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My background in Distributed PostgreSQL

Developing Citus since 2014 at https://github.com/citusdata/citus

Citus is a PostgreSQL extension that adds the ability to transparently distribute or replicate 
tables across a cluster of PostgreSQL servers.

Paper: “Citus: Distributed PostgreSQL for Data-Intensive Applications” - SIGMOD ’21

Many other Distributed PostgreSQL systems have appeared.

https://github.com/citusdata/citus


Distributed PostgreSQL landscape

AlloyDB (Google)

Aurora (Amazon)

PolarDB (Alibaba)

TBase (Tencent)

Citus (Microsoft)

CockroachDB

TimescaleDB

Yugabyte

Spanner (Google)

Greenplum (VMWare)

PostgreSQL



Distributed PostgreSQL

PostgreSQL

Extremely versatile data storage and processing tool,
but limited to a single server

Distributed PostgreSQL

Extremely versatile data storage and processing tool(s)
not limited to a single server, but still under development, trade-offs to consider



Don’t you need NoSQL to scale?
No



Winning start-up RDBMS

What was the main database successful tech companies used during their hypergrowth phase?

Amazon - Oracle

Facebook - MySQL

Gitlab - PostgreSQL

Google - MySQL

Instagram - PostgreSQL

Netflix - Cassandra

Reddit - PostgreSQL

Salesforce - Oracle

Skype - PostgreSQL

Stack Overflow - SQL Server



PostgreSQL is growing fast



Today’s lecture

Part I: PostgreSQL

Build an intuition for the internals of PostgreSQL / a state-of-the-art RDBMS

Understand what problems need to be solved when storing & manipulating data

Know when PostgreSQL is the right tool for the job

Part II: Distributed PostgreSQL

Introduction to Distributed database concepts

Look at how different Distributed PostgreSQL vendors apply these concepts

Know how to navigate the Distributed PostgreSQL landscape 



PostgreSQL
Just use it



PostgreSQL

Relational Database Management System  (RDBMS)

• ACID transactions, SQL, Schema management, Constraints, Procedures, Indexes, … 

Started as “postgres” by Michael Stonebraker in 1985 at Berkeley 

• PostgreSQL since 1996 when SQL support was added

Community open-source project – no company behind it

• All development on pgsql-hacker@postgresql.org (patches sent as attachments…)

Extensions can add new database features:

• Types, Functions, Access methods, Foreign data wrappers, 
Custom query planning & execution

mailto:pgsql-hacker@postgresql.org




PostgreSQL database model

Source: 
interdb.jp



Getting started with PostgreSQL

# Create the database directory
initdb –D $PGDATA

# Start the postgres server

pg_ctl –D $PGDATA start



PostgreSQL database directory

Source: 
interdb.jp



PostgreSQL server architecture

Source: 
interdb.jp





Productions set ups

Use a hot standby that can take over in case of failure.

Network-attached disks 
simplify operations.

Backups = Disk snapshots + 
WAL archival into cheap storage

AWS, Azure, GCP, and others can 
run it for you.



PostgreSQL Getting Started

# Connect to the database

psql

-- Create a table

create table items (key text, value text);

-- Insert 2 records

insert into items values ('hello', 'world’);

insert into items values ('ciao', 'cesena');



PostgreSQL table layout (heap)

Source: 
interdb.jp

On-disk representation
Individual pages are also cached in shared memory 



PostgreSQL Query Performance

-- Query on a table with 2 rows
select * from items where key = 'hello';
┌───────┬───────┐
│  key  │ value │
├───────┼───────┤
│ hello │ world │
└───────┴───────┘
(1 row)

Time: 1.370 ms



PostgreSQL Query Performance

-- Add 10 million rows
insert into items select 'item-'||s, 'value-'||s 
from generate_series(1,10000000) s;

-- Query on a table with 10,000,002 rows
select * from items where key = 'hello';
┌───────┬───────┐
│  key  │ value │
├───────┼───────┤
│ hello │ world │
└───────┴───────┘
(1 row)

Time: 2379.022 ms (00:02.379)



PostgreSQL Indexes
The actual right answer to coding interviews, which the interviewer won’t accept



PostgreSQL Indexes

-- Create a btree index
CREATE INDEX key_idx ON items (key);

-- Query on a table with 10,000,002 rows
select * from items where key = 'hello';
┌───────┬───────┐
│  key  │ value │
├───────┼───────┤
│ hello │ world │
└───────┴───────┘
(1 row)

Time: 0.937 ms



Btree index

Source: 
postgrespro.com

Tuple identifers (page index, tuple index) pointing at heap



PostgreSQL Index Scan

Source: 
interdb.jp



PostgreSQL Index types

PostgreSQL index types:

• Btree - Good for key-value and small range lookups

• Hash - Good for key-value lookups, slow-changing data

• BRIN - Good for time range queries on ordered time series data

• GiST - Good for geospatial queries

• GIN - Good for document & text search

• …

Orthogonal: Partial indexes, expression indexes



PostgreSQL Partitioning

Indexes give no guarantees about data ordering on disk.

Partitioning can be used to group data by (time) range on disk.

CREATE TABLE events (…, event_time timestamptz default now()) 
PARTITION BY RANGE (event_time);

CREATE TABLE events_1 PARTITION OF events
FOR VALUES FROM ('2022-07-04') TO ('2022-07-11');

Automate ausing:

- TimescaleDB

- Citus

- pg_partman

INSERT INSERT

DELETE old data DROP old partition



ACID Transactions
Because storing stuff on computers is haaaard



ACID Transactions

A transaction is a set of read/write operations that are bundled together and have the 
following properties:

Atomicity - Either all changes are performed, or none

Consistency - Constraints are preserved before & after

Isolation - Intermediate state is invisible to other transactions

Durability - Changes persist, even in case of a system failure

Multiple processes reading and writing concurrently.



Write ahead log

Write ahead log is the authoritative record of all changes to the database.

On restart (e.g. after crash): Replay all changes from R to F

insertion in heap
…

deletion in heap
…

commit
<xid>

inser…

On commit: fsync up to here (disk latency!)Heap changes are on disk up to here

R F



Multi-version concurrency control (MVCC)

Every PostgreSQL transaction has a 32-bit transaction ID (xid)

Every tuple stores the following information:

xmin – transaction ID which created the tuple

xmax – transaction ID which updated/deleted the tuple 

ctid – location of the latest version of a tuple (for updates)



Snapshots

Every PostgreSQL transaction has a snapshot consisting of:

xmin – no more transactions with a lower transaction ID remain

xmax – we cannot see any higher xids because they started later

xip_list – we cannot see these either because they are in progress

From the snapshot, we can determine whether another transaction ID is “in progress”.

Reads skip tuples written by transactions which are “in progress”.



Snapshot implementation in Postgres

bool XidInProgressInMVCCSnapshot(TransactionId xid, Snapshot snapshot)
{

/* Any xid < xmin is not in-progress */
if (TransactionIdPrecedes(xid, snapshot->xmin))

return false;
/* Any xid >= xmax is in-progress */
if (TransactionIdFollowsOrEquals(xid, snapshot->xmax))

return true;

…
for (i = 0; i < snapshot->xcnt; i++)
{

if (TransactionIdEquals(xid, snapshot->xip[i]))
return true;

}

return false;
}



Tuple visibility

Can determine whether tuple is visible from xmin, xmax:

HeapTupleSatisfiesMVCC(tuple, snapshot)

!XidInProgress(tuple.xmin, snapshot) && IsCommitted(tuple.xmin) &&

(tuple.xmax == 0 ||

XidInProgress(tuple.xmax, snapshot) || !IsCommitted(tuple.xmax))

Separate global data structure (clog) keeps track of which transactions are committed.



MVCC Benefits

The MVCC semantics in PostgreSQL:

• Reads see everything that was committed before (read-your-writes)

• Reads and writes do not block each other

• Database appears as if no changes are happening (isolation)

Default isolation level (read committed) has some anomalies…



Update concurrency

WITH v AS (
SELECT value FROM counters
WHERE id = 19376

)
UPDATE counters
SET value = v.value + 1
FROM v;

WITH v AS (
SELECT value FROM counters
WHERE id = 19376

)
UPDATE counters
SET value = v. value + 1
FROM v;

Two concurrent updates on a counter that starts at 0:

If neither sees the other in its snapshot, what’s the result?



Update concurrency

Two concurrent updates on a counter that starts at 0:

If neither sees the other in its snapshot, what’s the result?

UPDATE counters
SET value = value + 1
WHERE id = 19376;

UPDATE counters
SET value = value + 1
WHERE id = 19376;



Update concurrency

Source: 
interdb.jp



Update concurrency

UPDATE counters
SET value = value + 1

WHERE id = 19376;

1. obtain row-level lock (write xmax)
2. read current tuple, write new tuple
3. update ctid of old tuple
4. commit
5. release row-level lock

UPDATE counters
SET value = value + 1
WHERE id = 19376;

1. wait for row-level lock

2. obtain row-level lock (write xmax)
3. follow update chain
4. obtain row-level lock
5. read current tuple, write new tuple
6. update ctid of old tuple
7. commit

Two concurrent updates are serialized by row-level locks:



Explicit locking

WITH v AS (
SELECT value FROM counters
WHERE id = 19376
FOR UPDATE

)
UPDATE counters
SET value = v.value + 1
FROM v;

WITH v AS (
SELECT value FROM counters
WHERE id = 19376
FOR UPDATE

)
UPDATE counters
SET value = v. value + 1
FROM v;

Can obtain row-level locks explicitly with SELECT .. FOR UPDATE:



What about dead tuples?

Source: 
interdb.jp



Summary: ACID Transactions

Overall, transactions in PostgreSQL:

• Keep your data safe

• Keep your query results clean

• Work well concurrently (few locks, except in update/delete on the same row)

Read committed has anomalies

• No well-defined order between transactions

• Simple updates usually do a nice thing

• Complex updates might not, but can be corrected with FOR UPDATE

Update/delete have hidden cost of vacuuming.



SQL
Declarative data retrieval that somehow still requires a lot of tuning



SELECT
customer_id, 
sum(order_value),
row_number() OVER ()

FROM
orders

WHERE
order_type = 4

GROUP BY
customer_id

ORDER BY
2 DESC

LIMIT
10;

(find the bug!)



SELECT
customer_id, 
sum(order_value),
row_number() OVER ()

FROM
orders

WHERE
order_type = 4

GROUP BY
customer_id

ORDER BY
2 DESC

LIMIT
10;

(find the bug!)



SELECT
customer_id, 
sum(order_value),
row_number() OVER (
ORDER BY sum(order_value) DESC

)
FROM
orders

WHERE
order_type = 4

GROUP BY
customer_id

ORDER BY
2 DESC

LIMIT
10;

(fixed the bug!)



SELECT
customer_id,
sum,
row_number() OVER ()

FROM (
SELECT

customer_id, 
sum(order_value)

FROM
orders

WHERE
order_type = 4

GROUP BY
customer_id

ORDER BY 2 DESC LIMIT 10
) a;

(fixed the bug!)



PostgreSQL Query planner

Execute Execute the plan tree

Pick Pick the lowest-cost plan tree

Generate From the inside out, generate possible plan nodes for each operation

Parse Parse the query into an Abstract Syntax Tree (AST)



Plan generation

FROM+WHERE:

sequential scan

index scan

bitmap index scan

JOIN:

nested loop

hash join

merge join

GROUP BY+HAVING:

hash aggregate

group aggregate

Window functions, ORDER BY

sort

Seq
Scan

Seq
Scan

Index 
Scan

Index 
Scan

Hash 
Join

Nested 
Loop

Hash 
Agg

Hash 
Agg

Sort Sort

Plan 1 Plan 2



Explain query plans

EXPLAIN SELECT customer_id, sum(order_value) FROM orders WHERE order_type = 4 GROUP BY 
customer_id ORDER BY 2 DESC LIMIT 10;
┌───────────────────────────────────────────────────────────────────────────────────┐
│                                    QUERY PLAN                                     │
├───────────────────────────────────────────────────────────────────────────────────┤
│ Limit  (cost=66227.56..66227.59 rows=10 width=12)                                 │
│   ->  Sort  (cost=66227.56..68085.11 rows=743019 width=12)                        │
│         Sort Key: (sum(order_value)) DESC                                         │
│         ->  HashAggregate (cost=42741.00..50171.19 rows=743019 width=12)         │
│               Group Key: customer_id │
│               ->  Seq Scan on orders  (cost=0.00..37739.00 rows=1000400 width=12) │
│                     Filter: (order_type = 4)                                      │
└───────────────────────────────────────────────────────────────────────────────────┘
(7 rows)



Row-based execution

Limit

Sort

Hash Agg

Seq Scan

Give me a tuple

Give me a tuple

Give me a tuple

Give me a tuple

Send to client



Summary: SQL

Overall, SQL in PostgreSQL:

• Uses cost-based optimization to pick a good query plan

• Row-based execution model is simple and predictable

• Supports almost all features of SQL:2016 standard

Some things to know:

• When the planner gets it wrong, it’s not so easy to change

• Execution is mostly single-threaded

• Row-based executor has high overhead for analytics



Extensibility
PostgreSQL’s hidden superpowers



What is an extension?

Extensions consist of:
1. SQL objects (tables, functions, types, …)
2. Shared library

CREATE TABLE pg_dist_node (…);
CREATE TABLE pg_dist_partition (…);

CREATE FUNCTION citus_add_node(…)
RETURNS void LANGUAGE c
AS '$libdir/citus', 
$function$citus_add_node$function$;

CREATE FUNCTION create_distributed_table(…)
RETURNS void LANGUAGE c
AS '$libdir/citus', 
$function$create_distributed_table$function$;

#include "postgres.h"

Datum citus_add_node(…) 
{

…
}

Datum create_distributed_table(…) 
{

…
}

citus.sql citus.c



Almost everything is extensible

PostgreSQL

Planner

Executor

Custom scan

Commit / abort

Extension (shared library)

Access methods

Foreign tables

Functions

...

...

...

...

...

...

...

SELECT ...



Extension hook: Planner hook

Extensions can change the way PostgreSQL plans queries

citus.cpostgres.c

planner_hook_type planner_hook = NULL;

PlannedStmt *
planner(Query *parse, …)
{

PlannedStmt *result;

if (planner_hook)
result = (*planner_hook) (parse,  …);

else
result = standard_planner(parse, …);

return result;
}

#include "postgres.h"

void _PG_init(void)
{

… 
planner_hook = distributed_planner;
… 

}

PlannedStmt *
distributed_planner(Query *parse, …)
{

…
}



Extension hook: CustomScan

Extensions can inject custom scan nodes into the query plan.

HashAggregate

CustomScan

Citus Executor

W1

W2

SELECT ad_id, count(*)
FROM clicks_102
GROUP BY ad_id;



Extension hook: Background workers

Extensions can start background processes that operate on the database.

Example: pg_cron extension

SELECT cron.schedule(
'30 3 * * 6', 
$$DELETE FROM events WHERE event_time < now() - interval '1 week'$$);

SELECT cron.schedule(
'* * * * *', 
$$SELECT process_incoming_data()$$);



Common extensions

Babelfish (extension + fork)

Citus

dblink (built-in)

hll

hstore (built-in)

oracle_fdw

pg_cron

pg_partman

pg_stat_statements (built-in)

pgAudit

pgcrypto (built-in)

PL/Perl (built-in)

PL/Python (built-in)

PL/V8

PostGIS

MobilityDB

mysql_fdw

TimescaleDB

tdigest

topn

uuid-ossp

wal2json



When to use PostgreSQL?
Because data storage is hard and you’re probably doing it wrong



When to use PostgreSQL

System of record (OLTP) / Interactive applications

• Low latency, high throughput, good availability, transactional correctness, SQL, …

Coordination between systems

• Transactions and locking primitives help you do the right things in your applications

Analytical applications with pre-aggregated data

• SQL, Indexes, Partitioning, Extensions, Custom Types, Data transformations, …

Extensions make can PostgreSQL the best tool for many data types and applications:

• Time series, spatial, spatiotemporal, … 



When not to use PostgreSQL (so far)

For machine learning

• Machine learning in PostgreSQL exists, but is still in its infancy

For analytical queries over a large amount of data

• Row-based executor, limited parallelism & compression compared to data warehouse

As a low latency cache (<0.2ms)

• Btree+heap model adds relatively high overhead compared to Redis

When your data or workload does not fit on a single server…



PostgreSQL scalability challenges

Typical server limit in modern clouds:

• 64 virtual cores, 512GiB memory, 32TiB storage

• 500k reads/sec, 50k writes/sec, 5M rows/sec scans

At scale, several additional pain points:

• Many operations are single-threaded

• Working set may no longer fit in memory

• Small number of operations that are O(N) can dominate the workload

• Table bloat (dead tuples) can get high

Importance of availability & performance often grows with scale of application



Distributed 
PostgreSQL
Do all this stuff at scale



A distributed database does two things

Distribution - Place partitions of data on different machines

Replication - Place copies of (a partition of) data on different machines

Goal: Offer same functionality and transactional semantics as an RDBMS
with higher availability, durability, performance, scalability.

Reality: Concessions in terms of functionality, transactional semantics, and
performance

Everyone makes different conecessions.



Distribution challenges

Data distribution  Data access (SQL) Transactions Replication

collect

order/limit

aggregate

scan dist

order/limit BEGIN;
UPDATE account SET b += 20
WHERE account_id = 1149274;
UPDATE account SET b -= 20
WHERE account_id = 8523861;
END;

C1

C2

C3



Data distribution
Remember that spreading out data over many machines makes things slower



Data distribution: Range-distribution

Tables are partitioned by a “distribution key” (part of primary key)

INSERT INTO dist_table (dist_key, other_key) VALUES (36, 12);

Each “shard” contains a range of values

1-10 11-20 21-30

31-40 41-50 51-60

36



Data distribution: Hash-distribution

INSERT INTO dist_tables (dist_key, other_key) VALUES (36, 12);

Each shard contains a range of hash values

-2147483648 … -1431655766 … -715827884 …

-2 … 715827880 … 1431655762 ..

hash(36)=
-505713883



Data distribution: Rebalancing

Move shards to achieve better data distribution across nodes

Split shards to achieve better data distribution across shards

1-10 11-20 21-30

31-40 41-50 51-60

51-60

1-10 11-20 21-30

31-40 41-50

51-60

21-25 26-30 51-55 56-60



Data distribution: Co-location

Ensure same range is on same node across different tables to enable 
fast joins, foreign keys, and other operations on distribution key.

Table1 (1-10) Table1 (11-20) Table1 (21-30)

Table2 (1-10) Table2 (11-20) Table2 (21-30)



Data distribution: Reference tables

Replicate a small table to all nodes to enable fast joins, foreign keys, 
and other operations on any column.

Table1 (1-10)

Table3

Table2 (1-10)

Table1 (11-20)

Table3

Table2 (11-20)

Table1 (21-30)

Table3

Table2 (21-30)



Distributed SQL
Sometimes faster than regular SQL



Distributed SQL

SQL ≈ Relational algebra

Distributed SQL ≈ Multi-relational algebra

Relational algebra:

• Scan, Filter, Project, Join, (Aggregate, Order, Limit)

Multi-relational algebra:

• Collect, Repartition, Broadcast + Relational algebra



Distributed SQL: Logical planning

SELECT dist_key, count(*) FROM dist_table GROUP BY 1 ORDER BY 2 LIMIT 10;

sort/limit

aggregate

scan dist

Inject collect
above distributed
relation

sort/limit

aggregate

collect

scan dist

Regular table plan Distributed table plan

scan dist



Distributed SQL: Logical optimization

SELECT dist_key, count(*) FROM dist_table GROUP BY 1 ORDER BY 2 LIMIT 10;

aggregate

collect

scan dist

collect

aggregate

scan dist

Group by
dist. key
is commutative
with collect

Order/limit
can be partially
pushed down

collect

order/limit

aggregate

scan dist

Merge plan

Shard plan (can run in parallel)

SELECT dist_key, count(*)
FROM dist_table_*
GROUP BY 1 
ORDER BY 2 LIMIT 10;

SELECT dist_key, count
FROM <results>
ORDER BY 2 LIMIT 10;

scan dist scan dist

aggregate

sort/limit

aggregate

scan dist

sort/limitsort/limit

sort/limit

aggregate(collect(x))
= collect(aggregate(x))

sort_limit(collect(x),N)
= collect(sort_limit(x,N))



Distributed SQL: Logical optimization

SELECT other_key, count(*) FROM dist_table GROUP BY 1 ORDER BY 2 LIMIT 10;

aggregate

collect

scan dist

collect

preaggregate

scan dist

Split up aggregate
and push down
partial aggregates

merge

SELECT other_key, count(*)
FROM dist_table_*
GROUP BY other_key

SELECT other_key, sum(count)
FROM <results>
GROUP BY other_key
ORDER BY 2 LIMIT 10;

Merge plan

Shard plan

scan dist

preaggregate

scan dist

sort/limit

sort/limit

aggregate(collect(x))
= merge(collect(preagg(x))



Distributed SQL: Co-located joins

SELECT dist1.dist_key, count(*) 
FROM dist1 JOIN dist2 ON (dist1.dist_key = dist2.dist_key) 
WHERE dist2.value < 44 GROUP BY dist1. dist_ key;

aggregate

join

scan dist1

scan dist2

collect collect

filter
Group by
dist. key
is commutative
with collect

Join is co-located
so distributive
with 2 collect nodes

aggregate

join

scan dist1

scan dist2

collect

filter

Filter is commutative
with collect

scan dist1

scan dist2

aggregate

join

scan dist1

scan dist2

filter

SELECT dist1.dist_key, count(*)
FROM dist_table_* dist1
JOIN dist_table_* dist2
ON (dist1.dist_key = dist.2.dist_key)
GROUP BY dist_key



Distributed SQL: Re-partition joins

SELECT dist1.dist_key, count(*) 
FROM dist1 JOIN dist2 ON (dist1.dist_key = dist2.other_key) 
WHERE dist2.value < 44 GROUP BY dist1.dist_key;

aggregate

join

scan dist1

scan dist2

collect collect

filter
Group by
dist. key
is commutative
with collect

Need to re-partition
data to perform join 

aggregate

join

scan dist1

scan dist2

collect

filter

repartition

scan dist1

scan dist2
scan dist2

filter

aggregate

join

scan dist1
repartition



Distributed SQL: Re-partition operations

SELECT dist1.dist_key, count(*)
FROM dist1 JOIN dist2 ON (dist1.dist_key = dist2.other_key) 
WHERE dist2.value < 44 GROUP BY dist1.dist_key;

dist2_1
x

x

x

x

x

x

dist2_2

dist2_3

dist2_4

dist2_5

dist2_6

dist1_1

dist1_2

dist1_3

dist1_4

dist1_5

dist1_6

SELECT other_key
FROM dist2_*
WHERE value < 44;

SELECT dist1.dist_key, count(*)
FROM dist1_* JOIN <results>
ON (dist1_*.dist_key = <results>.other_key)
GROUP by dist1.dist_key;



Distributed SQL: Broadcast joins

WITH top10 AS (
SELECT other_key, count(*) FROM dist1 GROUP BY 1 ORDER BY 2 LIMIT 10

)
SELECT * FROM dist2 WHERE other_key IN (SELECT dist_key FROM top10);

join

scan dist1

collect

scan dist2 aggregate

collect

scan distscan dist1

sort/limit



Distributed SQL: Broadcast joins

join

scan dist1

collect

Broadcast subplan to
pull collect above the join

Create subplan to
handle order/limit under join

join

scan dist1

collect

repartition

scan dist2

join

scan dist2
broadcast

aggregate

collect

scan distscan dist1

collect

preaggregate

scan dist

merge

preaggregate

scan dist1

Merge plan

Shard plan

Shard plan

sort/limit

sort/limit



Distributed SQL: Observations

Query plans depend heavily on the distribution key.

Runtime also depends on query, data, data size (big in distributed 
databases), network speed, cluster size, ....

Distributed databases require adjusting your distribution keys & 
queries to each other to achieve high performance.



Distributed Transactions
Where the trouble starts…



Distributed Transactions

Ideally, we have:

Atomicity, Consistency, Isolation, Durability   (ACID)

Main distribution challenges:

Atomicity - Commit on all nodes or none

Isolation - See other distributed transactions as committed/aborted

Additionally:

Distributed deadlock detection



Distributed Transactions: Atomicity

Atomicity is generally achieved through 2PC = 2-Phase Commit

Phase 1: Store (“prepare”) transactions on all nodes

Phase 2: Store final commit decision and …

If success, Commit all prepared transactions

If error, Abort all prepared transactions

Secret phase 3: Commit/abort prepared transactions after failure



APPLICATION

BEGIN;

UPDATE

SET

WHERE

UPDATE

SET

WHERE

COMMIT;

campaigns

started = true

campaign_id = 2;

ads

finished = true

campaign_id = 1;

METADATA

W1

W2

W3 … Wn

BEGIN …

assign_distributed_

transaction_id …

UPDATE campaigns_102 …

PREPARE TRANSACTION… 

COMMIT PREPARED…

BEGIN …

assign_distributed_

transaction_id …

UPDATE campaigns_203 …

PREPARE TRANSACTION… 

COMMIT PREPARED…

COORDINATOR 
NODE

WORKER NODES



METADATA

W1

W2

W3 … Wn

BEGIN …

assign_distributed_

transaction_id …

UPDATE campaigns_102 …

PREPARE TRANSACTION citus_0_2431; 

COMMIT PREPARED…

BEGIN …

assign_distributed_

transaction_id …

UPDATE campaigns_203 …

PREPARE TRANSACTION citus_0_2431;  

COMMIT PREPARED …;

COORDINATOR 
NODE

WORKER NODES

worker Prepared xact

W1 citus_0_2413

W2 citus_0_2413

SELECT gid FROM pg_prepared_xacts
WHERE gid LIKE 'citus_%d_%'

2PC recovery
Compare



Distributed Transactions: Isolation

If we query different nodes at different times, we may see a concurrent transaction as 
committed on one node, but not yet committed on another.

Distributed snapshot isolation means we have the same of view of what is committed and not 
committed on all the nodes.

Additional requirements:

read-your-writes consistency: Any preceding write is seen as committed.

monotonic read consistency: Subsequent reads always see newer data



Distributed Snapshot Isolation Approaches

Many different solutions, none great:

Heavy locks: Greenplum (low concurrency)

Hybrid logical clocks: CockroachDB, Yugabyte (slow)

Global transaction manager: PolarDB, TBase (limited scale)

No distributed isolation: Citus, TimescaleDB (anomalies)

Single primary: AlloyDB, Aurora (limited scale)

TrueTime: Spanner (slow)



Replication
Trade-offs all the way down



Why replication?

availability - resume from replica in case of node failure 

durability - no data loss in case of node failure

read throughput - divide reads across read replicas

read latency - local/nearby replica gives lower read latency 

write latency - local/nearby replica gives lower write latency



Replication: Quorums

Basic idea: Read from R nodes, Write to W nodes, R +W > N

Challenge: Applying events in same order everywhere

C1 C2 C3

INSERT SELECT



Replication: Quorums

Basic idea: Read from R nodes, Write to W nodes, R +W > N

Challenge: Applying events in same order everywhere
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Replication: Active-passive (follow the leader)

Assign temporary leader to serialize writes efficiently

C1

C2

C3

INSERT

SELECT
Log of changes – wait for at least 1 replica (quorum)



Replication: Active-passive (follow the leader)

Standby fails: Continue writing to other replica

C1

C2

C3

INSERT

SELECT

X
Log of changes – wait for at least 1 replica  (quorum)



Replication: Active-passive (follow the leader)

Primary fails: Initiate a failover (choose new one through Paxos/Raft)

C1

C2

C3

X



Replication: Active-passive (follow the leader)

Replica is promoted to leader, other replicas follow new leader.
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Replication: Active-active (n-directional)

All nodes accept writes, somehow reconcile conflicting changes.

C1

C2

C3

INSERT

UPDATE

Logs of changes

UPDATE



CAP theorem

Choose Consistency vs Availability when in a (minority) network Partition

Availability (AP) = Keep writing to minority of nodes, majority does not see it

Consistency (CP) = Writes/reads unavailable, consistency must be preserved

Very incomplete picture of distributed database trade-offs

Distributed PostgreSQL is generally CP



PACELC theorem

Slightly better, but still oversimplified:

If Network Partition: choose Availability vs. Consistency

Else: choose Latency vs. Consistency



Other distributed database trade-offs

Consistency
• Read-your-writes

• No lost updates

• Linearizability

Availability
• For Reads

• For Writes

• Handle availability zone failure

Partition-tolerance
• For Reads

• For Writes

Durability
• Node failure does not result in data loss

• Writes are archived in a timely manner

Low latency
• Low read latency

• Low write latency

• Global vs. local

Complexity
• Dependencies on other systems

• Multiple node types

• Many  optimizations



The Distributed PostgreSQLs
All distributed databases are bad, some are less bad than others for your use case.



Distributed PostgreSQL landscape

AlloyDB (Google)

Aurora (Amazon)

PolarDB (Alibaba)

TBase (Tencent)

Citus (Microsoft)

CockroachDB

TimescaleDB

Yugabyte

Spanner (Google)

Greenplum (VMWare)

PostgreSQL



Amazon Aurora

PostgreSQL fork that distributes and replicates storage for higher performance 
(IOPS), better fault tolerance.

Replicas read from storage layer without
load on primary, have low lag.

Fast backup/crash recovery.

Does not scale writes,  large working sets, 
large queries.

Proprietary, only runs in AWS.
Source:
docs.aws.amazon.com



Citus (Microsoft)

PostgreSQL extension that adds distributed tables, reference tables & columnar storage.

Scales query throughput, large queries.

High performance via co-location, 
reference tables.

Always up-to-date with PostgreSQL.

No distributed snapshot 
isolation.

Limitations on foreign keys, joins..

Open source (AGPL)

items
users

items
users

Schema changes
Queries (reads & writes) Queries (reads & writes) Queries (reads & writes)

items
users

coordinator worker 1 worker 2

Coordinator 
standby

Worker 1
standby

Worker 2
standby



CockroachDB

Distributed key-value store that speaks the PostgreSQL protocol.

High availability using Raft.

Snapshot isolation using HLCs.

Geo-replication & geo-partitioning.

Not very fast. 

Limited PostgreSQL compatibility. 

Open source (complex license)



Greenplum

PostgreSQL fork for data warehousing started in 2003, caught up to PostgreSQL 12

Advanced query planner for complex
analytical queries on large data sets.

Complex architecture.

Transactional capabilities still slow.

Less relevant given Snowflake, Spark, …

Open source (Apache 2.0)



PolarDB for PostgreSQL (Alibaba)

Derived from Postgres-XL (defunct PostgreSQL fork from 2014), caught up to PostgreSQL 
11.

Good PostgreSQL compatibility.

Snapshot isolation using timestamp server.

Also has an Aurora-like variant.

Complex architecture.

Old PostgreSQL version.

Open source (Apache 2.0)



Yugabyte

Distributed key-value store that includes a fork of PostgreSQL 11.

High availability using Raft.

Snapshot isolation using HLCs.

Geo-replication & geo-partitioning.

Relatively good PostgreSQL compat.

Not very fast or stable. 

Old PostgreSQL version.

Open source (Apache 2.0)



Navigating Distributed PostgreSQL

For analytical dashboards: Citus

For analytical reporting: Greenplum (or non-PG-based systems)

For transactional workloads, if your main concern is:

• Availability: CockroachDB

• Price-performance: Aurora

• Write scalability: Citus

• Data model flexibility: Aurora, Yugabyte

One to watch: PolarDB



Ongoing developments

Auto-distribution

Auto-indexing

Branching

Built-in compute runtime

Decoupled storage & compute

Disaggregated memory

Faster snapshot isolation

Geo-distributio

In-database machine learning

Integration with cloud services

Learned indices

Multi-modal databases

NVME drives

Self-driving databases

Serverless

High write-scalability



Why use Distributed PostgreSQL?
Either you have a really challenging data problem, or you buy into the dream



When to use Distributed PostgreSQL

Key-value storage

• Scales to very high throughput, SQL & transactions

Multi-tenant applications

• Distribute by tenant ID, co-locate data by tenant ID, can efficiently handle complex 
queries

Site-facing analytics

• Distributed SQL, Indexes, Partitioning, Views, Distributed insert..select, Extensions, …

Analytics with n-dimensional data types

• Time series, spatial, spatiotemporal, … 



When not to use Distributed PostgreSQL

Complex / normalized data models

• Complex join and foreign key graphs slow down any distributed PostgreSQL system

Analytical reporting on a large data lake

• State-of-the-art is Spark, Snowflake, Synapse, Presto, …



My personal bias: Citus

PostgreSQL extension is a huge benefit
• Always up-to-date with PostgreSQL developments
• Users can take advantage of mature implementations of PostgreSQL features, other extensions
• Start on single node PostgreSQL, scale out later

Designed to offer high performance at scale

Open source

Good traction in very large-scale software-as-a-service, site-facing analytics / IoT

Microsoft investing in it for the long run

Preferred by Stonebraker☺ [1] [2] [3]

https://arxiv.org/pdf/2007.15904.pdf
https://www.cs.purdue.edu/homes/bb/2020-fall-cs590bb/docs/vp/surveillance_video_querying_paper.pdf
https://dl.acm.org/doi/pdf/10.14778/3352063.3352138


Questions?

Marco Slot - marco.slot@microsoft.com

Principal software engineer at Microsoft

mailto:marco.slot@microsoft.com

