

Design safer and greener road projects by using a multi-objective optimization approach

Renaud Sarrazin

Belgian Road Research Centre, University of Brussels (CoDE-SMG)

Yves De Smet University of Brussels, CoDE-SMG laboratory

IMW 2014, Vrije Universiteit of Brussel, 22 January 2014

Context

Design process of a road project

Structuration of the problem

A multi-objective optimization approach

Description of the problem Calculation of the solution set Pareto frontier

Analysis and solving of the problem

PROMETHEE II

Conclusions

Observations and conclusion

Context

Design process of a road project

Structuration of the problem

A multi-objective optimization approach Description of the problem Calculation of the solution set Pareto frontier

Analysis and solving of the problem PROMETHEE II

Conclusions Observations and conclusion

Context of the research

Design process of an infrastructure

÷

Context

Design process of a road project Assessment of road safety What is sustainable road safety?

Structuration of the problem

A multi-objective optimization approach Description of the problem Calculation of the solution set Pareto frontier

Analysis and solving of the problem PROMETHEE II

Conclusions

Observations and conclusion

Multicriteria decision aiding and sustainable road safety

Structuration of the problem

Multicriteria decision aid problem

 $Max(g_1(a),g_2(a),...,\ g_n(a)|a\in A)$

Set of criteria - gi

- Road infrastructure performance
- Sustainable concerns
- Availability of the data at the design stage
- Consistent and *adaptive* evaluation

Set of alternatives - a E A

- Draft alternatives of the road project (pre-design stage)
- Infrastructure design parameters
- Environmental parameters
- Combinatorial generation
- \rightarrow Important stage of modelling and creation of data
- \rightarrow Define the properties of the alternatives and criteria
- \rightarrow Development of *new* criteria constitutes a full and complex problem

Multicriteria decision aiding and sustainable road safety

Structuration of the problem

Definition of the alternatives of the problem (A)

Identify the elements/parameters which characterize the alternatives of the road project and its direct environment at the design stage (experts consultation);

Define the feasibility constraint(s) of a road project (e.g. maximum width);

Apply a bottom-up approach to identify the key parameters which may have a strong influence on the evaluation of the criteria ;

Structuration of the problem

Definition of the criteria of the problem (g_i)

Context

Design process of a road project Assessment of road safety What is sustainable road safety?

Structuration of the problem

A multi-objective optimization approach Description of the problem

Calculation of the solution set Pareto frontier

Analysis and solving of the problem PROMETHEE II

Conclusions

Observations and conclusion

Description of the problem

Large amount of calculation parameters! Environmental parameters (fixed) Alternative parameters (variable)

<u>Example</u> : 12 fixed parameters 12 variable parameters 1 design constraint: roadway width ≤ maximum width (*w_max*)

> w_max = 08m > 140.800 alternatives w_max = 10m > 386.560 alternatives w_max = 12m > 798.720 alternatives w_max = 15m > 1.620.480 alternatives

Exhaustive exploration of the design space is impossible
Multi-objective evolutionary algorithm to solve this problem (NSGA-II)

Solving of the problem (NSGA-II)

NSGA-II algorithm (Deb, 2002)

- 1. Generate a limited set of alternatives of size *n* (initial population);
- 2. Calculate the evaluation table ;
- 3. Assign rank level (pareto dominance) and crowding distance;
- 4. Generate **parent population** (size *n*);
- 5. Loop at each generation:
- 5a. Genetically generate child population (size n);
- 5b. Combine parent and child population (size 2n);
- 5c. Calculate the evaluation table ;
- 5d. Assign rank level and crowding distance;
- 5e. Constitute a **new parent population** from best solutions (size *n*);
- 6. End of the genetic process (final population);

At the end, non-dominated solutions of the problem have been identified. Fast and efficient algorithm to deal with large design space.

Solving of the problem (NSGA-II)

8 criteria 50 alternatives (pop) 100 generations (NSGA-II)

2-axis representation

 $\boldsymbol{\Delta}$: final population

• : previous populations

Quality indicators - Convergence

- Contribution (Talbi, 2009)

$$Cont(PO_1/PO_2) = \frac{\left\|\frac{PO}{2}\right\| + \|W_1\| + \|N_1\|}{\|PO^*\|}$$

- PO₁: approximation set 1 PO₂: approximation set 2 PO^{*}: solutions of PO₁ U PO₂ PO: solutions in PO₁ \cap PO₂
- W1: set of solutions in PO1 that dominates some solutions in PO2N1: set of non-comparable solutions of PO1

Quality indicators - Diversity

- Spread (Talbi, 2009)

$$I_{S} = \frac{\sum_{u \in A} |\{u' \in A : ||F(u) - F(u')|| > \sigma\}|}{|A| - 1}$$

A: approximated set of solutionsF(u): fitness functionσ: neighborhood parameter (> 0)

Quality indicators - Hybrid

- Hypervolume (Talbi, 2009)

MCDA and sustainable road safety - IMW 2014 (Brussels) - 22.01.2014

Pareto frontier - Definition

8 criteria ; 5x10⁵ alt. 50 alternatives (pop) 100 generations (NSGA-II)

2-axis representation

 Δ : final population

• : previous populations

Pareto frontier - Dimension

Context

Design process of a road project Definition of road safety What is sustainable road safety?

Structuration of the problem

A multi-objective optimization approach Description of the problem Calculation of the solution set Quality indicators Pareto frontier

Analysis and solving of the problem PROMETHEE II

Conclusions Observation and prospect Planning

Analysis and solving of the problem

Use of PROMETHEE II

Large size of the Pareto frontier How to select interesting/representative solutions from the Pareto frontier?

- Construction of clusters based on the k-means procedure
- Solving of the reduced problem by using PROMETHEE II

<u>k-means</u>

 $(x_1, x_2, ..., x_n)$: *n* solutions composing the Pareto frontier S = {S₁, S₂, ..., S_k} : *k* clusters to construct μ_i : mean of all the elements in S_i

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{x_j \in S_i} \left\| x_j - \mu_i \right\|^2$$

Multicriteria decision aiding and sustainable road safety

Analysis and solving of the problem

Use of PROMETHEE II

Example - sample of 20 clusters centroids (ranking)

Analysis and solving of the problem

Use of PROMETHEE II

Example - sample of 20 solutions (visual analysis)

Context

First DoCA Definition of road safety What is sustainable road safety ? Design process of a road project

Structuration of the problem

A multi-objective optimization approach Description of the problem Calculation of the solution set Quality indicators Pareto frontier

Analysis and solving of the problem PROMETHEE II

Conclusions

Observation and prospect Planning

Conclusions

Observations

Innovative concept (preventive approach and recognition of sustainability) Added value in this application field

Promising results

Interesting observation of the performance indicators:

- •(Fast) convergence of the model (contribution, hypervolume, archive)
- Good diversity of the solution (spread, hypervolume)
- Convexity of the Pareto set

Use of k-means procedure to select representative solutions (clustering) Analysis of the nature of the problem

Future prospects

Characterize more precisely the multicriteria problem Improvement of the clusters construction (consider the multicriteria nature) Order of the clusters?

Thank you for your attention

Questions, remarks, discussion.

Renaud Sarrazin BRRC / CoDE-SMG (ULB)

> r.sarrazin@brrc.be +32/499526143 http://www.brrc.be