

Service de Mathématiques de la gestion

Extension of PROMETHEE methods to temporal evaluations

PhD student: Supervisor: Issam Banamar Prof. Yves De Smet

- Temporal MCDA problem
- PROMETHEE II Method and Gaia Plane
- Temporal PROMETHEE II and Gaia Plane
- Dynamic preference threshold
- Dynamic alternatives
- Illustration of Temporal Gaia Plane
- Prospects

• Temporal MCDA problem

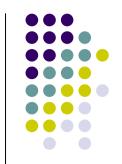
- PROMETHEE II Method and Gaia Plane
- Temporal PROMETHEE II and Gaia Plane
- Dynamic preference threshold
- Dynamic alternatives
- Illustration of Temporal Gaia Plane
- Prospects

ULB 1- A temporal MCDA problem

In a junior football club:

Assessment of 5 players after 4 weeks of regular monitoring

With respect to **5 criteria**


The criteria:

1- Speed test 5,5 s--->4s M2 M1

3- Peak power 15 --> 17 W/kg

onda 4- VO²max 30-->50 ml.kg.min¹

2- Lactic capacity 40 --> 50 Joules / kg

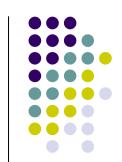
5

5- Team work (qualit.) 12 --> 15 /20

Conventional MCDA methods are not effective because

- > Evaluations
- > Preferences of Decision maker

are NOT constants in time



Patients monitoring:

- > Puls
- > Choleterol
- > Blood pressure
- >

During weeks

Sustainable development:

- Social
- Ecology
- Economy

During years

How to get a global ranking after successive evaluations ?

Before that let's have a look over...

1- Temporal MCDA problem

- **2- PROMETHEE II Method and Gaia Plane**
- **3-** Temporal PROMETHEE II and Gaia Plane
- 4- Dynamic preference thresholds
- **5- Dynamic alternatives**
- 6- Illustration of Temporal Gaia Plane
- 7- Prospects

→ Ranking by Total Preoder (Global Ranking)

Alternatives set: Criteria set:

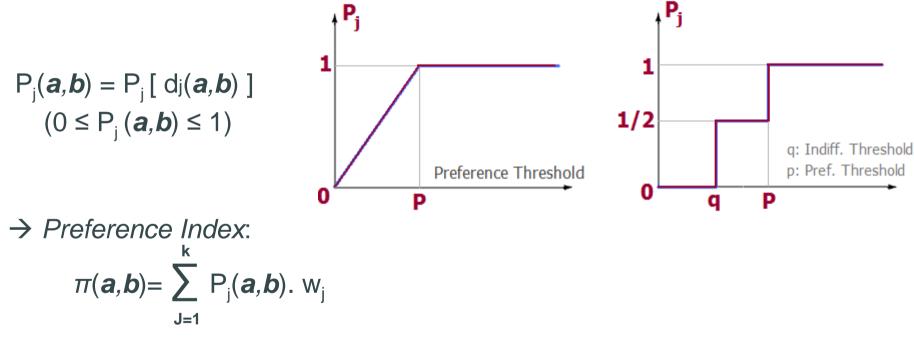
Criteria weight set:

$$F = \{ f_1, f_2, \dots, f_k \}$$
$$W = \{ W_1, W_2, \dots, W_k \}$$

 $A = \{a_1, a_2, \dots, a_n\}$

	f ₁	f ₂		f _k
a1	f1(a1)	f2(a1)		fk(a1)
a2	f1(a2)	f2(a2)		fk(a2)
:	:	:	:	:
an	f1(an)	f2(an)		fk(an)

The aim is to find the alternative with max { $f_1(x), f_2(x), \dots, f_k(x) | x \in A$ }


The procedure is:

$$\rightarrow \forall a, b \in A$$
: $d_j(a, b) = f_j(a) - f_j(b)$

10

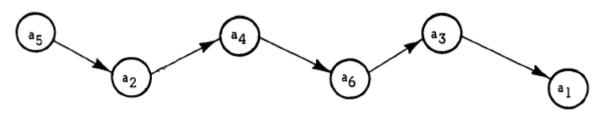
 \rightarrow Define a Preference function by criterion:

 \rightarrow Outgoing flow:

$$\Phi^{+}(\boldsymbol{a}) = \frac{1}{n-1} \sum_{X \in A} \pi(\boldsymbol{a}, X)$$

 \rightarrow Incoming flow:

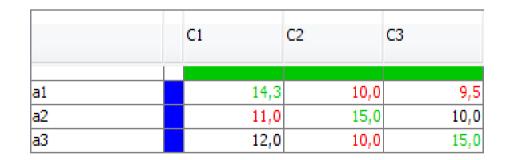
Examples:


$$\Phi^{-}(a) = \frac{1}{n-1} \sum_{x \in A} \pi(x, a)$$

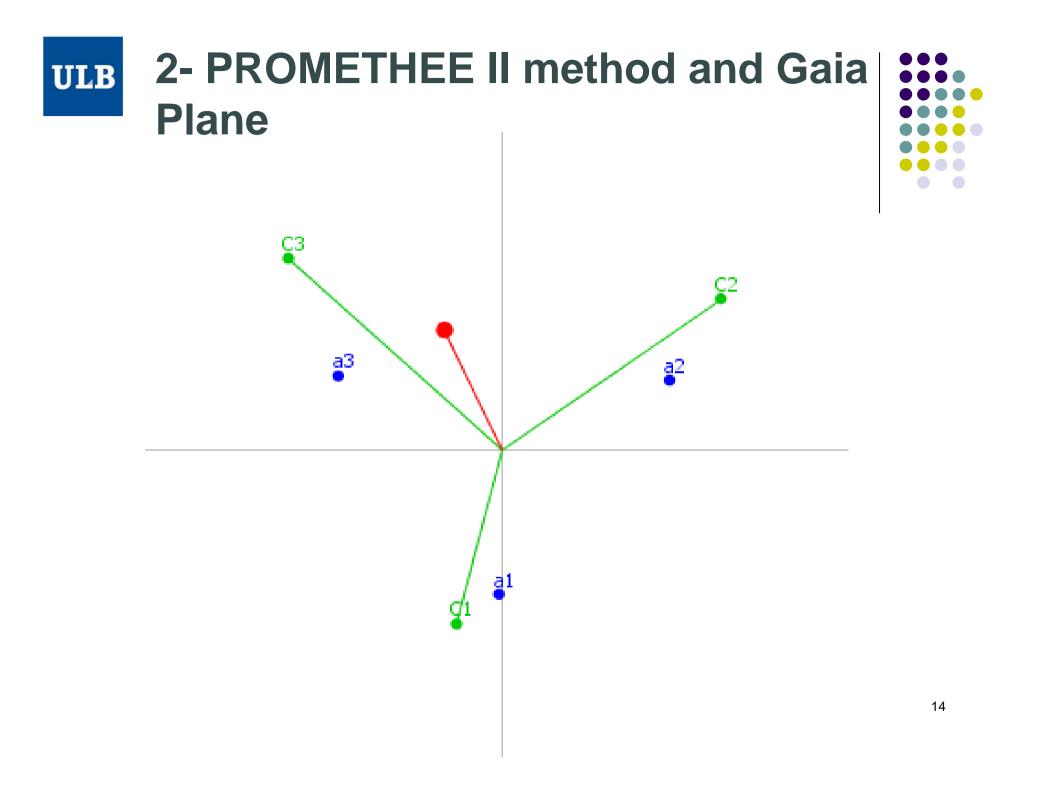
 \rightarrow The net flow:

$$\Phi (\mathbf{a}) = \Phi^{\dagger} (\mathbf{a}) - \Phi^{\dagger} (\mathbf{a})$$
$$\Phi (\mathbf{b}) = \Phi^{\dagger} (\mathbf{b}) - \Phi^{\dagger} (\mathbf{b})$$

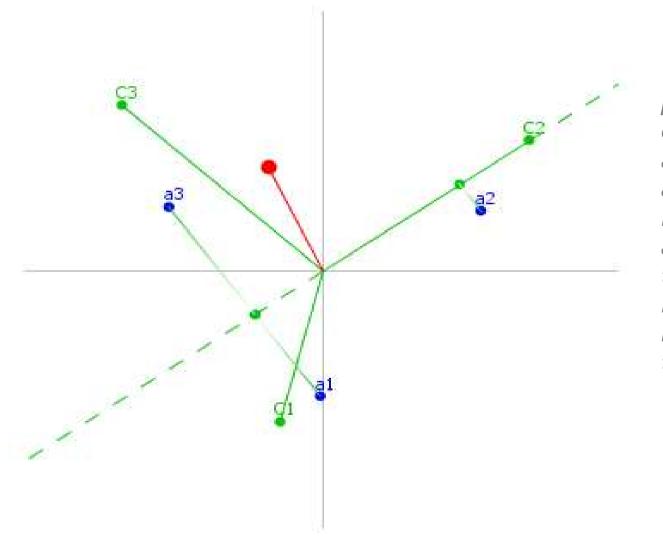
a outranks b \rightarrow iff $\Phi(a) > \Phi(b)$ a is indifferent to b \rightarrow iff $\Phi(a) = \Phi(b)$



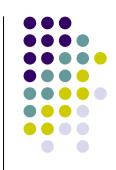
Total PROMETHEE II Relation


→ GAIA Plane (D-Sight)

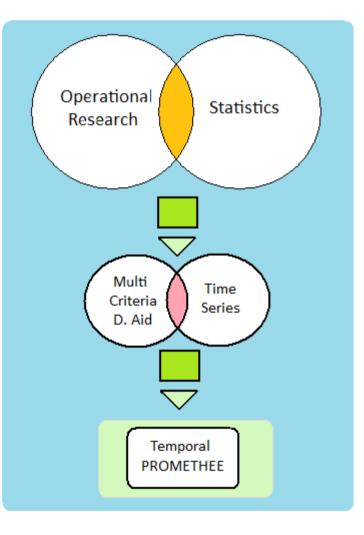
Multicriteria decision problem:


-3 alternatives -3 criteria

In this example, each alternative has the best score on 1 given criterion


→ Reading GAIA Plan

We make the projection of each alternative on a given axis in order to get an idea of their importance relative to this axis


- 1- Temporal MCDA problem
- **2- PROMETHEE II Method and Gaia Plane**
- **3** Temporal PROMETHEE II and Gaia Plane
- 4- Dynamic preference thresholds
- **5- Dynamic alternatives**
- 6- Illustration of Temporal Gaia Plane
- 7- Prospects

ULB 3- Temporal PROMETHEE II and Gaia Plane

- \rightarrow One year of research.
- Junction of two fields:
 - Operational research
 - Statistics

More specifically:

- Multicriteria decision aid
- Stochastic time series

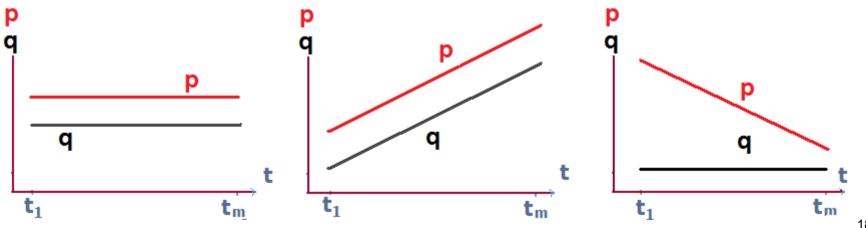
ULB 3- Temporal PROMETHEE II and Gaia Plane

→ Procedure:

1- Alternative set: Criteria set: Criteria weight set: *Instants set: Instant weight set:*

$$A = \{ a_1, a_2, ..., a_n \}$$

$$F = \{ f_1, f_2, ..., f_k \}$$


$$W = \{ w_1, w_2, ..., w_k \}$$

$$T = \{ t_1, t_2, ..., t_m \}$$

$$Vt = \{ V_1, V_2, ..., V_m \}$$

- 2- Defining a preference function (Conventional PROMETHEE)
- 3- Defining a function of dynamic threshold per criterion

4- Computing the instantaneous net flow (Promethee II) :

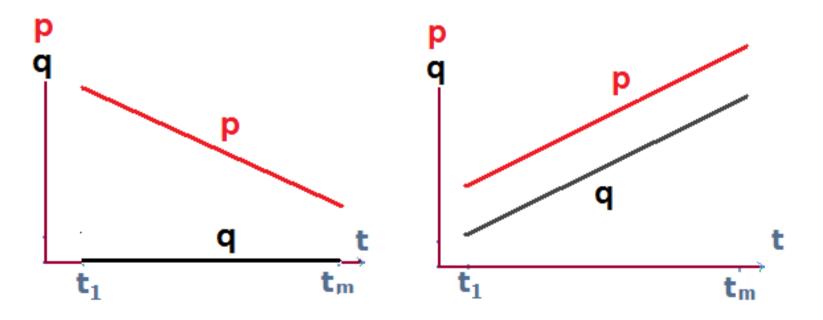
 $\Phi_{t_1}(a) = \Phi_{t_1}^+(a) - \Phi_{t_1}^-(a) \quad \text{(for each alternative a)}$

5- Computing the global ranking over the set of instant T:

$$\Phi_{A,T}(a) = (V_1 \cdot \Phi_{t_1}(a) + V_2 \cdot \Phi_{t_2}(a) + \dots + V_t \cdot \Phi_{t_t}(a)) / S$$

with: $S = V_1 + V_2 + \dots + V_m$

6- Temporal GAIA Plane: ...



- 1- Temporal MCDA problem
- **2- PROMETHEE II Method and Gaia Plane**
- **3-** Temporal PROMETHEE II and Gaia Plane
- 4- Dynamic preference threshold
- **5- Dynamic alternatives**
- 6- Illustration of Temporal Gaia Plane
- 7- Prospects

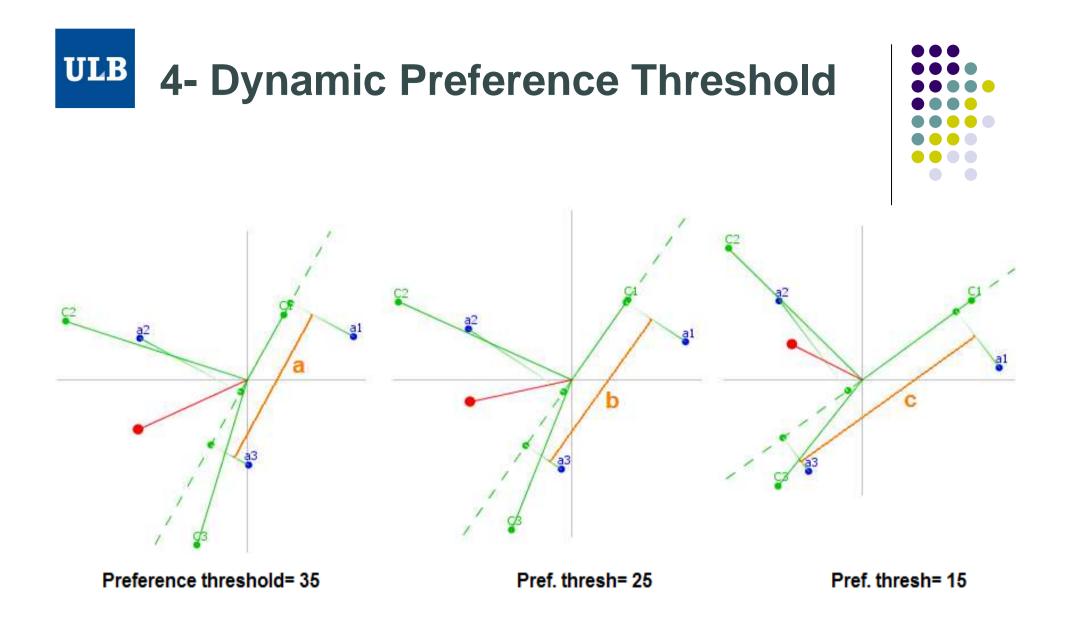
ULB 4- Dynamic Preference Threshold

→Temporal PROMETHEE: Define a Dynamic Preference function by criterion:

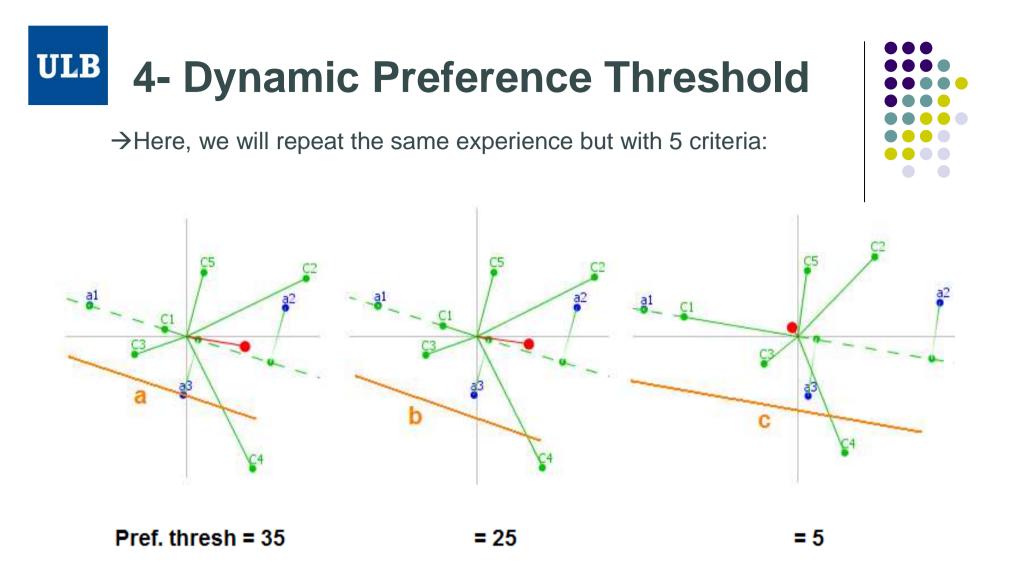
 $P_{j,t}(\boldsymbol{a},\boldsymbol{b}) = P_{j,t} [d_{j,t}(\boldsymbol{a},\boldsymbol{b})]$ $0 \le P_{j,t}(\boldsymbol{a},\boldsymbol{b}) \le 1$

 \rightarrow Effect of a dynamic threshold on Gaia Plane with:

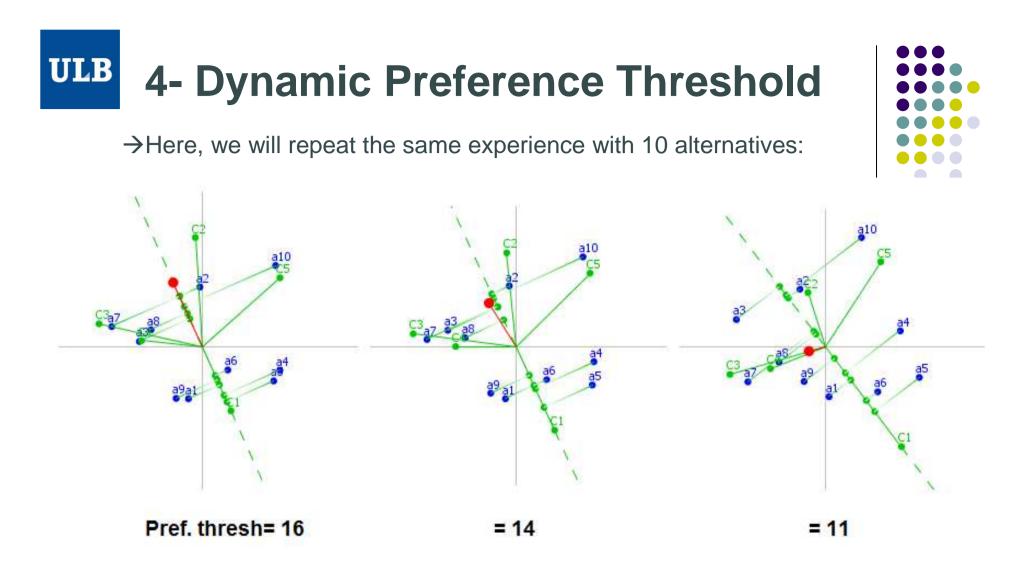
-3 alternatives assessed on 3 criteria


-V_Shape function is chosen as preference function (q =0)

- -The criteria have the same weight
- -No alternative evaluations over time


-Only C1 has dynamic (decreasing) preference threshold

	C1		C2	C3
al		14,3	10,0	9,5
a2		11,0	15,0	10,0
a3		12,0	10,0	15,0

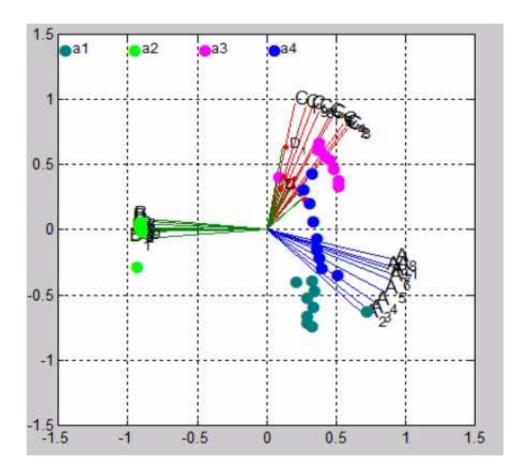


→Criterion 1 gets longer with decreasing preference threshold, because: a < b < c

 \rightarrow Criterion 1 gets longer with decreasing preference threshold for the same raison.

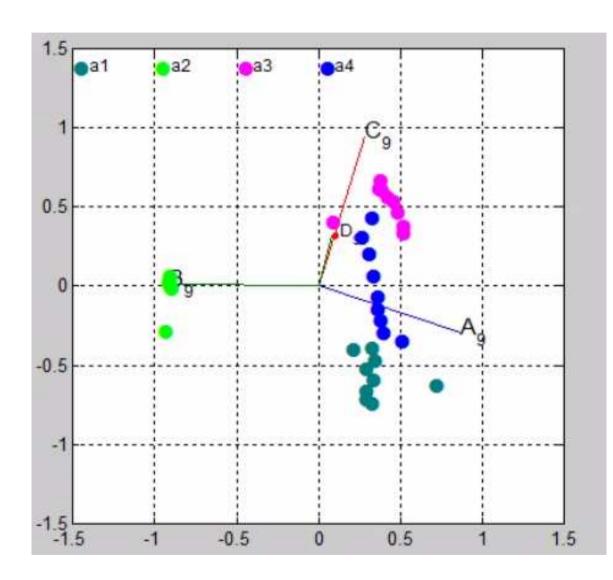
 \rightarrow We can conclude that dynamic preference threshold of one given criterion has an impact on the disrimination of alternatives with respect to this criterion. More specifically, decreasing preference threshold discriminates more the alternatives.

- 1- Temporal MCDA problem
- **2- PROMETHEE II Method and Gaia Plane**
- **3-** Temporal PROMETHEE II and Gaia Plane
- 4- Dynamic preference threshold
- **5** Dynamic alternatives
- 6- Illustration of Temporal Gaia Plane
- 7-Prospects


\rightarrow Effect of dynamic alternatives with:

- 4 alternatives assessed on 3 criteria
- V_Shape function is chosen as preference function
- All the criteria have the same weight
- Constant preference thresholds over time
- Only alternative **a**₄ evolves significantly (from the best to the worse on C3)
- During 9 moments


	C1	C2	С3
a1	13,0 18,0	9,0 12,0	9,0 ••• 10,0
a2	9,0 7,0	14,0 16,0	9,5 10,0
a3	11,0 14,0	11,0 ··· 9,0	16,0 16,0
а4	11,0 15,0	9,5 ··· 6,0	16,0 10,0


ULB 5- Dynamic alternatives



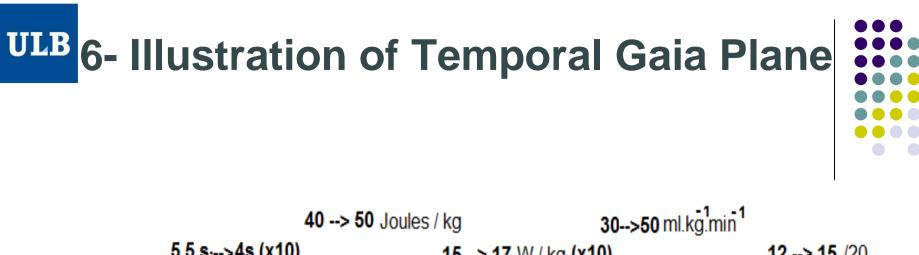
→ a_1 , a_2 and a_3 are almost stable in their areas while a4 (blue one) moves away from criterion 3 (red axis) to be almost the best with respect to criterion 1 (blue axis).

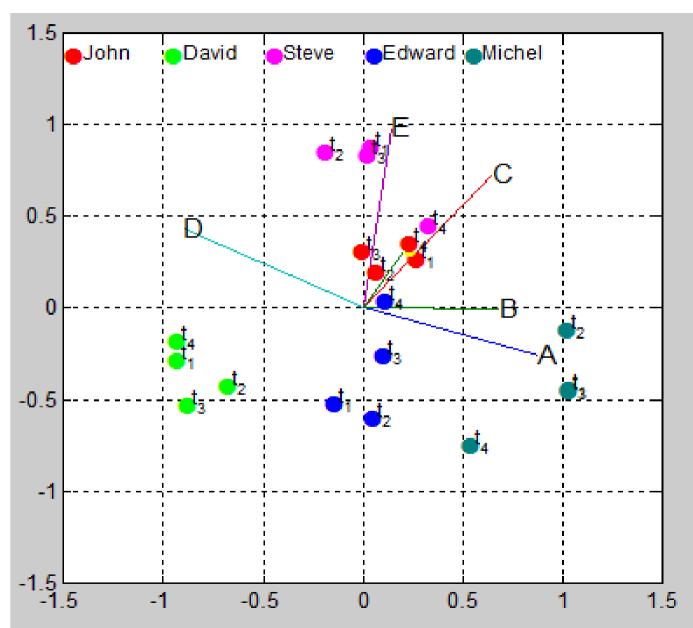
ULB 5- Dynamic alternatives

Here, we took the last instant axis of each criterion

→We can conclude that the temporal Gaia plane differenciates 2 kind of alternatives behaviours:

-Stable behaviour -Evolving behaviour


- 1- Temporal MCDA problem
- **2- PROMETHEE II Method and Gaia Plane**
- **3-** Temporal PROMETHEE II and Gaia Plane
- 4- Dynamic preference thresholds
- **5- Dynamic alternatives**
- 6- Illustration of Temporal Gaia Plane
- 7- Prospects

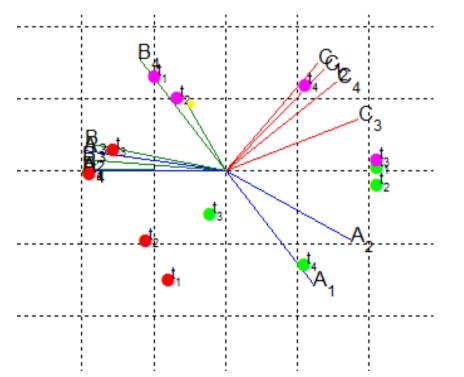

Assessment: -5 players -4 weeks -5 criteria

	5,5	\$>′	4s (x	10)		15> 17 W / kg (x10)											12> 15 /20			
	Speed test			Lactic capacity			Peak power			VO2max				Team work						
	Α				В			С			D				E					
<u>John</u>	55	54	51	48	48	51	54	59	145	149	156	161	38	42	47	48	14	13	14	16
<u>David</u>	63	57	56	55	41	40	41	45	143	145	146	145	46	50	54	60	9	11	12	13
<u>Steve</u>	51	49	47	43	46	49	53	55	148	154	160	164	42	44	47	47	17	16	16	17
Edward	66	62	55	50	45	49	55	60	140	142	147	155	37	40	44	47	12	12	14	15
<u>Michel</u>	48	46	43	40	50	55	57	58	138	142	148	153	33	35	39	41	12	12	11	10

ULB 6- Illustration of Temporal Gaia Plane

Temporal Gaia Plane reflects the behaviour of each player during time

- 1- Temporal MCDA problem
- **2- PROMETHEE II Method and Gaia Plane**
- **3-** Temporal PROMETHEE II and Gaia Plane
- 4- Dynamic preference threshold
- **5- Dynamic alternatives**
- 6- Illustration of Temporal Gaia Plane
- 7- Prospects

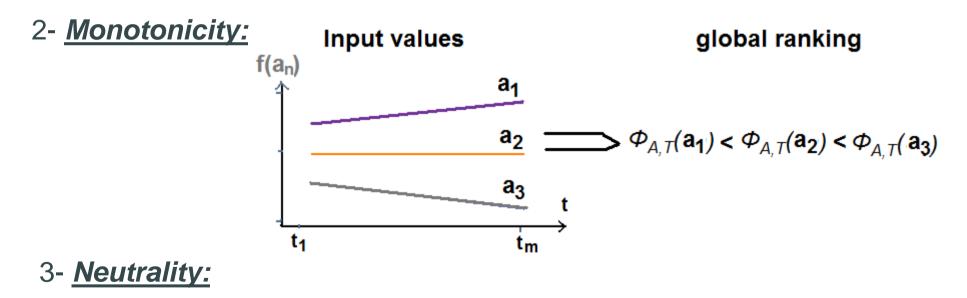

→ Gaia Plane:


If alternatives evolve abruptly:

→ Gaia plane maintains ability to visualize
→ We can not take the last instant axis of criteria as reference.

Example of 3 alternatives evaluated on 3 criteria during 4 moments.

In this example, *A* has changed significantly its side from instant 2 to instant 3.

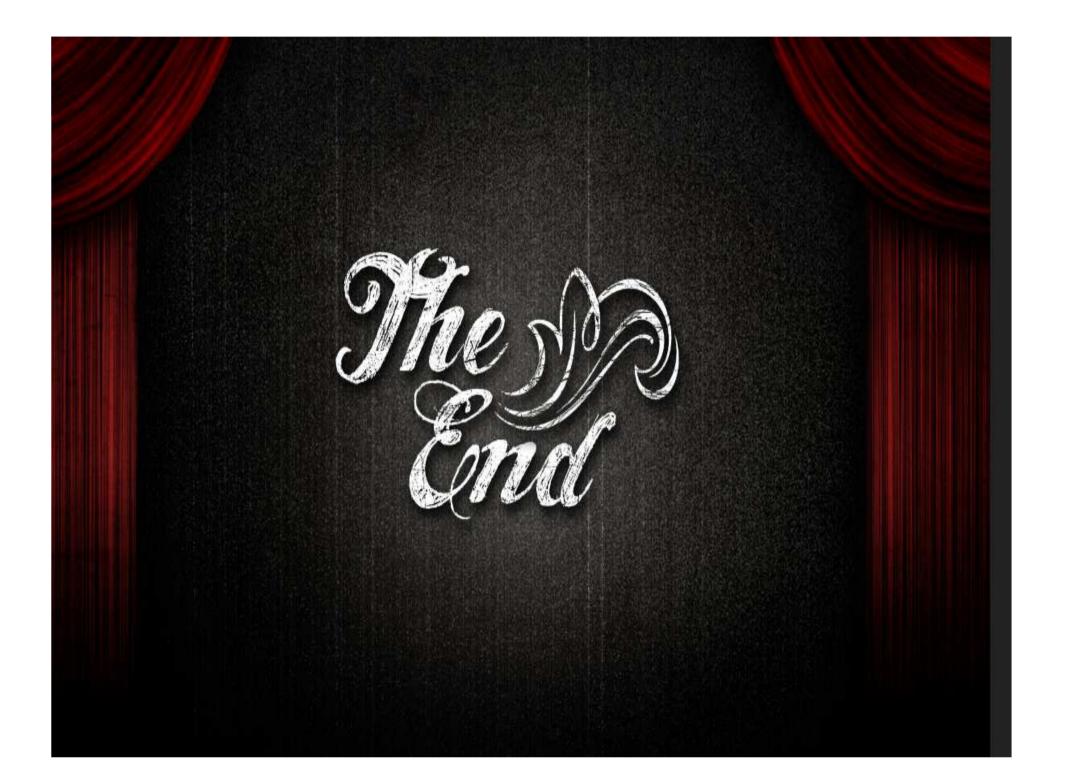


→ Demonstrated mathematical properties:

1- Dominance:

If *a* dominates *b* over all criteria, *a* must be ranked before *b* in the global ranking.

The rank of *a* in the global ranking is independent on its position among the alternatives in the input.



 \rightarrow The ongoing work is about how to elicitate the preferences:

-Dynamic preference thresholds -Instants weight

