PLR Partitions: A Conceptual Model of Maps

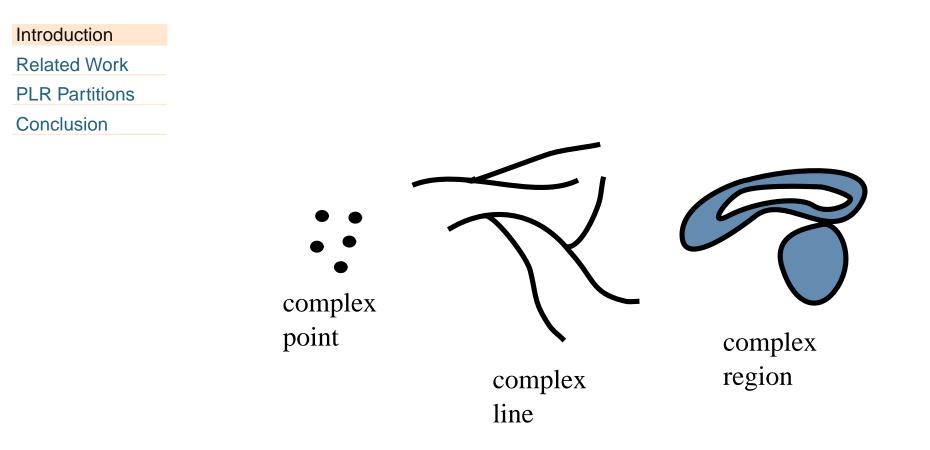
Mark McKenney & Markus Schneider*

CISE Department, University of Florida

*This work was partially supported by the National Science Foundation under grant number NSF-CAREER-IIS-0347574.

Introduction

Traditional Spatial Modelling



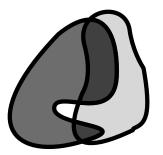
Problems With Traditional Spatial Modeling

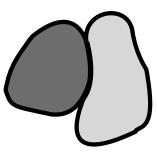
Introduction

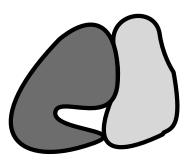
Related Work

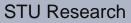
PLR Partitions

Conclusion

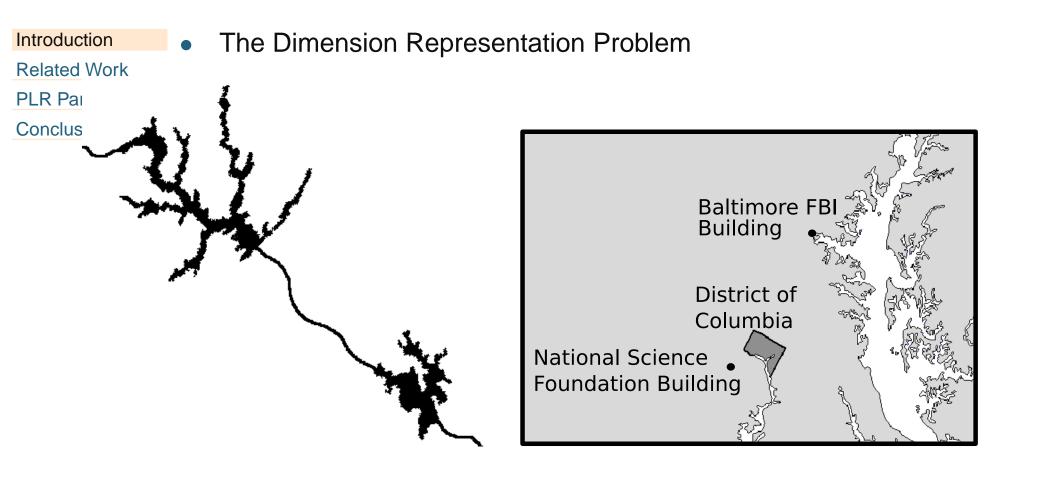




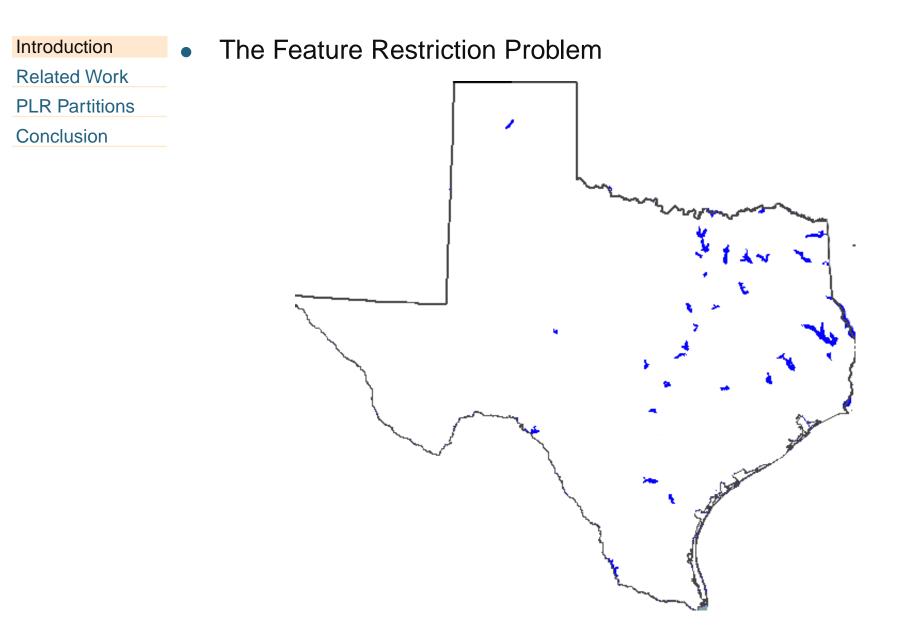




Problems With Traditional Spatial Modeling



Problems With Traditional Spatial Modeling



Summary

Introduction	
Related Work	•
PLR Partitions	
Conclusion	

- The Dimension Reduction Problem
- The Dimension Representation Problem
- The Feature Restriction Problem
- How do we solve this?

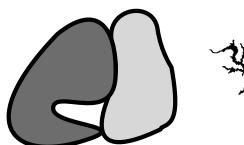
Related Work

Collections

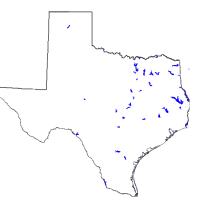
- Collect different spatial objects into a single collection
- Solves the problems
 - Approach taken by Open Geospatial Consortium
- No formal type definition for collections
- Operations on collections are not formally defined
- Efficiency of operations?

Maps

- Spatial situations described are special cases of maps
- Most approaches to modeling maps are collection approaches
- Some attempts have been made to create a type for maps:
 - Raster maps (not general enough for our purposes)
 - Database data type approaches (collections)
 - Graph approaches (lack a formal definition)
 - Spatial partitions (can only contain regions)



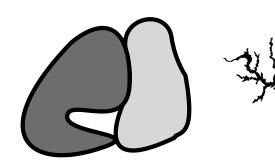


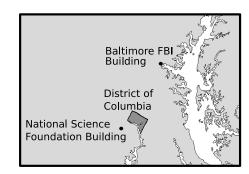


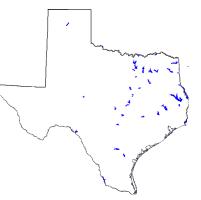
PLR Partitions

Our Goal

- Define a formal type definition for *PLR partitions* (point, line, and region partitions)
- Approach
 - Partition the plane into point sets
 - Associate each point set with a *label* that identifies it
 - Allow labels to carry general thematic information
 - Define constraints on the point sets





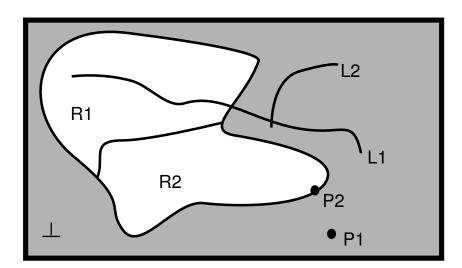


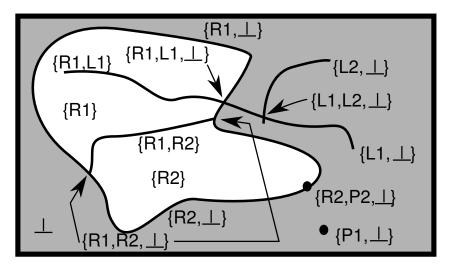
Spatial Mapping

- Introduction
Related WorkMap each point in the plane to a specific label $l \in 2^A$ PLR Partitions
ConclusionDefinition 1 A spatial mapping of type A is a total function
 $\pi : \mathbb{R}^2 \to 2^A$.
 - *A* is the set of labels corresponding to spatial *features*
 - Points not specifically labeled receive the label \perp
 - For the map below: $A = \{Canada, USA, Mexico, \bot\}$

Spatial Mapping: Problems

- Introduction Related Work PLR Partitions Conclusion
- Spatial mapping is insufficient to define a PLR partition
- Spatial features must be in some sense regular
- We model spatial features as regular open point sets
- Problem: how to extract the point sets belonging to a spatial feature?
 - Take the inverse spatial mapping of a label? No
 - We must be able to identify point sets belonging to a spatial feature
 - Must define spatial mappings that discriminate between types of spatial features





Identifying Spatial Features

Introduction Related Work PLR Partitions Conclusion How do we know a point belongs to a region?

• P1

- Trivially, if the point has the same label as every point in its neighborhood
- In regular open point sets, a point is surrounded by points that are in the set

 $\begin{aligned} is Basic Region &:= \mathbb{R}^2 \to \mathbb{B} \\ is Basic Region(p) &= (\pi(p) = \bigcup_{q \in N(p)} \pi(q)) \end{aligned}$

 Generally, every point in its neighborhood is trivially a region with identical labels

 $is Region := \mathbb{R}^2 \to \mathbb{B}$ $isRegion(p) = |\{\pi(q)|q \in N(p) \land isBasicRegion(q) \land \pi(q) \subseteq \pi(p)\}| = 1$ $\pi_r: \mathbb{R}^2 \to 2^A$ $\pi_r(p) = \{\pi[q] | q \in N(p) \land is BasicRegion(q) \land is Region(p)\}$ {<u>R1,L1</u>} {R1,L1,⊥} {L2, <u>↓</u>} {L1,L2,<u> }</u> R1 {R1} {R1,R2} ۱₁₁ \ {L1, <u>↓</u>} R2 {R2} , {R2,P2,⊥} P2

{R2. __}

{R1.R2. | }

● {P1, ⊥}

Identifying Spatial Features

Introduction Related Work PLR Partitions Conclusion A point's label is unique in its neighborhood $isPoint := \mathbb{R}^2 \to \mathbb{B}$ $isPoint(p) = |\pi(p) - \bigcup_{q \in N(p)} \pi(q)| > 0$ $\pi_p : \mathbb{R}^2 \to 2^A$ $\pi_p(p) = \pi(p) - \bigcup_{q \in N(p)} \pi(q)$

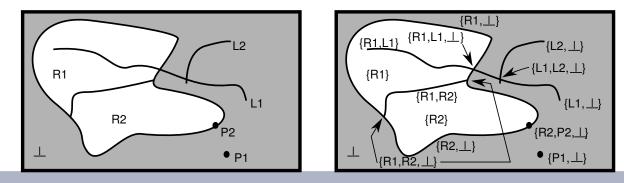
• To identify a line, we first remove the point and region labels: $S := \mathbb{R}^2 \to 2^A$

$$S(p) = \pi(p) - \pi_r(p) - \pi_{rb}(p) - \pi_p(p)$$

A line must extend in at least two directions from a point in its interior

 $isLine := \mathbb{R}^2 \to \mathbb{B}$ $isLine(p) = \exists q, s \in N(p) | q \neq s \land S(q) = S(s) \land S(q) \neq \emptyset \land \pi(q) \subseteq \pi(p)$ $\pi_l : \mathbb{R}^2 \to \{2^A\}$ $\pi(p) = \{S(q) | q \in S(q) \land S(q) = S(q) \land S(q) \neq \emptyset \land \pi(q) \subseteq \pi(p)$

 $\pi_l(p) = \{ S(q) | q, s \in N(p) \land isLine(p) \land S(q) = S(s) \land q \neq s \land S(q) \neq \emptyset \}$

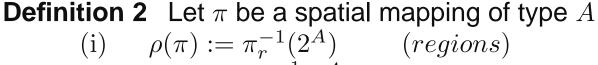


STU Research

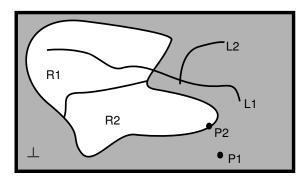
Identifying Spatial Features: Summary

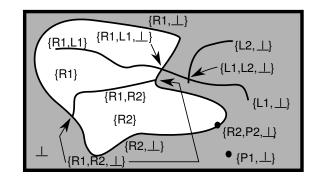
Introduction **Related Work** PLR Partitions

Conclusion



(ii) $\omega_{\rho}(\pi) := \pi_{rb}^{-1}(2^A)$ (region borders) (iii) $\lambda(\pi) := \pi_l^{-1}(2^A)$ (lines) (iv) $\omega_{\lambda}(\pi) := \pi_{lb}^{-1}(2^A)$ (line borders) (v) $\varphi(\pi) := \pi_p^{-1}(2^A)$ (points)





Definition of PLR Partitions

- Introduction Related Work PLR Partitions Conclusion
- A spatial mapping is a PLR partition if:
 - Its regions and lines are regular open sets
 - The borders between features carry the labels of all adjacent features

Definition 3 A *PLR partition* is a spatial mapping π of type *A* with:

(i)
$$\forall r \in \rho(\pi) : r = \overline{r}$$

(ii)
$$\forall l \in \lambda(\pi) : l = \overline{l}$$

(iii) $\forall b \in \omega_{\rho} : \pi_{rb}[b] = \{\pi_r[[r]] | r \in \rho(\pi) \land b \subseteq \partial r\}$

(iv)
$$\forall b \in \omega_{\lambda} : \pi_{lb}[b] = \{\pi_{l}[[l]] | l \in \lambda(\pi) \land b \subseteq \partial l\}$$

Conclusions and Future Work

- Defined the PLR partition spatial data model
 - Solves the Dimension Reduction Problem
 - Solves the Dimension Representation Problem
 - Solves the Feature Restriction Problem
 - General enough to model thematic maps in general
- Future work: operations over PLR partitions
 - Because features are regular open point sets, we should be able to prove closure over spatial operations (i.e., map overlay)
 - Can specifically define the semantics of PLR partition operations

Thanks!

