
Knowledge graph recommender systems have emerged as a 
solution for the growing complexity and demand for accurate 
recommendations (1). 

By utilizing compact embeddings to represent entities and 
relationships in knowledge graphs, these systems leverage 
structural and semantic information for improved 
recommendations (2).  

Introduction
There are different approaches for graph embedding:


In table [3], we are introducing three algorithms for each approach 
with some of their advantages and limitations.

Knowledge graph-based recommender systems leverage 
semantic relationships between entities for personalized 
recommendations. Graph embeddings capture complex 
relationships, enhancing accuracy and personalization. Context 
awareness and multi-layer architectures improve tailored 
recommendations. Cross-domain approaches bridge gaps for 
comprehensive recommendations, advancing user satisfaction. 
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Algorithm Family Algorithm(s) Advantage(s) Limitation(s) Key Idea 

Translation

based

TransE 
Good performance for large-scale 

knowledge graphs. 

1) It can handle only one-to-one relationships effectively 

2) Assuming all relations are located in Single semantic 

space 

TransE learns translation vectors to represent relationships between related 
entities. By minimizing the distance between the translated source entity and 
the target entity. 

TransH  1) Handle one-to-many and many-to-many 

2) Reduce the false positive labeling 

Hyperplane is on same space TransH maps head and tail into a new hyperplane 

TransR
1) Having relation-specific spaces hyperplane 

2) Handle one-to-many and many-to-many Loosing the simplicity of the Translations-method based 

Entities are represented as vectors in an entity space R, and each relation is 
associated with a specific space R and modeled as a translation vector in that 
space. 

Tensor 
factorization


based

RESCAL 
Captures fine-grained interactions and 
semantic relationships in the knowledge 
graph

1) Complex and expensive Operation. 

2) Not suitable for large-scale graphs. Represents entities as vectors and relationships as matrices 

ComplEx  Allowing for the modeling of symmetric and 

asymmetric relations in the graph 

1) Complex and expensive Operation. 

2) Not suitable for large-scale graphs.

It represents entities and relationships as complex vectors by extending 
RESCAL by using complex-valued embeddings 

DistMult  Liner complexity Works only for symmetric Simplifies the tensor factorization process by utilizing diagonal matrices for 
relationships. 

Neural

network


based 

SME  Use semantics to predict relationships. 
1) Relay on observed relationships to learn embeddings 

2) Not suitable for large-scale graphs 

3) Provide linear modeling only 

SME uses neural network to model the semantic matching between entities. 
Then it measures the confidence of each triplet using NN-based function. 

ConvKB  Non-Linear modeling Doesn’t differentiate the importance of different 
relationship, and treats all relationships equally 

ConvKB uses matrix representation for triplets, applies CNN for graph 
embeddings, and calculates confidence scores. 

R-GCN Provide relation-specific transformation 
1) Not suitable for large-scale graphs

2) Can face overfitting 

R-GCN extends GCNs with relational graph convolutions, leveraging node 
features and relation types for relation semantics and node embeddings, using 
linear transformation. 

Table 3: Comparison of various knowledge graph embedding algorithms 
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