An empirical distribution-based approximation of PROMETHEE II's net flow scores

$$
T(n)=\mathcal{O}\left(n^{2}\right)
$$

n actions

promethee II

$$
\begin{aligned}
& A=\left\{a_{1} \ldots a_{n}\right\} \\
& n \text { actions: } a_{i} \quad i \in I=\{1 \ldots n\} \\
& m \text { criteria: } \quad g_{h} \quad h \in H=\{1 \ldots m\} \\
& g_{h}\left(a_{i}\right) \in[0,1], \forall(i, h) \in I \times H
\end{aligned}
$$

promethee II

$$
P_{h}(a, b)= \begin{cases}0 & , \text { if } \Delta g_{h}(a, b) \leq q_{h} \\ \frac{\Delta g_{h}(a, b)-q_{h}}{p_{h}-q_{h}} & , \text { if } q_{h}<\Delta g_{h}(a, b) \leq q_{h} \\ 1 & , \text { if } \Delta g_{h}(a, b)>p_{h}\end{cases}
$$

promethee II

$$
\begin{array}{ll}
\Delta P_{h}(a, b)=P_{h}(a, b)-P_{h}(b, a) \\
\phi_{h}(a)=\frac{1}{n-1} \sum_{b \in A} \Delta P_{h}(a, b) & \text { unicriterion net flow score } \\
\phi(a)=\sum_{h \in H} w_{h} \phi_{h}(a) & \text { net flow score }
\end{array}
$$

promethee II

$$
\Delta P_{h}(a, b)=P_{h}(a, b)-P_{h}(b, a)
$$

$\phi_{h}(a)=\frac{1}{n-1} \sum_{b \in A} \Delta P_{h}(a, b) \quad$ unicriterion net flow score

$$
\phi(a)=\sum_{h \in H} w_{h} \phi_{h}(a)
$$

promethee ll's continuous extension

$$
\phi_{h}(a)=\frac{1}{n-1} \sum_{b \in A} \Delta P_{h}(a, b) \quad \text { unicriterion net flow score }
$$

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

small abuse of notations

promethee ll's continuous extension

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

approximation models

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
g_{h} \sim U_{[0,1]}
$$

$$
f_{h}(\xi)=1
$$

PLA

piecewise linear approximation

piecewise linear approximation

approximation models

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
\begin{array}{ll}
g_{h} \sim U_{[0,1]} & g_{h} \sim ? \\
f_{h}(\xi)=1 & f_{h}(\xi)=?
\end{array}
$$

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

integration by parts
empirical distribution of evaluations (needs sorting)
CDF by numerical integration

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
\left.\begin{array}{rl}
\psi_{h}(y) \approx & \Delta P_{h}(y, 1) \hat{F}_{h}(y) \\
& +\frac{2}{p_{h}-q_{h}}\left[\mathcal{F}_{h}\left(y_{q}^{-}\right)-\mathcal{F}_{h}\left(y_{p}^{-}\right)+\mathcal{F}_{h}\left(y_{p}^{+}\right)-\mathcal{F}_{h}\left(y_{q}^{+}\right)\right]
\end{array}\right] \begin{aligned}
\mathcal{F}_{h}(y) \approx & \int_{0}^{y} \hat{F}_{h}(\xi) d \xi \quad \text { approximation by Riemann sum }
\end{aligned}
$$

experimental exploration

simulations - setup

Parameter	Value(s)	
Number of actions	n	$10,100,1000,10000$
Number of criteria	m	$5, \mathbf{7}, 10$
Ex post approximation models	P3R	
Ex ante approximation models	PLA, EDA	
Runs per instance config.	$N_{\text {trials }}$	100

simulations - setup

results

simulations - results

simulations - results

	Hit rate		Time	Complexity
PROMETHEE II	100\%	100\%	21"	n^{2}
EDA	99,9\%		0,077"	$n \log n$
PLA	84\%	58\%	0,003"	n

10.000 actions / 7 criteria 100 runs mixed distribution

conclusion

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

integration by parts
$\int_{a}^{b} u(\xi) v^{\prime}(\xi) d \xi=[u(\xi) v(\xi)]_{a}^{b}-\int_{a}^{b} u^{\prime}(\xi) v(\xi) d \xi$
$\left\{\begin{aligned} u(\xi) & =\Delta P_{h}(y, \xi) \\ v^{\prime}(\xi) & =f_{h}(\xi)\end{aligned}\right.$

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
\psi_{h}(y)=\left[\Delta P_{h}(y, \xi) F_{h}(\xi)\right]_{0}^{y}-\int_{0}^{y} \frac{d \Delta P_{h}}{d \xi}(y, \xi) F_{h}(\xi) d \xi
$$

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
\begin{aligned}
& \psi_{h}(y)=\left[\Delta P_{h}(y, \xi) F_{h}(\xi)\right]_{0}^{y}-\int_{0}^{y} \frac{d \Delta P_{h}}{d \xi}(y, \xi) F_{h}(\xi) d \xi \\
& F_{h}(0)=0 \\
& \frac{d \Delta P_{h}}{d \xi}(y, \xi)= \begin{cases}-\frac{2}{p_{h}-q_{h}} \\
0 & \\
0 & { }_{-1}\end{cases}
\end{aligned}
$$

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
\psi_{h}(y)=\Delta P_{h}(y, 1) F_{h}(y)+\frac{2}{p_{h}-q_{h}}\left(\int_{y_{p}^{-}}^{y_{q}^{-}} F_{h}(\xi) d \xi+\int_{y_{q}^{+}}^{y_{p}^{+}} F_{h}(\xi) d \xi\right)
$$

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
\psi_{h}(y)=\Delta P_{h}(y, 1) F_{h}(y)+\frac{2}{p_{h}-q_{h}}\left(\int_{y_{p}^{-}}^{y_{q}^{-}} F_{h}(\xi) d \xi+\int_{y_{q}^{+}}^{y_{p}^{+}} F_{h}(\xi) d \xi\right)
$$

empirical cumulated distribution function

$$
F_{h}(y) \approx \hat{F}_{h}(y)=\frac{1}{n} N_{h}(y)
$$

$$
\psi_{h}(y)=\int_{0}^{1} \Delta P_{h}(y, \xi) f_{h}(\xi) d \xi
$$

$$
\psi_{h}(y)=\Delta P_{h}(y, 1) F_{h}(y)+\frac{2}{p_{h}-q_{h}}\left(\int_{y_{p}^{-}}^{y_{q}^{-}} F_{h}(\xi) d \xi+\int_{y_{q}^{+}}^{y_{p}^{+}} F_{h}(\xi) d \xi\right)
$$

numerical integration function (Riemann sum)
$\mathcal{F}_{h}(y)=\sum_{i=1}^{n-1} \hat{F}_{h}\left(a_{\sigma_{h}(i)}\right)\left[f_{h}\left(a_{\sigma_{h}(i+1)}\right)-f_{h}\left(a_{\sigma_{h}(i)}\right)\right] \approx \int_{0}^{y} F_{h}(\xi) d \xi$

