

Using the PROMETHEE methodology for the design of 3D-stacked integrated circuits

DOAN Nguyen Anh Vu

Supervisors: Yves DE SMET Dragomir MILOJEVIC Frédéric ROBERT

IMW 2014

Imagine... The design an electronic device...

IILB

Let us focus on the design of the integrated circuit

🗖 ea	asyvhdl. vhd - HDL. Editor 📃 🗆 🗶
<u>F</u> ile	<u>Edit Search View Synthesis Project Iools Help</u>
D	
1	library IEEE;
2	<pre>use IEEE.std_logic_1164.all;</pre>
3 h	optitu opcuubdl ic
5	nort (
6	DOOR: in STD LOGIC:
7	IGNITION: in STD LOGIC;
8	SBELT: in STD_LOGIC;
9	BUZZER: out STD_LOGIC
10);
11	end easyvhdl;
12	webitesture exemptil such of exemptil is
13 11a	architecture easyvhul_arch of easyvhul is
15	{{enter your statements here}}
16	
17	BUZZER <= IGNITION and ((not DOOR) or (not SBELT));
18	
19	end easyvhdl_arch;
20	
21	
-	

High-level design

CPU Qualcomm: 1.7GHz quad-core

Design criteria

Battery life: 18h/500h Perf: 1.7GHz quad-core Memory: 2GB DDR2 GPS, BT4.0, NFC, etc. Multimedia features

The problem is to make the right choice among the design parameters

- Performance
- Cost
- Consumption
- Thermal dissipation
- Size

Qualcommi en andragon Multicriteria considerations

Design parameters

- Architectural options
- Technological options
- Floorplanning
- Communication infrastructure

Combinatorial optimization aspects

Example of the multicriteria and combinatorial optimization aspects

Due to physical limitations of the silicon, it will be difficult to improve the performance

6

Imagine further... The next technologies for the design

3D-Stacked Integrated Circuit (3D-SIC)

- Shorter interconnections
- Large bandwidth
- Better footprint
- Smaller packaging
- Heterogeneous circuits

IILB

There are more design parameters when using 3D-SIC

Criteria and design parameters

- Performance
- Consumption
- Cost
- 2D architectural options
- 2D technological options

- Number of tiers
- 3D floorplanning
- 3D architectural options
- 3D technological options

Example of the design space size

The current design flows are sequential and limit the possible solutions

Classical design flow

The current design flows are sequential and limit the possible solutions

Classical design flow

Disadvantages

•

- Limitation of the design space exploration
- Local unicriteria optimization at each step
 - In practice: several rollbacks, even to the 1st step → Multicriteria optimization not usual

The current improvement is to develop virtual prototyping tools

The current improvement is to develop virtual prototyping tools

The current improvement is to develop virtual prototyping tools

The current improvement is to develop virtual prototyping tools

IILB

Outline

- Introduction and current design situation
- Using MCDA
 - Model and criteria
 - Some results
- Conclusion

Modeling an integrated circuit

Outline

- Introduction and current design situation
- Using MCDA
 - Model and criteria
 - Some results
- Conclusion

Extended degrees of freedom 6 criteria established for the model

Degrees of freedom

- Floorplanning: geometrical disposition
- Aspect ratio
- Heterogeneity

Criteria

- Total interconnection length
- Cost
- Packaging volume
- Clock tree position
- Power consumption
- Thermal dissipation

ΠLΒ

Total interconnection length

- To minimize
- Computed using the Manhattan distance
- Reference point: center of each block
- Weighted by the bandwidth for the communication

IILR

Block 2

ULB

Cost

- To minimize
- Real data are confidential
- Estimation model
 - Proportional to the layers' size
 - Exponential growth with the number of layers
 - Depending on the technology used for manufacturing

 $cost = a(tech).S + b(tech)^{number of layers}$

Packaging volume

ULB

- To minimize
- Critical criterion for embedded systems
- In microelectronics: volume of a parallelepiped

 $volume = \max(S_{layer})$. stack thickness

Clock tree position

- Minimizing the distance from the clock tree to all the blocks
- Needed for high working frequency
- Also computed with the Manhattan distance

ULR

Power consumption

- To minimize
- Following electronic laws: sum of static and dynamical consumption

$$P_{tot} = P_{stat} + P_{dyn}$$
$$P_{stat} = given \ data$$
$$P_{dyn} = \alpha. c_l. l. V^2. f. [tech]$$

Thermal dissipation

- Must fit constraints
- First simple model with a thermal resistance:

Outline

- Introduction and current design situation
- Using MCDA
 - Model and criteria
 - Some results
- Conclusion

Using MCDA tools to design 3D-SIC

- Case study: electronic device of 12 blocks,1 to 5 tiers
- Considering 3 criteria: interconnection length (IL), cost and volume
- At first, not considering aspect ratio nor heterogeneity

Functional description

ITR

Methodology

Functional specifications

MOO & MCDA can give qualitative information ULB that would not be available with current tools

MCDA can help in choosing the best compromise alternatives

Decision aid process

Outline

- Introduction and current design situation
- Using MCDA
 - Model and criteria
 - Some results
- Conclusion

Conclusion

Introduction on using MCDA tools for 3D-SIC design

- 3D-SIC model for multiobjective optimization
- MCDA can give qualitative information that would no be available with current tools
- The flexibility of multiobjective optimization allows more design options than traditional design flows: less restrictions on the design space
- Decision process with PROMETHEE-GAIA

→ Multiobjective optimization and MCDA can support in electronic design

Thank you for your attention!

Any questions?

Using the PROMETHEE methodology for the design of 3D-stacked integrated circuits

DOAN Nguyen Anh Vu

Supervisors: Yves DE SMET Dragomir MILOJEVIC Frédéric ROBERT

IMW 2014

Degrees of freedom model ULB Floorplanning: geometrical position of the blocks

Degrees of freedom model Aspect ratio of the blocks

Degrees of freedom Heterogeneous circuits

38