Knowledge Graphs for Recommender Systems

ALI G. A. ABUSALEH ABD ALRHMAN MUSTAFA SALEEM ABU SBEIT (ali.g.a.abusaleh | abd.alrhman.mustafa.saleem.abu)@estudiantat.upc.edu Barcelona, Spain - eBISS 2023

UNIVERSITAT POLITÉCNICA DE CATALUNYA BARCELONATECH

Introduction

Knowledge graph recommender systems have emerged as a solution for the growing complexity and demand for accurate recommendations (1).

By utilizing **compact embeddings** to represent **entities** and **relationships** in knowledge graphs, these systems leverage **structural** and **semantic** information for **improved** recommendations (2).

Embedding-Based knowledge Graphs-Based Approaches

There are different **approaches** for graph embedding:

In table [3], we are introducing three algorithms for each approach with some of their **advantages** and **limitations**.

Challenges and Future Directions

Conclusion

Knowledge graph-based recommender systems leverage semantic relationships between entities for personalized recommendations. Graph embeddings capture complex relationships, enhancing accuracy and personalization. Context awareness and multi-layer architectures improve tailored recommendations. Cross-domain approaches bridge gaps for comprehensive recommendations, advancing user satisfaction.

References

Algorithm Family	Algorithm(s)	Advantage(s)	Limitation(s)	Key Idea
Translation based	TransE	Good performance for large-scale knowledge graphs.	 It can handle only one-to-one relationships effectively Assuming all relations are located in Single semantic space 	TransE learns translation vectors to represent relationships between related entities. By minimizing the distance between the translated source entity and the target entity.
	TransH	 Handle one-to-many and many-to-many Reduce the false positive labeling 	Hyperplane is on same space	TransH maps head and tail into a new hyperplane
	TransR	 Having relation-specific spaces hyperplane Handle one-to-many and many-to-many 	Loosing the simplicity of the Translations-method based	Entities are represented as vectors in an entity space R , and each relation is associated with a specific space R and modeled as a translation vector in that space.
Tensor factorization based	RESCAL	Captures fine-grained interactions and semantic relationships in the knowledge graph	 Complex and expensive Operation. Not suitable for large-scale graphs. 	Represents entities as vectors and relationships as matrices
	ComplEx	Allowing for the modeling of symmetric and asymmetric relations in the graph	 Complex and expensive Operation. Not suitable for large-scale graphs. 	It represents entities and relationships as complex vectors by extending RESCAL by using complex-valued embeddings
	DistMult	Liner complexity	Works only for symmetric	Simplifies the tensor factorization process by utilizing diagonal matrices for relationships.
Neural network based	SME	Use semantics to predict relationships.	 Relay on observed relationships to learn embeddings Not suitable for large-scale graphs Provide linear modeling only 	SME uses neural network to model the semantic matching between entities. Then it measures the confidence of each triplet using NN-based function.
	ConvKB	Non-Linear modeling	Doesn't differentiate the importance of different relationship, and treats all relationships equally	ConvKB uses matrix representation for triplets, applies CNN for graph embeddings, and calculates confidence scores.
	R-GCN	Provide relation-specific transformation	 Not suitable for large-scale graphs Can face overfitting 	R-GCN extends GCNs with relational graph convolutions, leveraging node features and relation types for relation semantics and node embeddings, using linear transformation .

Table 3: Comparison of various knowledge graph embedding algorithms