length, and overlapping size are perceived and used by subjects as a violation degree measure
    - Internal distance is not confirmed to be used
    - Touching length is not used by subjects
  - □ H3 is rejected
    - The relative size of geometries in conflict compared to other ones in the dataset does not impact the perceived violation degree

# Conclusions and future work


#### Regarding the evaluation framework

- The task that has to be performed by the subject is very difficult
- The knowledge of topological relationships is very important, and explaining the meanings may not be the solution
  - Subjects may use their intuition instead of the formal definition
  - Training subjects without imposing our view of the measures may be difficult

# Conclusions and future work

#### Define and perform a new study

- Evaluate precisely the internal distance parameters
- Differentiate subjects in trained and not trained
- Define alternative measures that consider all the geometries that participate in a conflict



Cognitive Adequacy of Topological Consistency Measures

Nieves R. Brisaboa <u>Miguel R. Luaces</u>

M. Andrea Rodríguez

Database Laboratory University of A Coruña A Coruña, Spain

University of Concepción Concepción, Chile

**Contact:** 

Miguel R. Luaces luaces@udc.es