Ensuring the Semantic Correctness of Complex Regions

Mark McKenney, Alejandro Pauly, Reasey Praing, & Markus Schneider*

CISE Department, University of Florida

^{*}This work was partially supported by the National Science Foundation under grant number NSF-CAREER-IIS-0347574.

Introduction

Related Work

Complex Regions

Computing the Cyclic Structure of Complex Regions

Introduction

Complex Regions

Introduction

Related Work

Complex Regions

Computing the Cyclic Structure of Complex Regions

- Multiple faces
- Faces may meet at single points
- Faces may contain holes
- Face interiors may not overlap

Views of Complex Regions: Sequential View

- A complex region is an *ordered* sequence of segments
- Corresponds to input of *plane sweep algorithms*
- Easy to locate a particular *segment*
- Strucutural components are not represented

Views of Complex Regions: Component View

- Segments are grouped by structural compnents
- Holes are associated with their surrounding face
- Useful in visualization and manipulation
- Easy to locate a particular *cycle* (face or hole)

Validation of Complex Regions

Introduction

- **Related Work**
- **Complex Regions**

Computing the Cyclic Structure of Complex Regions

- Need to validate whether a given complex region is semantically and topologically correct.
- If it is given in component view, then the cyclic structure of the region is known and can be used for validation.
- Otherwise, the cyclic structure must be computed explicitly from a sequential view.
- Complex regions in sequential view are usually resulted from set operations such as intersection, union, and difference.
 - Goal: Define an efficient algorithm to compute the cyclic structure of a complex region from its sequential view and at the same time validate its correctness.

Related Work

Related Work

Introduction

- Related Work
- **Complex Regions**
- Computing the Cyclic Structure of Complex Regions

- No existing solution to our problem introduced.
 - There are some works on polygon detection from a set of intersecting segments. But this problem is different from ours in that:
 - There are no restrictions on the polygons that are detected.
 - In our problem, we must consider holes and outer cycles separately.
 - All cycles must adhere to the definition of complex regions.
- The well known Plane Sweep paradigm can be used as a basis for our solution.

Complex Regions

Complex Region Data Type

- Unique representation: there is exactly one valid semantic interpretation of the cyclic structure of a complex region.
- Our algorithm takes into account all the special cases.
- The ordered sequence of halfsegments for region (d) is $\langle h_1^l, h_2^l, h_6^l, h_4^l, h_7^r, h_5^r, h_2^r, h_3^l, h_5^r, h_6^r, h_3^r, h_1^r \rangle$.
- Each halfsegment has an *interior above* flag indicating if the region interior lies above or below the halfsegment

Computing the Cyclic Structure of Complex Regions

The Algorithm: Overview

Introduction

- Related Work
- **Complex Regions**

Computing the Cyclic Structure of Complex Regions

- Find an unvisited segment h in halfsegment order
- Determine if *h* is a outer or hole cycle
- Walk the cycle
 - Visit all segments belonging to the cycle containing h (mark them)
 - Walk is different depending on outer/hole cycle
 - Ensure the cycle is valid
- Repeat

Classifying Outer and Hole Cycles

Introduction

Related Work

Complex Regions

Computing the Cyclic Structure of Complex Regions

- Processing the smallest halfsegment *h* of the sequence (a) and *k* of a hole cycle (b).
- The smallest halfsegment always belongs to the outer cycle.
- The smallest halfsegment not yet visited is a left halfsegment
- The smallest halfsegment not yet visited is the leftmost halfsegment of a cycle
- The cycle walking process marks all halfsegments of this outer cycle as visited.
- The next yet to be visited halfsegment k is identified as belonging to a hole cycle.

Walking Cycle

Related Work

Complex Regions

Computing the Cyclic Structure of Complex Regions

- Given a halfsegment, how to find the next in a cycle?
 - Calculate current halfsegments brother
 - Find the brother in the list of halfsegments
- All halfsegments with the same dominating point are grouped
- Find next halfsegment rotating clockwise around dominating point
- (rotate counter-clockwise if walking a hole)
- Special cases
 - Anchored holes
 - If a point is encountered twice, construct a hole
 - Chain of suasages

Validation

Introduction Related Work Complex Regions

Computing the Cyclic Structure of Complex Regions

Conclusion

Invalid cases

- Cycles that do not close (cannot find next halfsegment)
- Cuts (will visit a halfsegment twice)
 - Faces that share a segment (will visit a halfsegment twice)
- Intersecting segments (will be found by plane sweep)

The Algorithm

Algorithm 1: The algorithm for deriving the component view of a region.	
I	Input: Sequence of unannotated halfsegments H
(Output: Sequence H with fully annotated halfsegments
1 v	while not end of sweep do
2	Advance sweep line to h . h is the left-most halfsegment yet to be annotated;
3	Using sweep line status, determine h as part of an outer cycle or a hole cycle;
4	NewCycle(h); Visit(dp(h));
5	if h belongs to a hole then
6	Using sweep line status, retrieve halfsegment f from its owning outer cycle;
7	Owns(h, f);
8	Set cycle walk mode to use counter-clockwise adjacency;
9	else
10	Set cycle walk mode to use clockwise adjacency;
11	end
	/* Begin walking the cycle */
12	$c \leftarrow h_+;$
13	while $c \neq h$ do
14	if $Visited(dp(c))$ then
15	$q \leftarrow c; c \leftarrow c_{-}; NewCycle(c); Owns(c,h);$
16	while $dp(c) \neq dp(q)$ do
	/* Trace back anchored hole */
17	$info(c_{-}) \leftarrow info(c); c \leftarrow c_{-};$
18	end
19	else
20	$info(c) \leftarrow info(h); Visit(dp(c)); c \leftarrow c_+;$
21	end
22	end
23 6	and

Complexity

- Introduction
- Related Work
- **Complex Regions**

Computing the Cyclic Structure of Complex Regions

- Store halfsegments in an array
- Use parallel arrays to indicate visited segments
- Plane sweep portion takes $O(n \log n)$
- Finding the brother of a halfsegment
 - Use binary search ($O(n \log n)$)
- Finding next clockwise or counterclockwise halfsegment around a point
 - Constant time

Conclusions and Future Work

- Introduction
- Related Work
- Complex Regions
- Computing the Cyclic Structure of Complex Regions

- Developed an efficient algorithm that correctly determines the cyclic structure of a region represented as a list of halfsegments Algorithm also ensures the region is valid
- Eliminates the need to store the cyclic structure of a region

Thanks!

