Towards a Semantic Spatial Model for Pedestrian Indoor Navigation

B. Lorenz H. J. Ohlbach E.-P. Stoffel University of Munich

stoffel@pms.ifi.lmu.de

Motivation

- Problem / Scope
- The Proposed Model
- Outlook

Motivation

- Problem / Scope
- The Proposed Model

Outlook

(self-)localisation, specify destination

- "Where is room 1.02?"; "Where is the next printer?"
- spatial queries as known from LBS/GIS community

- (self-)localisation, specify destination
 - "Where is room 1.02?"; "Where is the next printer?"
 - positioning systems vs. symbolic locations

- (self-)localisation, specify destination
 - "Where is room 1.02?"; "Where is the next printer?"
 - positioning systems vs. symbolic locations

- determine path "How to get there?"
 - flavored by AI, computational geometry: planning & graph search algorithms

- (self-)localisation, specify destination
 - "Where is room 1.02?"; "Where is the next printer?"
 - positioning systems vs. symbolic locations

- determine path "How to get there?"
 - ➡ optimal vs. approximate solutions; different criteria

- (self-)localisation, specify destination
 - "Where is room 1.02?"; "Where is the next printer?"
 - positioning systems vs. symbolic locations

- determine path "How to get there?"
 - optimal vs. approximate solutions; different criteria
- communicate result/plan
 - verbal
 - "...go along the corridor until the end..."
 - "...take the second door on your right."
 - or simply display on map

- (self-)localisation, specify destination
 - "Where is room 1.02?"; "Where is the next printer?"
 - positioning systems vs. symbolic locations

- determine path "How to get there?"
 - optimal vs. approximate solutions; different criteria

communicate result/plan

- refer to structure, not just mere sequence of places
 - "...go along the corridor until the end..."
 - "..take the second door on your right."
 - unambiguous, followable route instructions

Pedestrian Assistance

More challenging than other domains (car navigation):

- free movement in open space, not constrained to network - rather 3D environment
- arguably many different ways of representation:
 - Generalised Voronoi Graph
 - Visibility Graph
 - Region Adjacency Graph >> coarser!
- both allocentric & egocentric perspective

overlays a region

¹³ Visibility Graph

Region Adjacency Graph

Motivation

- Problem / Scope
- The Proposed Model
- Outlook

using a conceptual model (schema):

- higher degree of abstraction (topology)
- further annotation allowed (non-spatial, function)
- suitable for all three stages of wayfinding
- fill model: *derive* instances from geometric data (floor plans), automate process
- hybrid: maintain reference to full geometry

Conceptual Model

Two primitives (typed)
 spatial region

- nesting/hierarchy
 - composite vs. leaf region
- adjacency defined by..
- boundary node

- Iocal waypoint:
 - w = width
 - Ω = orientation at entry

Two Kinds of Boundaries

Hard Boundaries

- explicit floor plan: walls, obstacles, ..
- **passability:** enter/leave only at boundary nodes (door, opening ...)
- visibility/preview glass door/wall
- Soft Boundaries
 - implicit "around the corner"
 - often experienced unconsciously
 - *fuzzy*, difficult to assign distinct location

clusters of path-connected regions

A Multi-Level Hierarchy

²¹ Planning, thought of hierarchically

- use knowledge about structure for planning is define sub-goals
 - In order to reach room D1.02, I have to reach wing D."
 - "Wing D is on the first floor, so I have to get there first."
 - heuristic guide search, reduce search space
 - refinement search vs. precompute all-pairs
 - smallest common ancestor

²² Problematic Case: Navigation Inside Non-Convex Regions

- path inside region may be longer than through exterior
- orientation + visibility for route descriptions

Solution: Convex Decomposition

23

Cell = convex space: mutual visibility + shortest possible path implicit \Rightarrow for free!

Convex Decomposition

- non-classical (not triangulation, ..)
- idea: use natural landmarks
 - (non-convex) corners, corners of obstacles
 - problem: determine salience
 - might use convex hull as reference
 - tolerance: angles slightly greater than 180°
- closure of non-connected spaces
 - smaller distances preferred

Motivation

- Problem / Scope
- The Proposed Model
- Outlook

Implementation underway

- What still remains to do:
 - Comprehensive context modelling, involve in wayfinding
 - Query language / conform to standards (OpenLS)
 - Test & evaluation of the model with real data from campus

Questions & Discussion

Involved Research Areas

- Multi-Disciplinary Approach:
 - Computational Geometry (Polygons, ..)
 - Artificial Intelligence
 - ontologies, KR
 modelling real world
 - path planning

- Human Spatial Cognition
 - spatial ontology (landmarks, ..)
- Geographic Information Science
 - spatial queries, LBS, ..

Movement in Free Space

- topological information alone not sufficient for route descriptions:
 - "enter room [through door A]"
 - "traverse room until you reach door D" may involve several actions
- how to represent movement?
 - should be natural-looking, but computable
 - straight paths look more plausible
 - smoothness: b-splines

Path Planning Techniques

- Roadmap Methods
 - Medial Axis
 - Generalized
 Voronoi Graph
 - max. clearance from obstacles
 - \overline{igvee} prune paths to corners
 - Visibility Graph
 - all-pairs $\rightarrow O(n^2)$
 - vstatic, because
 precomputed

Cell Decomposition

- Approximate
 - partial free cells split recursively
 - results in unbalanced decomposition
- Exact
 - partitioning of areas

🔻 many ways to do so

Hybrid Location Modelling

Geometric

45

- quantitative data from positioning system
 determine symbolic location
- display on map
- Symbolic

the way humans specify locations: "Where are you?" - "Room 1.02 on first floor"

Symbolic Model

- topological relations among regions
- distinct
 "contained-in" implies hierarchy
 "connected-to" implies graph

 - classical RCC-8/9-intersection relations..
 - ...not sufficient because
 - adjacent not in the sense of navigation
 - multiplicity not captured
 - ..overkill: only distinct regions, no overlap!

Classification of Method

Recall:

- Roadmap Methods
 - Medial Axis
 - Visibility Graph

