
Knowledge graph recommender systems have emerged as a
solution for the growing complexity and demand for accurate
recommendations (1).

By utilizing compact embeddings to represent entities and
relationships in knowledge graphs, these systems leverage
structural and semantic information for improved
recommendations (2).

Introduction
There are different approaches for graph embedding:

In table [3], we are introducing three algorithms for each approach
with some of their advantages and limitations.

Knowledge graph-based recommender systems leverage
semantic relationships between entities for personalized
recommendations. Graph embeddings capture complex
relationships, enhancing accuracy and personalization. Context
awareness and multi-layer architectures improve tailored
recommendations. Cross-domain approaches bridge gaps for
comprehensive recommendations, advancing user satisfaction.

Barcelona, Spain - eBISS 2023

ALI G. A. ABUSALEH 
ABD ALRHMAN MUSTAFA SALEEM ABU SBEIT 

(ali.g.a.abusaleh | abd.alrhman.mustafa.saleem.abu)@estudiantat.upc.edu

Knowledge Graphs for Recommender Systems

Algorithm Family Algorithm(s) Advantage(s) Limitation(s) Key Idea

Translation

based

TransE
Good performance for large-scale

knowledge graphs.

1) It can handle only one-to-one relationships effectively

2) Assuming all relations are located in Single semantic

space

TransE learns translation vectors to represent relationships between related
entities. By minimizing the distance between the translated source entity and
the target entity.

TransH 1) Handle one-to-many and many-to-many

2) Reduce the false positive labeling

Hyperplane is on same space TransH maps head and tail into a new hyperplane

TransR
1) Having relation-specific spaces hyperplane

2) Handle one-to-many and many-to-many Loosing the simplicity of the Translations-method based

Entities are represented as vectors in an entity space R, and each relation is
associated with a specific space R and modeled as a translation vector in that
space.

Tensor 
factorization

based

RESCAL
Captures fine-grained interactions and
semantic relationships in the knowledge
graph

1) Complex and expensive Operation.

2) Not suitable for large-scale graphs. Represents entities as vectors and relationships as matrices

ComplEx Allowing for the modeling of symmetric and

asymmetric relations in the graph

1) Complex and expensive Operation.

2) Not suitable for large-scale graphs.

It represents entities and relationships as complex vectors by extending
RESCAL by using complex-valued embeddings

DistMult Liner complexity Works only for symmetric Simplifies the tensor factorization process by utilizing diagonal matrices for
relationships.

Neural

network

based

SME Use semantics to predict relationships.
1) Relay on observed relationships to learn embeddings

2) Not suitable for large-scale graphs

3) Provide linear modeling only

SME uses neural network to model the semantic matching between entities.
Then it measures the confidence of each triplet using NN-based function.

ConvKB Non-Linear modeling Doesn’t differentiate the importance of different
relationship, and treats all relationships equally

ConvKB uses matrix representation for triplets, applies CNN for graph
embeddings, and calculates confidence scores.

R-GCN Provide relation-specific transformation
1) Not suitable for large-scale graphs

2) Can face overfitting

R-GCN extends GCNs with relational graph convolutions, leveraging node
features and relation types for relation semantics and node embeddings, using
linear transformation.

Table 3: Comparison of various knowledge graph embedding algorithms

Background

Auxiliary Information, Techniques and Algorithms

Embedding-Based knowledge Graphs-Based Recommender System
recommender systems involve  
representing entities and relation-

ships ​from the knowledge 
graph as compact,  
meaningful vectors called embedding.

Embedding-Based knowledge Graphs-Based Approaches

Challenges and Future Directions

Conclusion References

