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Figure 3: Integration domains of ⌅h(a).
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Figure 4: Shape of the unicriterion net flow score.

Let us stress again that, in this formulation, we only use one
single “threshold” parameter, ⇥h, that is the mean value of qh
and ph. This remarkable property questions (at least for bigger
problem instances) the usefulness of requiring two parameters
to determine a preference function. It also tends to show that the
e�ects of indi�erence and preference parameters on an action’s
ranking do compensate each other in some way. This could
shed a new light on the di⇥culty of eliciting these parameters
[7]: experiments that would only try to elicit the relative weight
and parameter ⇥h for each criterion could be run to verify this
conjecture.

Finally, having defined value functions that approximate the
unicriterion net flow score of an action on each criterion, we ag-
gregate them through a weighted sum, just like for the original
method, and we obtain an approximation of each action’s net
flow score

⌅PLA(a) =
m⌥

h=1

wh⌅
PLA

h (a), (5)

The approximated net flow scores induce an “approximated”
ranking over A. We denote RPLA(a) the rank of action a based
on our approximated model, and hope it to be as close as possi-
ble to action a’s reference rank R(a) obtained with the classical
Promethee II method.

4. Experimental setup

From an artificial continuous formulation, we have deduced
a piecewise linear approximation (PLA) that we hope to be ap-
plicable to finite action sets. We are now going to put our model
to the test, comparing the rankings it generates with the refer-
ence ranking produced by the original Promethee II method.
Beyond the mere validation of our model, our main aim is to
provide an empirical bound on the instance size above which
Promethee II’s net flow scores are reasonably well approxi-
mated by our ex ante parametrized PLA-function.

The experimental approach proposed in this paper consists
(Algorithm 1) in generating a random instance of n actions over
m criteria, as well as preference parameters (weights and thresh-
olds) for each criterion. Therefrom, the rankings of the gener-
ated set of actions following respectively Promethee II’s origi-
nal model (RP2) and our piecewise linear model (RPLA) are com-
puted and compared. We use the resulting similarity measure
to

Algorithm 1: Standard experimental process that outputs
a result vector � of Ntrials runs.

Input: n, m, Ntrials
for i = 1 . . .Ntrials do

A = randEvals(n,m);
(w, q, p) = randPrefParams(m);
R = computeNetFlowRanking(A,w, q, p);
RPLA = computePLARanking(A,w, q, p);
�i = computeCRatio(R,RPL);

1. validate the approach by showing that for reasonably
sized instances, our PLA-model satisfyingly approxi-
mates the Promethee II ranking;

2. produce a table that provides an experimental numerical
bound for the instance size, as from which the approxi-
mation quality reaches a required level.

To make things more concrete, we now provide some practical
details about di�erent aspects of the experimental setup:

Quality measure We define a rank concordance ratio �, which
is the ratio of the number of concordant action pairs, i.e.,
pairs that have the same relative rank order in both rank-
ings, over the total number of pairwise action compar-
isons:

� = 1
n(n�1)

⌥

a,b⇤A
c(a, b).

The concordance

c(a, b) =

⇤⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌅

1 , if
�
⌅(a) ⇥ ⌅(b) ⌅ ⌅PLA(a) > ⌅PLA(b)

⇥

⇧ �⌅(a) > ⌅(b) ⌅ ⌅PLA(a) ⇥ ⌅PLA(b)
⇥

0 , otherwise

indicates whether or not a rank di�erence between a pair
of actions following respectively rankings RP2 and RPLA

is concordant. Although this measure is closely related
to Kendall’s ⇤ rank correlation coe⇥cient [13], we pre-
fer the former because it allows taking possible ties into
account in a “MCDA consistant” way.

Randomly generated instances We generate instances of n
actions, evaluated on m criteria. For each generated in-
stance, one type of distribution (Figure 5) is uniform ran-
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approximation would immediately be determined by (1), boil-
ing down to a simple weighted averaging approach.

For the sake of simplicity, we will assume, in this section,
that the actions are sorted in increasing order of their evaluation
for the considered criterion: fh(ai) ⇤ fh(a j), ⌃i < j. We can
thus rewrite the unicriterion net flow score of action ai as

⇤h(ai) = 1
n�1

i�1�

j=1

P(ai, a j) � 1
n�1

n�

j=i+1

P(a j, ai)

In this form, however, the unicriterion score cannot be handled
easily. As we want to consider large action sets, we choose
to extend the formulation above to the case of an infinite set
of actions. Exploring the possible meanings of this contin-
uous extension lays beyond the scope of this work; we will
only consider it as a mathematical mean that could provide us
some insight into the asymptotic behaviour of unicriterion net
flow scores. Let us mention that the extension to an infinite
set of actions has already been proposed as the Promethee IV
method [3], but, to the best of our knowledge, was never fur-
ther developed nor applied. Recently, a continuous extension
of Promethee II has also been mentioned [4] in the context
of combinatorial multi-objective optimization problems (where
the number of considered solutions is high), but not actually
used.

Still assuming that the actions are sorted in ascending order
of their evaluations on criterion h, we choose to identify each
action through a real number a ⇧ [0, 1]: a = 0 is the worst
ranked action, while a = 1 is the best ranked one. If we further
consider that the continuous distribution of actions along the
evaluation axis x is given by the density function ⇥h(x) (chosen
such that

⌥ 1
0 ⇥h(x)dx = 1), the evaluation of each action a is

given by fh(a) =
⌥ a

0 ⇥h(x)dx. The unicretrion net flow can thus
be written as follows in the continuous case:

⇤⌅h (a) =
 a

0
Ph(a, x)⇥h(x)dx �

 1

a
Ph(x, a)⇥h(x)dx (2)

In the sequel of this section, we will consider the particular case
of a uniform distribution of actions: ⇥h(x) = 1, and hence,
fh(a) = a. This will lead us to replce fh(a) by a in the sub-
sequent equations.

Introducing the following help variables (that depend on a):
⇤⌃⌃⌃⌃⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

y�q = max { 0 ; a � qh }
y�p = max { 0 ; a � ph }

y+q = min { 1 ; a + qh }
y+p = min { 1 ; a + ph }

the integration range of (2) can be sliced into five segments,
denoted by a ,. . ., e (Figure 3).

Once integrated, we obtain the following formulation:

⇤⌅h (a) = y�p

a

+
(y�q�y�p )2

2(ph�qh)

b

+ 0

c

� (y+p�y+q )2

2(ph�qh)

d

�
�
1 � y+p

⇥

e

(3)

Table 1: For each segment A to E of ⇤⌅h (a), the integration segments a to
e contribute in a specific way: not at all (0), with a constant value (cst), or

linearly/quadratically increasing ( , ), resp. decreasing ( , ).

⇤⌅h (a) Integration segment

segment a ⇧ a b c d e

A [ 0, qh ] 0 0 0 cst
B [ qh, ph ] 0 0 cst
C [ ph, 1-ph ] cst 0 cst
D [ 1-ph, 1-qh ] cst 0 0
E [ 1-qh, 1 ] cst 0 0 0

The unicriterion net flow ⇤⌅h (a) is composed of three terms:
a , c , and e , of linearly increasing values, separated by two
intervals: b and d , with quadratic terms. The extent and con-
tribution of each of them to the unicriterion net flow depends
on both thresholds qh and ph, and also on action’s a evaluation
fh(a). In the general case, five di�erent ranges can again be
distinguished in ⇤⌅h ’s domain (Figure 4 and Table 1): A – E .
Some characteristics of ⇤⌅h (a)’s formulation are worth noting:

• Inside segments A and E , the slope is constant: d⇤⌅h
da = 1;

• Inside segment C the slope is constant too: d⇤⌅h
da = 2;

• The extreme values of the function are: ⇤⌅h (0) = �h � 1
and ⇤⌅h (1) = 1��h. Thus, the value range of the function
is 2(1 � �h);

• There is a central symmetry with respect to the coordi-
nate ( 1

2 , 0).

Note that this general interpretation yields for the case where
ph <

1
2 . For higher values of ph, the shape changes slightly,

but can be determined analytically in a similar way. Due to its
mathematical formulation, we rename the model as the piece-
wise polynomial approximation (PPA) model, and denote so in
the following: ⇤PPA

h (a) = ⇤⌅h (a).
Depending on the values of qh and ph, some ranges may be

reduced to an empty range. For instance, if qh = ph, there are no
quadratic terms and ⇤PPA

h (a) reduces to a piecewise linear func-
tion. This form is particularly appealing for its simplicity and,
as a further simplification, we approximate (3) by a piecewise
linear function ⇤PLA

h (a) composed of three segments and defined
by one single threshold-related parameter �h =

1
2 (qh + ph):

⇤PLAh (a) =

⇤⌃⌃⌃⌃⌃⇧
⌃⌃⌃⌃⌃⌅

a + �h � 1 if a < �h

2a � 1 if �h ⇤ a < 1 � �h

a � �h if a > 1 � �h

(4)

This particular piecewise linear approximation (PLA) model is
built in order have the same four functional features as those
previously noted for ⇤⌅h (a). As an addition resulting feature,
the linear segments of our PLA model intersect at symmetric
coordinates (�h, 2�h � 1) and (1 � �h, 1 � 2�h).
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Parameter Value(s)

Number of actions n 10, 100, 1000, 10000
Number of criteria m 5, 7, 10

Ex post approximation models P3R
Ex ante approximation models PLA, EDA
Runs per instance config. Ntrials 100
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Figure 5: Shape of the probability density functions p(x) used to generate ran-
dom instances.

domly associated to each criterion.1 The evaluations on
each criterion are then randomly generated for all actions
following the corresponding, assigned distribution. By
doing so, we aim at producing results that are not (too
strongly) biased by the features of one specific distribu-
tion. Note that the PLA-model expressed by (3) assumes
a uniform distribution. We will have to verify that mixed
distributions do not a�ect the approximation’s quality too
much.

5. Results & discussion

Before delving into the empirical exploration of our model,
we start this section by providing a first analysis of the state-
ment (Section 3) that P2-rankings may depend on only one
threshold-like parameter ⇥h per criterion. We then proceed with
several qualitative and quantitative investigations to validate the
PLA-model. Finally, we provide the results that we initially
aimed for and that contribute to answering our question: “As
from what instance size is it possible to satisfyingly approximate
an action’s net flow score by our piecewise linear model?”.

5.1. Compensating e�ect of Promethee II’s threshold values
The piecewise linear approximation proposed in Section 3

only depends on one parameter, ⇥h =
1
2 (qh + ph). As already

noted, this could suggest some sort of compensating e�ect be-
tween indi�erence and preference thresholds qh and ph in the
Promethee II preference model. To verify this, we observe, on
the classical P2 formulation, how the ranking of an action set
A changes when the threshold values are altered (the weights
remaining unchanged). Practically, we take the ranking R⇥, in-
duced by the threshold values qh = ph = ⇥, as a reference
and compare it with the ranking R⇥ induced by another pair of
threshold values (q⇥h, p

⇥
h). The comparison is done through the

rank concordance ratio �(R⇥,R⇥). In particular, we present re-
sults for the case where ⇥h = 0.25. At each run: 1) a random

1The attribution of a distribution function is independent for each criterion.
Hence, the same distribution may be related to several criteria of the same in-
stance.

Table 2: Parameters used for the experimental investigation. Values in bold
represent the most often used combinations provided in the results section.

Parameter Value(s)

Number of actions n 5,10,50,500,1000
Number of criteria m 2,3,5,7,10
Evaluation distribution D1, D2, D3, D4, D5, MX
Ex post approximation models LiR, P3R
Ex ante approximation models PLA, PPA
Runs per instance config. Ntrials 1000

set of actions is generated as described in Section 4, as well as
a random weight vector; 2) the concordance � between R⇥=0.25
and R⇥ is computed, the latter being induced by threshold values
qh and ph, where ph ⇤ [0, 0.5] and qh ⇤ [0, ph]. We finally com-
pute the 5% quantile of �(R⇥,R⇥)’s distribution for a series of
1000 runs, i.e., an approximation of the minimum concordance
ratio reached with a probability of 95%.

The results (Figure 6) show, for all tested instance sizes,
a symmetry with respect to the bisecting line qh + ph = 2⇥h.
This tends to confirm the compensating role of qh and ph: the
influence of their average value ⇥h on Promethee II’s ranking
is higher than their individual values. As the instance size in-
creases, the isolines become more and more parallel to this bi-
secting line, thereby confirming our impression. On the other
hand, however, the similarity of induced rankings with the ref-
erence ranking R⇥ descreases when the threshold pair tends to
(qh, ph) � (0, 0.5). It is obviously the highest, i.e., � = 1,
for qh = ph = ⇥. The latter observation is particularly visible
on smaller instances. The underlying reasons for this decrease
should be investigated in a future work.

5.2. Empirical validation of our model
In the sequel of this section we provide a selection of the

experimental results that highlight the observations made on a
larger set of configurations (Table 2). Results corresponding to
configurations that are not explicitely presented here show very
similar behaviour and confirm our observations.

As a first validation, we visually compare both plots of Fig-
ure 7. It shows that, although the experimental results displayed
in (b) are based on a relatively small instance of n = 20 ran-
domly generated evaluations (with a uniform distribution D1),
these results are close to the “theoretical” continuous results (a).
This suggests that general features deduced from the theoretical
model could also satisfyingly yield for practical instances. In a
further step, we will investigate how the di�erences between
the model and the practical results can be quantified.

As a further validation of our approximation models, we
compare their quality, measured by the rank concordance ratio
�, with two other models: 1) ex post linear regression of P2-
ranking (LIR); 2) ex post 3rd degree polynomial regression of
P2-ranking (P3R). The comparison (Figure 8) shows that:
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should be investigated in a future work.

5.2. Empirical validation of our model
In the sequel of this section we provide a selection of the

experimental results that highlight the observations made on a
larger set of configurations (Table 2). Results corresponding to
configurations that are not explicitely presented here show very
similar behaviour and confirm our observations.

As a first validation, we visually compare both plots of Fig-
ure 7. It shows that, although the experimental results displayed
in (b) are based on a relatively small instance of n = 20 ran-
domly generated evaluations (with a uniform distribution D1),
these results are close to the “theoretical” continuous results (a).
This suggests that general features deduced from the theoretical
model could also satisfyingly yield for practical instances. In a
further step, we will investigate how the di�erences between
the model and the practical results can be quantified.

As a further validation of our approximation models, we
compare their quality, measured by the rank concordance ratio
�, with two other models: 1) ex post linear regression of P2-
ranking (LIR); 2) ex post 3rd degree polynomial regression of
P2-ranking (P3R). The comparison (Figure 8) shows that:
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