

A New Weight-Restricted DEA Model Based on PROMETHEE II

2nd International MCDA workshop on PROMETHEE: Research and case studies

Université Libre de Bruxelles-Vrije Universiteit Brussel Belgium

> Maryam Bagherikahvarin, Yves De Smet 23 January 2015

Keywords: Data Envelopment Analysis, Multi Criteria Decision Aid, PROMETHEE, Stability Intervals, Weight Restrictions

- > DEA & MCDA
- > DEA
- > MCDA: PROMETHEE II
- > Synergies
- > Objective
- Methodology
- > Numerical Examples
- > The main advantages of this work & further ideas

DEA

- Non-parametric and nonstatistical method Combining several measures of inputs

and outputs into a single

measure of efficiency

- Generating automated weights by model

- CCR, BCC, Additive, FDH, Super efficiency, ...

MCDA

- A decision making tool in the presence of conflicting criteria and absence of optimal solution: *Sorting*, *Ranking* and **Choosing** alts - Assigning pre-determined weights to Criteria -MAUT, AHP, Outranking (ELECTRE, **PROMETHEE**), Interactive

Ranking and Selecting between bank branches, health care centers (Flokou, A. et al., 2010), educational institutions (Salerno, C., 2006), localization of a factory (Vaninsky, A., 2008), proper ways for a project, ...

- Shanghai ranking (Academic Ranking of World Universities, Shanghai Jiao Tong University, 2007), (Jean-Charles Billaut, Denis Bouyssou, Philippe Vincke, 2009)
- ***** FIFA world ranking
- Country's ranking in Globalization
- Largest producing countries of agricultural commodities, ...

- > DEA & MCDA
- > DEA
- > MCDA: PROMETHEE II
- > Synergies
- > Objective
- Methodology
- > Numerical Examples
- > The main advantages of this work & further ideas

A DEA example:

$$\max \phi + \varepsilon (\sum_{i=1}^{m} S_{i}^{-} + \sum_{r=1}^{s} S_{r}^{+}) \qquad \min q = \sum_{i=1}^{m} V_{i} X_{io} - V_{o}$$

$$\sum_{i=1}^{s} X_{ij} \lambda_{j} + S_{i}^{-} = X_{io}, i = 1, 2, ..., m; \qquad \sum_{i=1}^{m} V_{i} X_{ij} - \sum_{r=1}^{s} \mu_{r} y_{rj} - V_{o} e \ge 0$$

$$\sum_{i=1}^{n} Y_{ij} \lambda_{j} - S_{r}^{+} = \phi Y_{io}, r = 1, 2, ..., s; \qquad \sum_{i=1}^{m} V_{i} X_{ij} - \sum_{r=1}^{s} \mu_{r} y_{rj} - V_{o} e \ge 0$$

$$\sum_{i=1}^{n} \lambda_{j} = 1 \qquad \sum_{i=1}^{n} \lambda_{j} = 1 \qquad \mu_{r} y_{ro} = 1$$

$$\mu_{r}, v_{i} \ge \varepsilon > 0, v_{o} \text{ free in sign}$$

Table 1- Different BCC models (Cooper et al., 2004)

Some difficulties in DEA

- No common set of weights
- No strict bounding for weights (probability of having nonrealistic answers):
- Some inputs or outputs can be characterized by low or high weight values;
- Contradiction with a priori information offered by the Decision Maker (DM).
- DMUs can not be ranked with such a weights, which may vary from unit to unit

Weight Restricted DEA models

- > Thompson et al. (1986): assessing the efficiency of physics laboratories (AR),
- > Dyson and Thanassoulis (1988): eliminating use of zero weights (RA),
- Wong and Beasley (1990): introducing virtual weights DEA models,
- Roll and Golany (1993): using generated weights of DEA model,
- > Takamura and Tone (2003): using the judgments of people,
- Ueda (2000,2007): suggesting a canonical correlation analysis,
- Dimitrov and Sutton (2012): proposing a symmetric weight assignment technique.

Using MCDA in DEA to determine bounds

***** DEA and AHP:

- Shang et Sueyoshi (1995): using subjective AHP results in DEA to rank and select between flexible manufacturing systems: the pareto solutions of DEA and the subjectivity of AHP
- Sinuany-Stern et al. (2000): suggesting two stage AHP/DEA ranking model: removing the pitfalls of Shang et Sueyoshi but does not incorporate the DM preferences
- Takamura and Tone (2003): integrating AR and AHP: 1. providing criteria weights for each DM by AHP, 2. employing AR to limit them: more than one DM
- Liu (2003): Combining DEA and AHP to integrate two objective and subjective weight restrictions method
- Han-Lin Li and Li-Ching Ma (2008): Developing an iterative method of ranking DMUs by integrating DEA, AHP and Gower plot

Some unwillingness of AHP

- Lack of undeniable foundations on the utility preferences of the DM (Saati, 1986, Barzilai et al., 1987, Dyer, 1990, Winkler, 1990);
- ✤ No special graphical tool;
- Subjectivity: constructing a pair wise comparison matrix based on DM's preferences. From the view point of a DM: easier to use some models with less subjectivity to evaluate different alternatives (Sinuany-Stern et al., 2000).

*** DEA** and **MACBETH**:

Junior (2008): Employing MACBETH as a MCDA tool to produce the bounds of the weights and adding these restrictions to a virtual weight DEA model to evaluate the alternatives/DMUs.

MACBETH: a MCDA approach to help an individual or a group, quantifying the relative attractiveness of options by qualitative judgements about differences in value (Bana e Costa et al., 1993)

Causing a contradicted result with MACBETH ranking. To avoid this weakness: adding some extra constraints to the virtual weight restrictions

- > DEA & MCDA
- > DEA
- **MCDA: PROMETHEE II**
- > Synergies
- > Objective
- Methodology
- > Numerical Examples
- > The main advantages of this work & further ideas

PROMETHEE II

- J. P. Brans (1982): based on *pair wise comparisons*: allowing a DM to *rank completely* a finite set of n actions that are evaluated over a set of k criteria:
 - For each criterion f_i , j=1,2,...,k:
 - Preference function P_i
 - Weight w_i

• **Preference degree** of a over b:

$$\pi(a,b) = \sum_{j=1}^{k} w_j P_j(a,b)$$

• Net flow score

$$\phi(a) = \sum_{j=1}^{k} w_j \cdot \phi_j(a)$$

with

$$\phi_{j}(a) = \frac{1}{n-1} \sum_{b \in A} \left[P_{j}(a,b) - P_{j}(b,a) \right]$$

• Unicriterion net flow score

Weight Stability Intervals (Mareschal, B. (1988))

what is the impact of changing a given weight value in a computed ranking?

Purpose of WSI:

Preserve the preference ranking of a subset of alternatives: *automated* generation of intervals limits (confirming the robustness of *PROMETHEE II* outputs, typically the first alternative).

- > DEA & MCDA
- > DEA
- > MCDA: PROMETHEE II
- > Synergies
- > Objective
- Methodology
- > Numerical Examples
- > The main advantages of this work & further ideas

Synergies between DEA & PROMETHEE

- a) Common problems encountered in **DEA** and **PROMETHEE**:
- Rank reversal
- *b)* **DEA** applied to **PROMETHEE**:
- A quantitative comparison between the weighted sum and PROMETHEE II using DEA (Bagherikahvarin M., De Smet Y., 75th MCDA Conference, Tarragona, Spain, 2012)
- Defining new possible weight values in PROMETHEE VI: a procedure based on Data Envelopment Analysis (Bagherikahvarin M., De Smet Y., 1st International MCDA workshop on PROMETHEE, Brussels, Belgium, 2014)

c) **PROMETHEE** applied to **DEA**:

- Complete ranking in DEA by PROMETHEE II
- Weighted DEA model based on PROMETHEE II

- > DEA & MCDA
- > DEA
- > MCDA: PROMETHEE II
- > Synergies
- > Objective
- Methodology
- > Numerical Examples
- > The main advantages of this work & further ideas

Weighted DEA model based on PROMETHEE II

- > DEA & MCDA
- > DEA
- > MCDA: PROMETHEE II
- > Synergies
- > Objective
- Methodology
- > Numerical Examples
- > The main advantages of this work & further ideas

***** The steps of algorithm:

- 1. The algorithm inputs: an evaluation table, preference functions and parameters (indifference, preference thresholds and weights);
- 2. PROMETHEE II: Net flow scores, Unicriterion net flow scores and WSI;
- **3. Maximize** bet flow score and **Restrict** DEA weights by PROMETHEE II WSI in the first level;
- 4. Induce a DEA ranking;
- 5. Use a super efficiency model to present a complete ranking.

(MACBETH (Junior, H. V., 2008) and ELECTRE (Madlener R. et al. 2006) has been proposed such a method

The decision making framework

PROMETHEE II Weighted CCR model (PIIWCCR)

$$\mathbf{E}_{i} = \mathbf{Max}[\phi(\mathbf{a}_{i}) = \sum_{j=1}^{k} \mathbf{W}_{j} \boldsymbol{\varphi}_{j}(\mathbf{a}_{i})]$$
such that
$$\sum_{j=1}^{k} \mathbf{W}_{j} \boldsymbol{\varphi}_{j}(\mathbf{a}_{i}) \leq 1; i = 1, ..., n,$$

$$\mathbf{W}_{j}^{-} \leq \mathbf{W}_{j} \leq \mathbf{W}_{j}^{+};$$

$$\mathbf{W}_{j}^{-} \leq \mathbf{W}_{j} \leq \mathbf{W}_{j}^{+};$$

$$\mathbf{W}_{j}^{-} = \mathbf{0}$$

$$\mathbf{W}_{j}^{-} = \mathbf{W}_{j}^{-} = \mathbf{W}_{$$

- > DEA & MCDA
- > DEA
- > MCDA: PROMETHEE II
- > Synergies
- > Objective
- Methodology
- Numerical Examples
- > The main advantages of this work & further ideas

Irrigation management (to choose a water pricing policy) (Yilmaz and Yurdusef, 2011):

• Comparing 36 alternatives according to 7 criteria:

 C_1 (crops profitability), C_2 (used water efficiency), C_3 (social impact including employment), C_4 (initial cost), C_5 (maintenance cost), C_6 (irrigation water volume used), C_7 (pollution effect)

Criteria	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	С ₇
Min/Max	Max	Max	Max	Min	Min	Min	Min
Туре	Linear	Linear	Linear	Linear	Linear	Linear	Linear
Thresholds	q=0.1,p=1	p=0.5	q=0.5,p=1	q=0,p=0.29	q=0.1,p=0.26	q=0,p=0.26	q=0,p=0.46
Weights	0.3	0.25	0.09	0.1	0.1	0.1	0.06

Table 2- Irrigation management (Yilmaz and Yurdusef, 2011)

WSI in level 1

Criteria	Min weight	Value	Max weight
C ₁	0.036	0.3	1
C ₂	0	0.25	0.407
C ₃	0	0.09	0.529
C ₄	0	0.1	0.502
C ₅	0	0.1	1
C ₆	0	0.1	0.383
C ₇	0	0.06	1

Table 3- Irrigation management, WSI

Rank	EL.3	PR.II	SE-WCCR	PIIWCCR	PIIWBCC	RCCR/w, CCR/w	BCC/w
1	26	26	26	26	26	26	26
2	28	34	34	34	4	28	30
3	2	30	4	4	28	2	28
		•			•		
•		•			•		
•		•			•		
34	9	3	23	11	23	21	21
35	11	7	7	19	11	23	11
36	23	11	19	23	9	11	23

Table 4- Irrigation management (Yilmaz and Yurdusef, 2011)

	EL. 3	PR.II	CCR	BCC	CCR/w	BCC/w
PIIWCCR	0.807	0.914	0.877	0.898	0.824	0.877
PIIWBCC	0.800	0.826	0.871	0.854	0.769	0.803

Table 5- Spearman correlation at the 0.01 level

• Medium sized companies in Brussels

Comparing 75 companies according to 6 criteria (Revenue (Turnover), cash-flow and employees: absolute and relative growth)

"Gazelles" ranking in March 2014: assigning a rank to each criterion in each company (during 4 years): obtaining final score by adding the rank of each company in each classification of criteria (the growth value of each criterion during 4 years)

PROMETHEE II, BCC, GAZELLES, New weighted DEA model:

The WSI in level 1

- H & M logistic always the best (DMUs 1 (H&M Log.), 14 (Lubrizol), 37 (BBC Corp.) always between the best)
- 2. Decreasing the number of efficient units: BCC (7), PIIWBCC (3)
- 3. Approximating the result of DEA and PROMETHEE II by maximizing the net flow score of PROMETHEE II in a DEA problem:

7. Numerical examples

			SE-PIIWCCR	PR.II	SE-CCR	BCC	Gazelles
• r=1		SE-PIIWCCR	1	0.884	0.857	0.860	0.807
	PR.II		1	0.622	0.623	0.991	
	SE-CCR			1	0.989	0.641	
	BCC				1	0.645	
		Gazelles					1

Table 6- Spearman correlation at the 0.01 level (r=1)

			PIIWCCR	PIIWBCC	PR.II	SE-CCR	BCC
		PIIWCCR	1	0.906	0.962	0.643	0.650
•	r=3	PIIWBCC		1	0.961	0.695	0.702
		PR.II			1	0.622	0.623
		CCR				1	0.998
		BCC					1

Table 7- Spearman correlation at the 0.01 level (r=3)

Moore Stephens

• *Moore Stephans:* 3d place in PROMETHEE II ranking: fixing the stability level of problem in its rank, 3

less equal efficient DMUs and more correlation between rankings: PIIWCCR and PIIWBCC (1)

•Wellbeing in Wallonia

Comparing the level of wellbeing in 132 municipalities of Wallonia according 13 criteria (Charlier, J. et al., 2014)

Centers *Tintigny* and *Ottignies-LLN* always the best

less equal efficient DMUs: BCC (85), PIIWBCC (25)

	SE-PIIWCCR	PIIWBCC	SE-WCCR	PR.II	SE-CCR	BCC
SE-PIIWCCR	1	0.844	0.394	0.881	0.376	0.486
PIIWBCC		1	0.444	0.810	0.51	0.529
SE-WCCR			1	0.182	0.915	0.446
PR.II				1	0.136	0.281
SE-CCR					1	0.500
BCC						1

Table 8- Spearman correlation at the 0.01 level (r=1)

- > DEA & MCDA
- > DEA
- > MCDA: PROMETHEE II
- > Synergies
- > Objective
- Methodology
- > Numerical Examples
- > The main advantages of this work & further ideas

The main advantages of our model

- Discrimination power of *DEA* is increased by using *PROMETHEE II WSI* in a *DEA* model;
- The DM does not have to fix bounds to DEA weights which is found a difficult task;
- PROMETHEE II lets generate different WSI in different levels: higher level, less efficient equal units, more correlation;
- As expected *approximation* of *PROMETHEE II* and *DEA* is possible through our model (more correlation).

Further deepening ideas:

- Applying the stability intervals in proportional form in DEA;
- ✤Using partial or subset stability intervals of PROMETHEE in DEA;
- Proposing this model in D-sight software;

References:

- 1. Andersen P and Petersen NC (1993), A procedure for ranking efficient units in Data Envelopment Analysis. Journal of Management Science.
- 2. Bana e Costa C.A. and Vansnick J.C. (1993), Sur la quantification des jugements de valeur: L'approche MACBETH. Cahiers du LAMSADE, 117, Universit´e Paris- Dauphine, Paris.
- 3. Behzadian, M., Kazemzadeh, R. B., Albadvi, A. and Aghdasi, M. (2010), PROMETHEE: A comprehensive literature review on methodologies and applications, European Journal of Operational Research, Vol. 200, No. 1, pp. 198-215.
- 4. Billaut, J. Ch., Bouyssou, D., Vincke, Ph. (2009), Should you believe in the Shanghai ranking?, Scientometrics, Akadémiai Kiado, 84 (1), pp.237-263.
- 5. Bouyssou D. (1999), Using DEA as a tool for MCDA: some remarks; ESSEC, France; Journal of the Operational Research Society.
- 6. Brans J. P., Mareschal B. (2002), PROMETHEE-GAIA, une méthodologie d'aide a la décision en présence de critères multiples, Editions de l'université deBruxelles.
- 7. Charlier, J., Reginster, I., Ruyters, Ch. and Vanden Dooren, L. (2014). Indicateurs complémentaires au PIB: L'indice des conditions de bien-être (ICBE), Institut Wallon de l'Evaluation, de la Prospective et de la Statistique.
- 8. Chiang K. (2010), Ranking Alternatives in Multiple Criteria Decision Analysis Based on a Common-Weight DEA, International Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh.
- 9. Cooper William W., Seiford Lawrence M., Tone Kaoru (2005), Introduction to Data Envelopment Analysis and its uses, Springer Science & Business Publishers, New York.
- 10. Damaskos X. et al. (2005), Application of ELECTRE III and DEA methods in the BPR of a bank branch network, Yugoslav journal of operations research.
- 11. Doyle, J. and R. Green (1993), Data Envelopment Analysis and Multiple Criteria Decision Making, OMEGA.
- 12. Ehrgott M., Gandibleux X. (2002), Multiple Criteria Optimization (State of the Arts); Kluwer Academic Publishers.
- 13. Ertugrul E. Karsak, Sebnem S. Ahiska (2007), A Common-Weight MCDA Framework for Decision Problems with Multiple Inputs and Outputs; Springer.
- 14. Farinaccio F., Ostanello A. (1999), Evaluation of DEA validity as a MCDA/M tool: some problems and issues; Italy, university of Pisa; Technical report.
- 15. Figueira, J., Greco, S., Ehrgott, M. (2005), 'Multiple Criteria Decision Analysis, State of the Arts Surveys', Springer Publishers, United States.

- 14. Giannoulis C. et al. (2010), A web-based decision support system with ELECTRE III for a personalised ranking of British universities, Decision support systems, 48(3), 488-497.
- 15. Madlener R. et al. (2008), Assessing the performance of biogas plants with multi-criteria and data envelopment analysis, European journal of operational research.
- 16. Rocio Guede M. et al. (2012), An exhaustive approach to the innovation efficiency in Spain, 26th European conference on modelling and simulation, Germany.
- 17. Sarkis J. (2000), A comparative analysis of DEA as a discrete alternative multiple criteria decision tool; Graduate School of Management, Clark University, USA; European Journal of Operational Research.
- 20. Theodor J. Stewart (1996), Relationships between Data Envelopment Analysis and Multicriteria Decision Analysis; Department of Statistical Sciences, University of Cape Town; Journal of the Operational research Society.
- 21. Vincke, P. (1992), Multicriteria decision aid. New York: Wiley.
- 22. Yilmaz B. and Yurdusev M. Ali (2011), Use Of Data Envelopment Analysis As a Multi Criteria Decision Tool A case of irrigation management, Journal of Mathematical and Computational Applications.
- 23. Zhao Ming-Yan, Cheng C-T, Chau K-W, Li, G. (2006), Multiple criteria data envelopment analysis for full ranking units associated to environment impact assessment, International of Environment and Pollution.
- 24. www.d-sight.com
- 25. www.shanghairanking.com
- 26. www.trends.be, Classement des Gazelles de Bruxelles, Octobre 2014.

Thanks for your attention