

PCLUST: An extension of PROMETHEE to interval clustering

Renaud Sarrazin^{1,2}, Yves De Smet², Jean Rosenfeld³

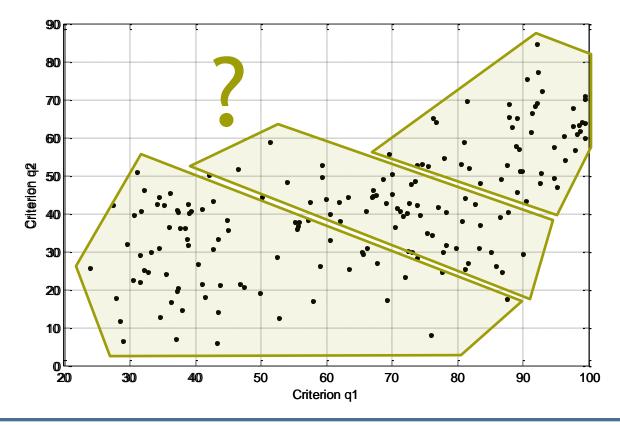
¹ MSM division, Belgian Road Research Centre, Brussels, Belgium
² CoDE-SMG laboratory, Université libre de Bruxelles, Brussels, Belgium
³ BEAMS laboratory, Université libre de Bruxelles, Brussels, Belgium

2nd International MCDA Workshop on PROMETHEE: Research and Case Studies - Extensions and Theoretical Developments

Research question

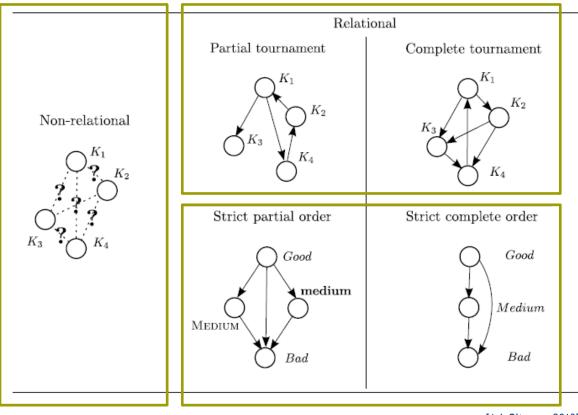
Dealing with a problem of multicriteria clustering Aim of this research:

- Consider the multicriteria nature of the problem
- Construct interval clusters (i.e., in partial order)



Context

Problematic of multicriteria clustering Non-relational, relational and ordered clustering



[A-L Olteanu, 2013]

Context

Non-relational clustering: no criteria-dependency

Many methods exists to solve clustering problems (e.g. *k*-means algorithms) Most of them rely on a **distance measure**!

- Minimize the inner-distance of each group
- Maximize the inter-distance between groups
- Not really appropriate in multicriteria contexts

Use of the preference relations between alternatives!

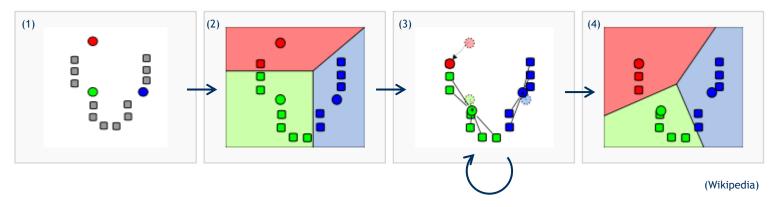


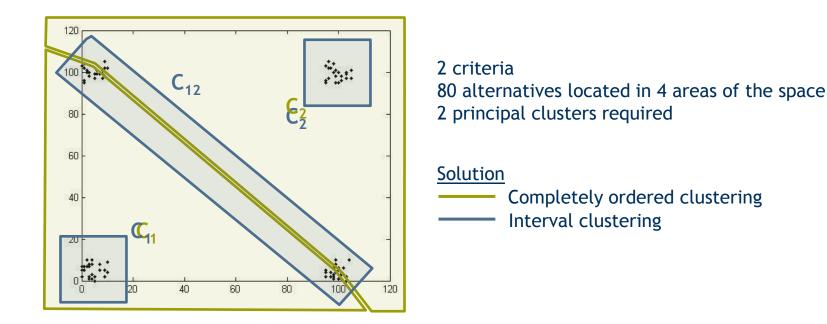
Illustration of the *k*-means algorithm:

Context

Relational and **ordered** clustering: criteria-dependency Consider the additional information given by the criteria

In this contribution, we focus on **multicriteria ordered clustering** In particular, we address the problem of interval clustering (i.e. partial order) Strong interest in using such an approach

Illustrative example:



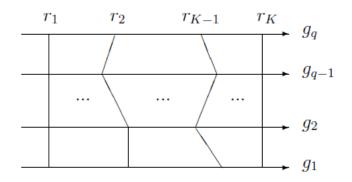
FlowSort method

Developed for solving problems of multicriteria sorting Let consider:

- $A = \{a_1, ..., a_n\}$: set of alternatives
- $F = \{g_1, \dots, g_q\}$: set of criteria
- $\kappa = \{C_1, \dots, C_k\}$: set of clusters
- $R = \{r_1, ..., r_k\}$: set of corresponding central profiles
- $R_i = R \ \upsilon \{a_i\}$

Assignment rule

$$C_{\phi}(a_i) = C_h \text{ if: } |\phi_{R_i}(r_h) - \phi_{R_i}(a_i)| = \min_{\forall i} |\phi_{R_i}(r_j) - \phi_{R_i}(a_i)|$$



Enrichment of the *k*-means procedure with the FlowSort assignment rule Adaptation of the assignment rule to interval clustering

Pseudo code

- 1. Initialization of the central profiles
- 2. Assignment of each alternatives to the categories
- 3. Update of the central profiles
- 4. Repeat until convergence of the model

1. Initialization

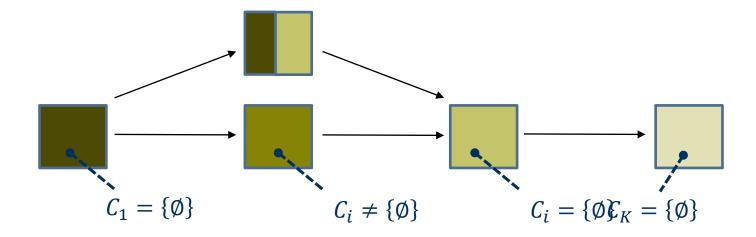
- Randomly
- Equidistribution of the evaluations

2. Assignment rule

$$C_{\phi^{+}}(a_{i}) = C_{h} \text{ if: } |\phi_{R_{i}}^{+}(r_{h}) - \phi_{R_{i}}^{+}(a_{i})| = \min_{\forall j} |\phi_{R_{i}}^{+}(r_{j}) - \phi_{R_{i}}^{+}(a_{i})|$$
$$C_{\phi^{-}}(a_{i}) = C_{l} \text{ if: } |\phi_{R_{i}}^{-}(r_{h}) - \phi_{R_{i}}^{-}(a_{i})| = \min_{\forall j} |\phi_{R_{i}}^{-}(r_{j}) - \phi_{R_{i}}^{-}(a_{i})|$$
$$\forall a_{i} \in A, \forall h, l \in \{1 \dots K\} : \begin{cases} \text{if } C_{\phi^{+}}(a_{i}) = C_{\phi^{-}}(a_{i}) = C_{h} : a_{i} \in C_{h} \\ \text{else} : a_{i} \in C_{h,l} \end{cases}$$

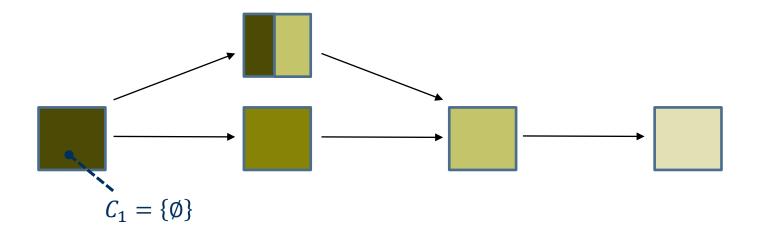
3. Update of the central profiles // First function Upd1

- Non-empty principal categories median value
- Empty principal categories
 - Extreme categories
 - Interval median value
 - No interval bounded random value
 - Non-extreme categories bounded random value



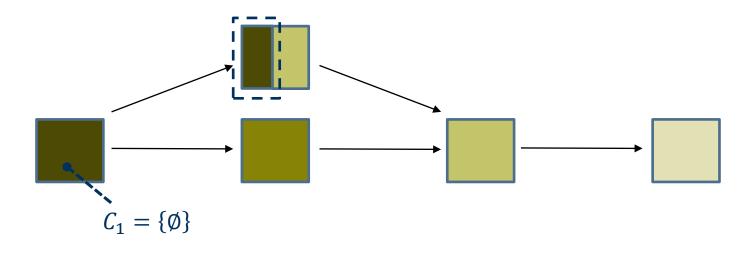
3. Update of the central profiles // Second function Upd2

- Non-empty principal categories median value
- Empty principal categories
 - Extreme categories
 - Interval -
 - No interval bounded random value
 - Non-extreme categories bounded random value



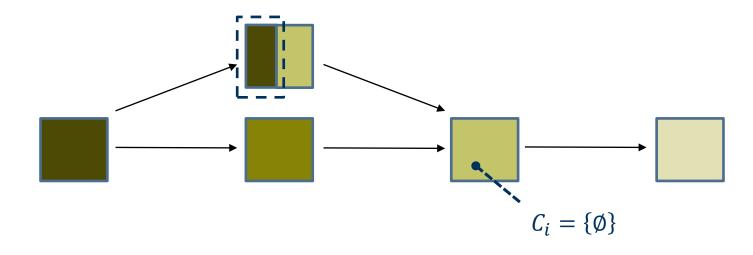
3. Update of the central profiles // Second function Upd2

- Non-empty principal categories median value
- Empty principal categories
 - Extreme categories
 - Interval median value of the closest alternatives
 - No interval bounded random value
 - Non-extreme categories bounded random value



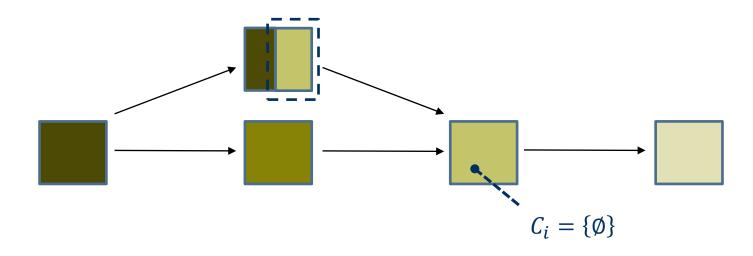
3. Update of the central profiles // Third function Upd3

- Non-empty principal categories median value
- Empty principal categories
 - Extreme categories
 - Interval median value of the closest alternatives
 - No interval bounded random value
 - Non-extreme categories



3. Update of the central profiles // Third function Upd3

- Non-empty principal categories median value
- Empty principal categories
 - Extreme categories
 - Interval median value of the closest alternatives
 - No interval bounded random value
 - Non-extreme categories
 - Interval median value of the closest alternatives
 - No interval bounded random value



Validation

Evaluation of the update functions and initialization procedures Comparison with existing procedures (*k*-means and P2CLUST)

Two structured datasets

- Environmental Performance Index (EPI 2014)
- CPU evaluation (UCI repository)

Table 1: Parameters of the EPI dataset

n	178
q	2
w	$\{0.4, 0.6\}$
P_k	$\{q_k = 10, p_k = 50\}$

Table 2: Parameters of the CPU dataset

n	209
q	6
w_k	0.167
P_k	$\{q_k = 0.1, p_k = 0.5\}$

Let denote π_{ij} the preference index $\pi(a_i, a_j)$. Definition of the quality index Qi_{ij} :

$$QI_{ij} = \begin{cases} \pi_{ij} + \pi_{ji} & \text{if } \begin{cases} a_i \in C_h \\ a_j \in C_h \end{cases} \\ 1 - \pi_{ij} + \pi_{ji} & \text{if } \begin{cases} a_i \in C_h \\ a_j \in C_l \\ h > l \end{cases} \\ |0.5 - \pi_{ij}| + |0.5 - \pi_{ji}| & \text{if } \begin{cases} a_i \in C_h \\ a_j \in C_h \\ h \neq x \end{cases} \end{cases}$$

The lower is QI_{ij} , the better is the quality of the final clustering distribution.

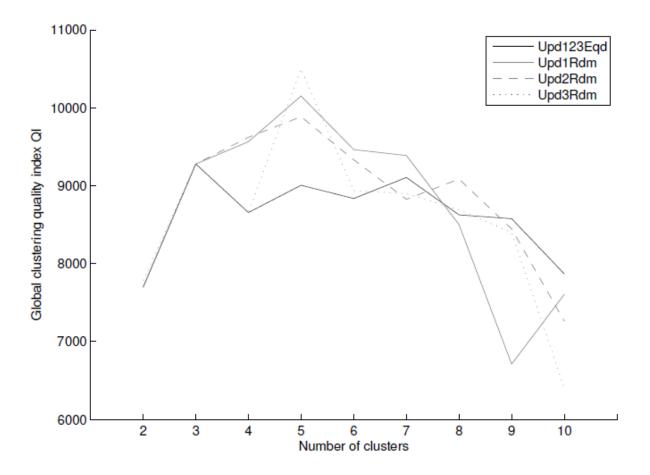


Figure: Evolution of the clustering quality with the number of clusters, 30 tests, EPI dataset

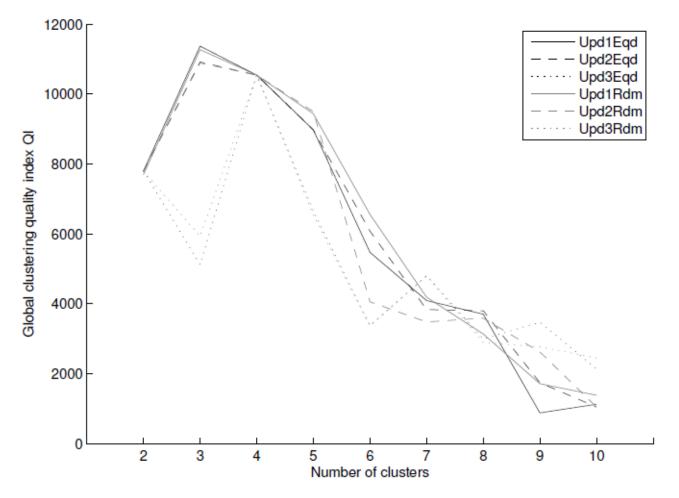


Figure: Evolution of the clustering quality with the number of clusters, 30 tests, CPU dataset

Contigency table of two clustering distributions with k = 2 and k = 3 categories (Upd1Rdm, EPI dataset)

	$ C_1 $	$ C_{12} $	$ C_2 $	$ C_{23} $	$ C_3 $	\sum
$ C_1 $	56	7	7	0	0	70
$ C_{12} $	0	2	50	6	0	58
$ C_2 $	0	0	0	13	37	50
\sum	56	9	57	19	37	178

Limited spread of the alternatives when adding a cluster Assignment to principal clusters in priority Same results were observed with Upd2 and Upd3

Validation - Convergence

Calculation of the average number of iterations to converge (i_{tot}) Datasets EPI (k=4) and CPU (k=4), 100 runs

	EPI		CPU		
	i_{tot}	std	i_{tot}	std	
Upd1Eqd	17	0	16.81	4.65	
Upd2Eqd	17	0	19.91	6.39	
Upd3Eqd	17	0	25.31	0.49	
Upd1Rdm	11.09	5.74	14.58	4.79	
Upd2Rdm	9.50	4.81	15.19	6.03	
Upd3Rdm	10.11	4.62	17.62	9.94	

Influence of the update functions is **not significant**. **Random initialization** of the profiles has a stronger influence on the convergence.

Validation - Stability

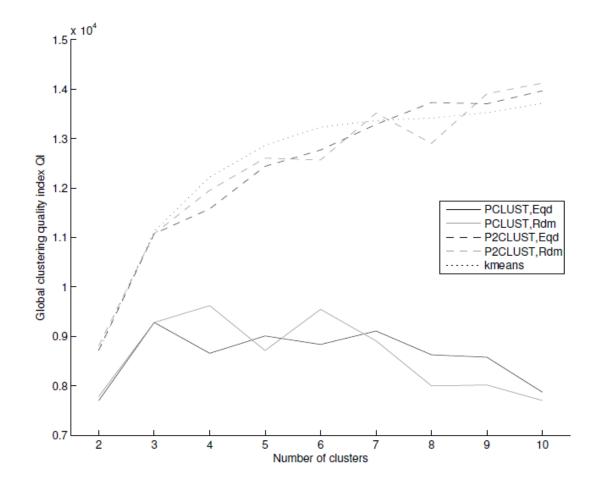
Calculation of the stability of the clustering S after 100 runs (%), EPI (k=4) and CPU (k=4) Proportion of distribution $\delta_i(A,\kappa)$ after 100 runs (%), EPI (k=4), Upd1Rdm

	1	-		
		S	$\delta_1(A,\kappa)$	
	(EPI)	(CPU)	$\delta_2(A,\kappa)$	3
Upd1Eqd	100	93	$\delta_3(A,\kappa)$	3
Upd2Eqd	100	99	$\delta_4(A,\kappa)$	
Upd3Eqd	100	100	$\delta_5(A,\kappa)$	
Upd1Rdm	39	88	$\delta_6(A,\kappa)$	
Upd2Rdm	37	92	$\delta_7(A,\kappa)$	1
Upd3Rdm	41	95	$\delta_8(A,\kappa)$	
			$\delta_9(A,\kappa)$	4

Stability globally good, except for EPI dataset in random initialization. But the distributions $\delta_2(A, \kappa)$ and $\delta_3(A, \kappa)$ are very similar in that case (error < 2%).

PCLUST: An extension of PROMETHEE to interval clustering

Comparison with existing procedures - Quality



<u>Figure</u>: Evolution of the clustering quality with the number of clusters, 30 tests, EPI dataset. Comparison of the models PCLUST, P2CLUST and *k*-means.

Comparison with existing procedures - Convergence

Calculation of average number of iterations to converge (i_{tot}) , standard deviation (std) and total calculation time t_{100} (in seconds). Datasets EPI (k=4) and CPU (k=4), 100 runs

	EPI		CPU			
	i_{tot}	std	$t_{100}(s)$	i_{tot}	std	$t_{100}(s)$
PCLUST						
Upd1Eqd	17	0	66.88	16.81	4.65	185.91
Upd2Eqd	17	0	66.47	19.91	6.39	215.05
Upd3Eqd	17	0	70.89	25.31	0.49	276.17
Upd1Rdm	11.09	5.74	56.40	14.58	4.79	158.60
Upd2Rdm	9.50	4.81	53.73	15.19	6.03	168.11
Upd3Rdm	10.11	4.62	57.35	17.62	9.94	226.07
P2CLUST						
Eqd	8	0	44.39	13.52	0.91	178.38
Rdm	5.95	2.49	39.36	9.01	2.80	145.92

P2CLUST converges slightly faster when comparing the iterations. Gain remains moderate even when comparing the calculation times.

Comparison with existing procedures - Stability

Calculation of the stability of the clustering S (%) and the stability allowing 2% of error $S_{2\%}$ (%), EPI (k=4) and CPU (k=4) datasets, 100 runs

	S		S	2%
	(EPI)	(CPU)	(EPI)	(CPU)
PCLUST				
Upd1Eqd	100	93	100	94
Upd2Eqd	100	99	100	99
Upd3Eqd	100	100	100	100
Upd1Rdm	39	88	69	88
Upd2Rdm	37	92	70	96
Upd3Rdm	41	95	71	96
P2CLUST				
Eqd	100	100	100	100
Rdm	19	61	23	61

Results are significantly better with the PCLUST model in random initialization. Results are similar with the equidistributed initialization strategy.

Conclusions

First extension of PROMETHEE to interval clustering.

Validation of the model on real-world datasets underlines interesting results. Stability and quality of the clustering are particularly good. Interval clustering allows to generate higher quality clustering distributions. Acceptable convergence of the model.

Limited interest of using preferential information from interval clusters. Equidistributed initialization leads to more stable clustering. Random initialization allows the model to converge faster.