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1. Motivation

PLMs have proved to be particularly useful in
general natural language processing tasks,
they have also demonstrated inconsistencies in
responses, factual errors and a lack of
contextual awareness

Why Knowledge Graph enhanced PLM ?
Leverage the wealth of structured data
contained within Knowledge Graphs (KG) to
address the consistency, factual awareness as
well as contextual-awareness issues that
PLMs demonstrate.
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Figure 1: KGs are factual,
structured and consistent. While
PLMs are exceptional for NLP
tasks. Synergizing KG and PLM
can provide a path to improving
each of the technologies. [1]
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2. Knowledge Injection in PLM
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Figure 2: Categories of knowledge injection in PLM. [2]

Input Injection: methods that modify the input of the PLM.

Ex: Alignment of text to KG triplets.

Architecture Injection: methods that modify PLM architecture through introduction
of new layers, or modification of the existing layers.

Ex: Modification of attention mechanism.

Output Injection: methods that modify the output or the loss that 1s used in the
PLM.

3. Overview
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Figure 3: K-BERT [3]
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Figure 5: K-Adapter [5]

5. Challenges

1. The lack of a common benchmark to evaluate the factual awareness
—> Inability to compare performance using quantitative measures.
2. Each model uses different KGs, evaluation tasks and text datasets
— Difficult to compare these models even using their base PLM
3. Computational performances not reported (i.e. runtime, resource usage)
—> The complexity dimension 1s based on the number of trainable
parameters rather than considering a more holistic view that includes
space and time complexities.

* The increasing popularity of PLM usage in many applications, creates a need
to ensure that PLMs are consistent and factual. KG integration offers new
horizons to improve PLMs effectiveness.

* Various innovative methods have been explored by researchers.
However, major challenges remain to fully synergize PLMs and KGs.

 We discuss different KG-enhanced PLMs: ERNIE, K-BERT, KEPLER and K-
Adapter. Then compare each against defined dimensions: Coupledness,
Complexity, Roubustness.

 K-BERT outperforms all other models in coupledness (low) and robustness
(high) dimensions while having an intermediate-level complexity.

query the KG and later injects
the triplets to the input text
creating a sentence tree.
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Figure 6: Dimensions to evaluate KG-enhanced PLMs.

* K-Adapter requires to train less number of parameters. Hence to integrate the
PLM with K@, it requires less computational resources in comparasion to the
other models.

Coupledness: Model's ability to extrapolate unseen entities in the KG

* ERNIE and K-Adapter introduce pre-training tasks demonstrating a high level
of coupledness.

* Both K-BERT and KEPLER introduces KG only within the finetuning phase,

they do not introduce any separate pre-training tasks.
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