Spatio-temporal Schema Integration with Validation: A Practical Approach.

Anastasiya Sotnykova, Nadine Cullot and Christelle Vangenot EPFL & Université de Bourgogne

03 November 2005, OTM Workshop - Semantic-based GIS

Schema Integration

The context . . . before

The context . . . after

Laboratoire de Bases de Données Database Laboratory É**P** ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

The MADS-based method

In the MADS data model

The MADS-based method

In the MADS data model

The context . . . semantics

Table 1: How a 'building' object can be represented.

Purpose of representation	User
Architectural style and fitting in the neighborhood environment	Architect department of a city administration
Robustness of the construction of the building and the materials it is built of	Rescue crew of the city
Condition of the building and suitability for living in it	Renovation construction company
Location and dimensions of the building	Cadastral department of the city administration

Common Data Model (CMD) : MADS Data Model

- thematic dimension ER extended, graphical
- spatial dimension has a predefined spatial primitives
- temporal dimension time can be modeled with inbuilt concepts
- topological relationships relationships between spatial object types
- syncronisation relationships relationships between temporal object types

MADS spatial

Topological	Icon	Topological	Icon
disjunction	$\bigcirc \bullet$	overlapping	O
adjacency	$\bigcirc ullet$	inclusion	۲
crossing	D	equality	•

MADS temporal

Synchronization	Icon	Synchronization	Icon
equal	Ш	during	, <u> </u>
meets	L-H	starts	H
overlaps	, ---	finishes	<u>. =</u>
before			

Schema Integration

$T_1 \& T_2$

Schemas T_1 and T_2

2)

Inter-schema mappings

- (1) TouristPlace $_{\mathsf{T}_1} \subseteq \mathsf{TouristSite}_{\mathsf{T}_2}$;
- (2) $\mathsf{Museum}_{\mathsf{T}_2} \subseteq \mathsf{Museum}_{\mathsf{T}_1}$;
- (3) $\mathsf{Monument}_{\mathsf{T}_2} \subseteq \mathsf{Monument}_{\mathsf{T}_1}$;
- (4) $Museum_{T_1} \bullet Museum_{T_2}$;
- (5) Monument_{T2} Monument_{T1};
- (6) CityBorough_{T1}.name = TouristSite_{T2}.district;
- (7) TouristPlace_{T1} TouristSite_{T2}
- (8) TouristPlace_{T1}.name = TouristSite_{T2}.name;

Validation objectives

Invalid Correspondences

- TouristPlace_{T1} (Time : Interval) = (no Time) Theatre_{T2}
- MetroLine_{T1}(Geometry: Line) (Geometry : Point) Stop_{T2}
- TouristPlace_{T1} (Geometry : Area) (Geometry : Point) Stop_{T2}
- $Museum_{T_1}(Geometry: Area) \circ (Geometry: Area) Museum_{T_2}$
- Museum_{T1}(Geometry: Area) (Geometry : Area) Museum_{T2}

The MADS + DL method

MADS spatial dimension

MADS spatial dimension	OWL spatial dimension
Spatial ADT hierarchy	Spatial abstract types hierarchy
Hierarchy in spatial subclasses	not possible in OWL-DL
Mandatory Geometry attribute	Intrinsic hasGeometry property
that defines spatial features	with predefined values

Spatiality : Types

hasGeometry property defined as the necessary & sufficient

Spatiality : Types

Spatiality : Relationships

Spatiality : Relationships

Spatiality : Attributes

Temporality : Types

MADS temporal dimension	OWL temporal dimension
Temporal ADT hierarchy	Temporal abstract types hierarchy
Mandatory LifeCycle attribute	Intrinsic hasTime property
that defines spatial features	with predefined values

Temporality : Types

Temporality : Attributes

Temporality : Relation

Temporality : Instance

Validated

- TouristPlace_{T1} (Time : Interval) = (no Time) Theatre_{T2}
- MetroLine_{T1}(Geometry: Line) → (Geometry : Point) Stop_{T2}
- TouristPlace_{T1} (Geometry : Area) (Geometry : Point) Stop_{T2}
- Museum_{T1}(Geometry: Area) \odot •(Geometry : Area) Museum_{T2}
- Museum_{T1}(Geometry: Area) (Geometry : Area) Museum_{T2}

Topological Constraints

	Pacer Constraints	OVVL VIZ	PAL Constraints	- Queries	V .
0 🥏	MLClasses	Prop	erties	E Forms	🔷 Individuals
100se Const	raints ᅷ	くほど	×∎∎×	Query Responses	;
/aluate ? St	atus	Constraint		?geo2	?geo1
Ø	spatial_rule_0	1		Palais_Royal	Gare_de_l_Est
1	temporal_rule_	_01			
snatial ru	le 01 (instance of	PAL-CONSTR	ABNT internal n	ame is snatial rul	
Spann_in	ie_or (insence or	THE CONSTR	Realization	une is spariat_rat	
DIVIDUAL EDI	OR				
r Individual 🖣	spatial_rule_01 (inst	ance of :PAL-CO	NSTRAINT, internal r	name is spatial_rule_1)	
ame			Description		
satial rule 01			For all the insta	inces of the class Geo	, if an instance
venen_reno_or			has a value (or	f class Geo) for the top	ological property
	Z = O XX		"s_disjoint" , th	en this instance must n	ot have any
latement	V E V XX	~8 UEI UE /	other topologic	al property (adjacent a	roo
			2000 CONTRACTOR CONTRACTOR CONTRACTOR	a property (adjacent_a	ii ea,
orall ?geo1 (fo	rall ?geo2		adjacent_line,	cross_area, cross_line	, cross_point,
orall ?geo1 (fo (=:	rall ?geo2 > (s_disjoint ?geo1 ?geo2	2)	 adjacent_line, i include_area, i 	cross_area, cross_line nclude_line, overlap_ar	, cross_point, ea, overlap_line,
orall ?geo1 (fo (=:	rall ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo	2) 1 ?geo2))	 adjacent_line, i include_area, i overlap_point, 	cross_area, cross_line nclude_line, overlap_ar s_equal) with the same	, cross_point, ea, overlap_line, a value.
orall ?geo1 (fo (=:	rall ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ?	2) 1 ?geo2)) ?geo1 ?geo2))	 adjacent_line, include_area, i overlap_point, 	ar property (adjacent_a cross_area, cross_line nclude_line, overlap_ar s_equal) with the same	, cross_point, rea, overlap_line, a value.
orall ?geo1 (fo (=:	rall ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?g	2) 1 ?geo2)) ?geo1 ?geo2)) geo1 ?geo2))	 adjacent_line, i include_area, i overlap_point, 	ar property (adjacent_a cross_area, cross_line nclude_line, overlap_ar s_equal) with the same	, cross_point, rea, overlap_line, e value.
orall ?geo1 (fo (=:	rall ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?g (not (cross_area ?ge	2) 1 ?geo2)) ?geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2))	 adjacent_line, i include_area, i overlap_point, 	ar property (adjacent_a cross_area, cross_line nclude_line, overlap_ar s_equal) with the same	, cross_point, rea, overlap_line, s value.
orall ?geo1 (fo (=	rall ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?ge (not (cross_area ?ge (not (cross_line ?geo	2) 1 ?geo2)) ?geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2)) s1 ?geo2))	 adjacent_line, i include_area, i overlap_point, Range 	ar property (adjacent_a cross_area, cross_line nclude_line, overlap_ar s_equal) with the same	, cross_point, rea, overlap_line, s value.
orall ?geo1 (fo (=	rail ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?ge (not (cross_area ?ge (not (cross_bine ?geo (not (cross_boint ?ge (not (cross_boint ?ge	2) 1 ?geo2)) ?geo1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2))	adjacent_line, i include_area, i overlap_point, Range (defenses 2ce)	a property (adjacent_a cross_area, cross_line nclude_line, overlap_ar s_equal) with the same	, cross_point, rea, overlap_line, a value.
orall ?geo1 (fo (=	rail ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?ge (not (cross_area ?ge (not (cross_bine ?geo (not (cross_boint ?ge (not (include_area ?ge (not (include_area ?ge)	2) 1 ?geo2)) ?geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2)) geo1 ?geo2)) geo1 ?geo2)) geo1 ?geo2))	adjacent_line, i include_area, i overlap_point, Range (defrange ?gea (defrange ?gea	of FRAME Geo)	irea, , cross_point, ea, overlap_line, a value.
orall ?geo1 (fo (=	rail ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?ge (not (cross_area ?ge (not (cross_bine ?geo (not (cross_boint ?ge (not (include_area ?ge (not (include_line ?ge (not (include_line ?ge (not (include_line ?ge	2) 1 ?geo2)) ?geo1 ?geo2)) ;oo1 ?geo2)) io1 ?geo2)) io1 ?geo2)) ;oo1 ?geo2)) ;oo1 ?geo2)) ;oo1 ?geo2)) ;oo1 ?geo2))	 adjacent_line, i include_area, i overlap_point, Range (defrange ?gen (defrange ?gen 	of FRAME Geo S_disjo 22:FRAME Geo S_disjo	irea, , cross_point, ea, overlap_line, a value.
orall ?geo1 (fo (=	rail ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?geo (not (cross_area ?geo (not (cross_bine ?geo (not (cross_boint ?geo (not (include_area ?geo (not (include_line ?geo (not (overlap_area ?go) (not (overlap_area ?go)	2) 1 ?geo2)) ?geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2)) so1 ?geo2)) geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2)) geo1 ?geo2)) geo1 ?geo2)) geo1 ?geo2))	 adjacent_line, i include_area, i overlap_point, Range (defrange ?gen (defrange ?gen) 	of FRAME Geo S_disjo	irea, , cross_point, ea, overlap_line, a value.
orall ?geo1 (fo (=	rail ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?geo (not (cross_area ?geo (not (cross_line ?geo (not (cross_point ?geo (not (include_area ?geo (not (include_line ?geo (not (overlap_area ?geo (not (overlap_line ?geo (not (overlap_bine ?geo (not (overlap_bine ?geo (not (overlap_bine ?geo))))))))))))))))))))))))))))))))))))	2) 1 ?geo2)) ?geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2)) so1 ?geo2)) geo1 ?geo2)) geo1 ?geo2)) geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2)) geo1 ?geo2)) so1 ?geo2))	 adjacent_line, i include_area, i overlap_point, Range (defrange ?gen (defrange ?gen) 	of FRAME Geo S_disjo	irea, , cross_point, ;ea, overlap_line, ; value.
orall ?geo1 (fo (=	rail ?geo2 > (s_disjoint ?geo1 ?geo2 (and (not (s_equal ?geo (not (adjacent_area ? (not (adjacent_line ?geo (not (cross_line ?geo (not (cross_line ?geo (not (include_area ?geo (not (include_line ?geo (not (include_line ?geo (not (overlap_line ?geo (not (overlap_line ?geo (not (overlap_line ?geo (not (overlap_line ?geo (not (overlap_line ?geo (not (overlap_line ?geo))	2) 1 ?geo2)) ?geo1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2)) so1 ?geo2)) geo1 ?geo2)) geo1 ?geo2)) so1 ?geo2)) geo1 ?geo2)) ?geo2)) ?geo2))	 adjacent_line, i include_area, i overlap_point, Range (defrange ?gea (defrange ?gea (defrange ?gea 	of Property (adjacent_a cross_area, cross_line nclude_line, overlap_ar s_equal) with the same of :FRAME Geo) of :FRAME Geo s_disjo	irea, , cross_point, ea, overlap_line, a value.

Structure Reasoning

Structure Reasoning

Conclusions

- we adhere to a hybrid approach DB + DL
- we model the semantics of the MADS data model required for mappings validation
- we "emulate" spatio-temporal reasoning for inter-schema mappings
- we shift the emphasis on automation from the a priori discovery to the a posteriori validation of the inter-schema mappings

