Preserving Semantics when Transforming Conceptual Spatio-Temporal
Schemas

Esteban ZIMANYI, Mohammed MINOUT
Department of Computer & Network Engineering
Universigé Libre de Bruxelles
{ezimanyi,mminout@ulb.ac.be
http//cs.ulb.ac.be

Semantic-based Geographical Information Systems (SeBGIS’05)
November 3, 2005

¢

L 4

¢

¢

¢

¢

Contents

Information Systems Design
The MADS model

Translating conceptual schemas
Logical schemas

Physical schemas

Preserving semantics when translating schemas
Logical constraints

Physical constraints
Examples of spatial and temporal constraints

Conclusions & future works

(Geographical) Information Systems Design

¢+ Realized on a three-step approach

Conceptual schema Captures application requirements without taking into accou
Implementation considerations

Logical schema Targets a family of implementation platforms, e.g., relational, objec
relational

Physical schema Takes into account particularities of a specific operational platforr
e.g., Oracle

+ Typically, (semi-)automatic transformation of these levels using a CASE tool
Basictransformation rules argmple
Additional information must be input at logical and physical levels

Optimization issues are important and requireman expertise

The MADS Model

Conceptual spatio-temporal model with 4 orthogonal modeling dimensions

Structural : novel approach with semantically-rich relationships and multi-
Instantiation capabilities
Spatial andTemporal;
based on riclinierarchies of data types
orthogonality for associating spatidémporal features to typ&dtributes
both anobject-basedand acontinuous viewsof spac@ime

constrainedrelationship types: topological, synchronization
Multi-representation: supporting multiple alternative viewpoints on the same informatic
Conceptual framework for bottata definition anddata manipulation

C. Parent, S. Spaccapietra, E. Anyi, Conceptual Modeling for Traditional and Spatio-
Temporal Applications: The MADS approa@pringer, 2005, 500p., to appear

The MADS Model: Example Conceptual Schema

WaterBody & ® Dike
name (1,1) dikeNo (1,1)
otherNames (1,n)
polution (1,1) (0,n)
Z% De§_1.:roy
-
Lake 4 River X (0.n)

faunaType (1,1) riverNo (1,1) . ® Flood 4
floraType (1,1 reservoirs (1,n) e (0,n) (1,n)

depth (1,1) f((®) floodNo (1,1)

Translating MADS Schemas

Transformational approach replacing rich MADS concept with a set of constructs avalil
able in the target implementation platform

Logical models: Relational, Object-Relational, ...
Spatial models: Oracle, Maplinfo, Arcinfo, ...

Relationship types several rules depending on their types and the cardinality of their ro

Spatial O/R types
materializing predefinedeometry attribute
specialized spatial types generic one (e.g., for Oracle)

Varying attributes : Complex multivalued attribute encoding its defining function
spatial, temporal, aridr perception extent
value

Temporal O/R types Complex attribute encoding the lifecycle, including time-varying
status:scheduled, active, suspended, disabled

The MADS Model: Example Conceptual Schema

WaterBody & ® Dike
name (1,1) dikeNo (1,1)
otherNames (1,n)
polution (1,1) (0,n)
Z% De§_1.:roy
-
Lake 4 River X (0.n)

faunaType (1,1) riverNo (1,1) . ® Flood 4
floraType (1,1 reservoirs (1,n) e (0,n) (1,n)

depth (1,1) f((®) floodNo (1,1)

Translating MADS Schemas: O-R Logical Schema

WaterBody

River

idWaterBody (1,1)
name (1,1)
pollution (1,n)
description (1,1)

riverRef (0,1)
lakeRef (0,1)

Lake

idRiver (1,1)
geometry (1,1) ®
riverNo (1, 1)
reservoirs (1,n) ®
riskCode (1,1)
waterBodyRef (1,1)
floodRef (0,n)

Dike

idLake (1,1)
geometry (1,1) @
faunaType(1)
floraType (1,1)
depth (1,n)
point (1,1) @
value (1,1)
waterBodyRef (1,1)

Flood

idFlood (1,1)
geometry (1,1) @
lifecycle (0,n)
interval(1)
starts (1,1)
ends (1,1)
value (1,1)
floodNo (1,

O
O

idDike (1,1)
geometry (1,1) ®
lifecycle (0,n)
mterval(1)
starts (1 ,1)@
ends (1,1) O
value (1,1)
dikeNo (1,n)
floodRef (0,n)

1)
riverRef (1,n)
dikeRef (0,n)

Translating MADS Schemas: Oracle Physical Schema

¢+ Rewriting the logical schema generated by the translator
= schema expressed in the language of the target platform

create or replace type DInterval as object (

starts date, ends date);
create or replace type DLifecycleValue as object (

interval DInterval, status varchar2(10));
create or replace type DLifecycle as table of DLifecycleValue;
create or replace type DRiverSetRef as table of ref DRiver;
create or replace type DDikeSetRef as table of ref DDike;
create or replace type DFlood as object (idFlood Did,

geometry mdsys.sdo_geometry, lifecycle DLifecycle,

floodNo integer, riverRef DRiverSetRef, dikeRef DDikeSetRef);
create table Flood of DFlood

nested table lifecycle store as FloodLifecycleNT

nested table riverRef store as FloodRiverRefNT

nested table dikeRef store as FloodDikeRefNT;

[...]

Preserving Semantics when Transforming Schemas

¢+ At each step of the transformation sosmmantics is lost
= Datainvalid in the original conceptual schemaasceptedby the corresponding phys-
iIcal schema

¢+ Reason Limited expressive power of logical and physical models

¢ Integrity constraints are needed for ensuring teemantic equivalencdetween the con-
ceptual and physical schemas
¢ Such constraints must beplemented into the DBMSGIS

Encoded onceand for all in the database, instead of being encoded in each applica
accessing it

Available to all applications accessing the database, thus enforcing data quality

Encapsulated with the datg facilitating the overall application lifecycle

Support of Integrity Constraints in SQL:2003

¢+ Choices for implementing constraints
(1) Declarative (built-in) constraints
(2) Triggers which fire upon predefined updates of particular tables
(3) Stored proceduresactivated by predefined transaction events

(4) Directly embedded in the codef applications

¢+ SQL:2003 provides a few types déclarative integrity constraints
e NOT NULL, DEFAULT, UNIQUE, PRIMARY KEY, FOREIGN KEY (REFERENCES)
o CHECK: defines a general IC that must hold for each row of a table
o DOMAIN: creates a (restricted) column domain

o ASSERTION: defines a named general IC that may refer to more than one table

Support of Integrity Constraints in DBMSs

DBMSs having amASSERTION statementio not encourage its use
Most DBMSs only support domain, unigueness, and foreign key constraints

Expressive powerof these constructs is quitenited, e.qg.
foreign key constraint: referenced columns must satisfy uniqueness condition
domain constraints: tied to single columns only
uniqueness contraints: apply only within a single table

DBMSs recommend to implement user-definedmGs-declaratively (by triggers or stored
procedures) foefficiency reasons

ICs typically involve several tables, potentially huge joins, full table scans, nested <
gueries, nested negation,=. evaluation becomes prohibitively expensive

Typical OLTP applications and time-critical data warehousing processesot aford
Integrity checking

Preserving Semantic Equivalence: Methodology

¢ Integrity constraints expressed at

Logical level: first-order formulas that use the methods provided by spiataporal
data types

Physical level:declarative constraints or triggers depending on target platform
¢+ Automatic processcomplementing traditional transformational approach

¢ Conceptual = Logical: Each transformation rule associated with a set of logical co
straints ensuring semantic equivalence
Result Repertoire of logicatonstraints patterns

¢ Logical = Physicat Analysis of implementation possibilites of each constraint pattern
the repertoire

Temporal Constraints: Lifecyle (1)

+ Translation of lifecycle requires a set of temporal constraints

¢+ Basic declarative integrity constraints in Oracle

alter table FloodLifecycleNT add constraint

uniqueStarts unique (interval.starts);
alter table FloodLifecycleNT add constraint

uniqueEnds unique (interval.ends);
alter table FloodLifecycleNT add constraint

validInterval check (interval.starts < interval.ends);
alter table FloodLifecycleNT add constraint

validStatus check (status in

(’scheduled’, ’active’, ’'suspended’, ’'disabled’));

Temporal Constraints: Lifecyle (2)

¢+ The intervals of the lifecycle must be disjoint

YT € Flood, Y1, € f.lifecycle, Yl, € f.lifecycle (
|;.interval.starts < |l,.interval.ends A |».interval.starts < |;.interval.ends =

|1.interval.starts = l,.interval.starts A |q.interval.ends = |,.interval.ends)

¢+ Physical level: triggers in Oracle

create or replace trigger FloodLifecycleOverlappingIntervals

before insert on Flood for each row
declare rowcnt number;
begin
select count(*) into rowcnt
from table(:new.lifecycle) 11, table(:new.lifecycle) 12

where 1ll.interval.starts < 1l2.interval.ends
and 12.interval.starts < ll.interval.ends
and ll.interval.starts <> l2.interval.starts
if rowcnt <> 0 then
raise_application_error(-20300, 'Overlapping intervals’)
end if;
end

Temporal Constraints: Synchronization Relationships

¢ Synchronization constraints lost in translation
= Only underlying binary relationship represented in the schema

¢ A set of triggers generated automatically for preserving such semantics

create or replace trigger FloodDestroySynchronization
before insert on Flood for each row
declare rowcnt number;
begin
select count(*) into rowcnt
from table(:new.lifecycle) 11, table(:new.dikeRef) d,
where not exists (
select * from table(d.column_value.lifecycle) 12,
table(d.column_value.floodRef) f
where f.column_value.idFlood=:new.idFlood
and ll.interval.starts < l2.interval.ends
and 12.interval.starts < ll.interval.ends
and 1l1.status="active’ and 12.status="active’)
if count <> 0 then
raise_application_error(-20302, 'Violation of synchronization’)
end if;
end;

Spatial Constraints: Spatial Types

If only a generic spatial type (Oracle} values of spatial attributes must be of the type i
the conceptual schema

Geometries of rivers are of type multiline or multicurve

alter table River
add constraint validGeometryType check (geometry.get_gtype() = 6);

(not valid in Oracle 10g~ a trigger instead)

Each value of the attributeeservoirs of River is of spatial type point

create or replace trigger RiverReservoirsPointType
before insert on River for each row
declare rowcnt number;
begin
select count(*) into rowcnt
from table(:new.reservoirs) r where r.get_gtype() != 2)
if rowcnt <> 0 then
raise_application_error(-20401,
’Reservoirs must be of spatial type point’)
end 1f;
end;

Spatial Constraints: Topological (1)

+ Topological constraints may relate a spatial attribute with geometry of its type

¢+ The spatiality ofreservoirs is inside the spatiality afiver

Yry € River, VYry € ri.reservoirs (ri.geometry.within(r,.geometry))

¢ Trigger at the physical level

create or replace trigger RiverReservoirsInside
before insert on River for each row
declare rowcnt number;
begin
select count(*) into rowcnt
from table(:new.reservoirs) r
where sdo_inside(r, :new.geometry)="FALSE’)
if rowcnt <> 0 then
raise_application_error(-20402,
"Reservoirs must be located inside its river’)
end if;
end;

Spatial Constraints: Topological (2)

¢ Topological constraints for relationships are lost in the translation

¢ Overflow IS a topological relationship of typentersect = an instance oRiver may
be linked to an instance 6flood only if their geometries intersect

¢ Trigger at the physical level

create or replace trigger FloodOverflowTopological
after insert on Flood for each row
declare rowcnt number;
begin
select count(*) into rowcnt
from table(:new.riverRef) r,
where not exists (select * from table(r.column_value.floodRef) f
where f.column_value.idFlood=:new.idFlood
and sdo_overlaps(:new.geometry,r.column_value.geometry)="TRUE’)
if rowcnt <> 0 then
raise_application_error(-20404,
’Violation of Overflow topological relationship’)
end if;
end;

Space-Varying Attributes

¢+ Many constraints apply to varying attributes
» depend on the type of the underlying functiaiscrete, stepwise continuous

¢ Attribute depth in Lake: every value of attributeoint
(1) is of spatial type point
(2) is located inside the geometry of the lake

¢+ Another constraint: the points are at least 1 meter from each other.

create or replace trigger LakeDepthDistancelm
before insert on Lake for each row
declare rowcnt number;
begin
select count(*) into rowcnt
from table(:new.depth) dl1, table(:new.depth) d2
where sdo_within_distance(dl.point,d2.point, ’distance=1")="TRUE’)
if rowcnt <> 0 then
raise_application_error(-20403,
’Points must be at least 1 m. from each other’)
end if;
end;

Conclusions

¢+ Usual approach for information systems design inducgsrtant semantic loss

¢+ We presented a methodology to ensammantic equivalencebetween conceptual and
physical schemas

¢ This requiresmplicit integrity constraints at thiegical and physical levels
¢+ We showed our methodology using the MADS conceptual model
¢+ The methodology igenericand can be applied tany conceptual model

¢ Important issues to be addressed

Scalability: real-size application would generate 100s of constraints
= selection of which constraints will be implemented

Optimization: implication of constraints
= could lead to performance increase

Future Works: Explicit Integrity Constraints

¢ Visual specifications of the constraints at@nceptual level

Data Dictionary -

E EH

@ [Ohject Types
@ [Employes

i Life Cycle
[CJRepresentations &

@ [C)atributes

@ i@ Name
@ i empMo
@ ¢ birhDate
A

F s

G Employee

MName 1

Fircthlamea

£ -4
Constraint Editor
@ i sal

CMethod
[Identifit

@ [Links
@ [] Departmet

@ [] Project

@ [Administra

@ [] Engineer
@ [Relationship T

Constraint Name

Targeted at

| SalarySupervisor

Constraint Description

| Employee

1. Range Definiton—————

Forall | Exists
Negate I Delete I

Forall e in Employee A

s
s

The supervisor of an employee must have asalary greater 4
than or equal to the salary of the employee

Verification———————
(¢ Immediate
(" Deferred
x|
—2. Predicate
Ao | noT | Function |
oR | wpues | Clear |

e.subordinate.Employee.salary >= e.sdary

OK

| validate | cancel

¢ Semi-automatic translationof such constraints

Preserving Semantics when Transforming Conceptual Spatio-Temporal
Schemas

Questions ?

