An empirical distribution-based **approximation** of PROMETHEE II's net flow scores

Stefan Eppe, Yves De Smet Computer & Decision Engineering Department Université libre de Bruxelles

the stake

 $T(n) = \mathcal{O}\left(n^2\right)$

n actions

promethee II

$$A = \{a_1 \dots a_n\}$$

$$n$$
 actions: a_i $i \in I = \{1 \dots n\}$

m criteria: g_h $h \in H = \{1 \dots m\}$

 $g_h(a_i) \in [0,1], \forall (i,h) \in I \times H$

promethee II

$$P_h(a,b) = \begin{cases} 0 & , \text{ if } \Delta g_h(a,b) \leq q_h \\ \frac{\Delta g_h(a,b) - q_h}{p_h - q_h} & , \text{ if } q_h < \Delta g_h(a,b) \leq q_h \\ 1 & , \text{ if } \Delta g_h(a,b) > p_h \end{cases}$$

$\Delta P_h(a,b) = P_h(a,b) - P_h(b,a)$

$$\phi_h(a) = \frac{1}{n-1} \sum_{b \in A} \Delta P_h(a, b)$$

unicriterion net flow score

$$\phi(a) = \sum_{h \in H} w_h \phi_h(a)$$

net flow score

$\Delta P_h(a,b) = P_h(a,b) - P_h(b,a)$

$$\phi_h(a) = \frac{1}{n-1} \sum_{b \in A} \Delta P_h(a, b)$$

unicriterion net flow score

$$\phi(a) = \sum_{h \in H} w_h \phi_h(a)$$

net flow score

promethee II's continuous extension

$$\phi_h(a) = \frac{1}{n-1} \sum_{b \in A} \Delta P_h(a, b)$$

unicriterion net flow score

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

small abuse of notations

promethee II's continuous extension

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

approximation models

 $\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$

PLA piecewise linear approximation

piecewise linear approximation

piecewise linear approximation

approximation models

 $\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$

 $g_h \sim U_{[0,1]}$ $f_h(\xi) = 1$

 $g_h \sim ?$ $f_h(\xi) = ?$

PLA piecewise linear approximation

EDA empirical distribution-based approximation

 $\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$

integration by parts

empirical distribution of evaluations (needs sorting)

CDF by numerical integration

EDA

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

EDA

$\psi_h(y) \approx \Delta P_h(y, 1) \hat{F}_h(y)$ $+ \frac{2}{p_h - q_h} \left[\mathcal{F}_h(y_q^-) - \mathcal{F}_h(y_p^-) + \mathcal{F}_h(y_p^+) - \mathcal{F}_h(y_q^+) \right]$

$$\mathcal{F}_h(y) pprox \int_0^y \hat{F}_h(\xi) \, d\xi$$
 approximation by Riemann sun

simulations

experimental exploration

Parameter		Value(s)
Number of actions	n	10, 100, 1000 , 10000
Number of criteria	m	5, 7, 10
Ex post approximation mo	P3R	
Ex ante approximation mo	aels	PLA, EDA
Runs per instance config.	N_{trials}	100

no correlation between criteria

simulations - setup

no correlation between criteria

simulations

results

simulations - results

Pearson's correlation coefficient 1000 actions / 7 criteria 100 runs mixed distribution

	Hit rate	Time	Complexity
PROMETHEE II	100% 100%	21" 100%	n^2
EDA	99,9% 99%	0,077" 0,3%	$n\log n$
PLA	84% 58%	0,003" 0,01%	n

10.000 actions / 7 criteria 100 runs mixed distribution

conclusion

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

integration by parts

$$\int_{a}^{b} u(\xi)v'(\xi) \, d\xi = \left[u(\xi)\,v(\xi)\right]_{a}^{b} - \int_{a}^{b} u'(\xi)v(\xi) \, d\xi$$

$$\begin{cases} u(\xi) &= \Delta P_h(y,\xi) \\ v'(\xi) &= f_h(\xi) \end{cases}$$

EDA

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

$$\psi_h(y) = \left[\Delta P_h(y,\xi) F_h(\xi)\right]_0^y - \int_0^y \frac{d\Delta P_h}{d\xi} (y,\xi) F_h(\xi) d\xi$$

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

EDA

$$\psi_h(y) = \left[\Delta P_h(y,\xi) F_h(\xi)\right]_0^y - \int_0^y \frac{d\Delta P_h}{d\xi} (y,\xi) F_h(\xi) d\xi$$

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

EDA

$$\psi_h(y) = \Delta P_h(y, 1) F_h(y) + \frac{2}{p_h - q_h} \left(\int_{y_p^-}^{y_q^-} F_h(\xi) \, d\xi + \int_{y_q^+}^{y_p^+} F_h(\xi) \, d\xi \right)$$

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

$$\psi_h(y) = \Delta P_h(y, 1) F_h(y) + \frac{2}{p_h - q_h} \left(\int_{y_p^-}^{y_q^-} F_h(\xi) \, d\xi + \int_{y_q^+}^{y_p^+} F_h(\xi) \, d\xi \right)$$

empirical cumulated distribution function

 $F_h(y) \approx \hat{F}_h(y) = \frac{1}{n} N_h(y)$

$$\psi_h(y) = \int_0^1 \Delta P_h(y,\xi) f_h(\xi) d\xi$$

$$\psi_h(y) = \Delta P_h(y,1)F_h(y) + \frac{2}{p_h - q_h} \left(\int_{y_p^-}^{y_q^-} F_h(\xi) \, d\xi + \int_{y_q^+}^{y_p^+} F_h(\xi) \, d\xi \right)$$

numerical integration function (Riemann sum) $\mathcal{F}_{h}(y) = \sum_{i=1}^{n-1} \hat{F}_{h}\left(a_{\sigma_{h}(i)}\right) \left[f_{h}\left(a_{\sigma_{h}(i+1)}\right) - f_{h}\left(a_{\sigma_{h}(i)}\right)\right] \approx \int_{0}^{y} F_{h}(\xi) d\xi$

