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Introduction to model-agnostic interpretability methods

• Model-agnostic interpretation methods are those that only require
the evaluation of the fitted prediction model on the training set, on
the test set, or on perturbations of them.

• No other information from the kind of model at hand is needed.

• To be more formal, let f be the prediction function estimated from a
training sample using a generic prediction model.

• We assume that f depends on p arguments, so the predicted value
for x = (x1, . . . , xp) is f (x).

• The only connection between the model-agnostic interpretation
methods and the prediction model is through the function f and,
more specifically, only evaluations of f at different points x are
allowed.
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• Under this setting, to interpret the prediction model equals to
interpret the prediction function f .

• This task is essentially the same we would have to do if we wanted
to explore a generic mathematical function g depending on p
variables, from which only evaluations are allowed.

• Therefore, any procedure that allows exploring a generic function g
(using only evaluations of g) can be considered a model-agnostic
method that could be used for interpreting a prediction function f .

• For instance, computing a numerical approximation to the gradient
of f at a point x can be considered a model-agnostic interpretation
method, as well as using this approximation to compute the first
order Taylor expansion of f around x .

5/103 Pedro Delicado



Introduction Global measures of variable relevance Local measures IML in R and Python References

• Model-agnostic methods are specially useful for interpreting
prediction models for which there are no specific interpretation
methods.

• Nevertheless, model-agnostic methods can also improve the
interpretation of models that are usually considered interpretable.

• Even multiple linear regression could benefit from the application of
some model-agnostic methods.

• When a new model-agnostic interpretation method is introduced, a
good practice is to check what it provides when applied to a classical
simple prediction model, as linear regression, logistic regression or
their additive extensions.

• In these simple cases, sometimes it is possible to obtain the closed
expression of the new method results and then to relate them to the
standard outputs of the classical methods.

• This way the new interpretation method will be either reinforced
(when its classical counterpart is a sensible measure) or called into
question (when the opposite happens).

We present several model-agnostic interpretation methods below,
classified as global or local measures.
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Classification of models and interpretability tools
Transparent models Black-boxes: Post-modeling interpretability

Linear model (LM)
GLM
GAM
CART
Rule based models
Näıve Bayes
k-nearest neighbours

Model-specific methods:

• Tree ensembles

• Neural networks

• Support vector machines

Model-agnostic methods:
Global measures

• Variable importance by

- Leave-one-covariate-out
(LOCO)

- Perturbing a variable in the

test set: Random

permutations, knockoffs,

Ghost-variables, ...

• Variable importance based on
Shapley’s value

• Partial dependence plot (PDP)

• Accumulated local effects plot
(ALE)

Local measures

• Local interpretable
model-agnostic explanations
(LIME)

• Local variable importance
based on Shapley’s value

• SHAP (SHapley Additive
exPlanations)

• Break-down plots

• Individual conditional
expectation (ICE) plot, or
ceteris paribus plot
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Global measures of variable relevance

• Let us consider the prediction problem involving the random vector
(X ,Z ,Y ), X ∈ Rp, Z ∈ R and Y ∈ R, where Y is considered the
response variable that should be predicted from (X ,Z ).

• A prediction function f : Rp+1 → R has expected loss (or risk)

R (f (X ,Z ),Y ) = E(L(f (X ,Z ),Y )),

where L : R × R→ R+ is a loss function measuring the cost
associated with predicting Y by f (X ,Z ).

• We consider the problem of measuring the effect of the single
variable Z on the prediction function f when predicting Y by
f (X ,Z ):

• Variable relevance or variable importance of Z .

• We assume that a training sample of size n1 and a test sample of
size n2 are available.
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Leave-one-covariate-out, LOCO

Leave-one-covariate-out, LOCO

• A simple approach to define the importance of the variable Z :

1 Fit the model including both X and Z .
2 Fit the model including only X (leaving Z out).
3 Relevance of Z by LOCO: The relative decrease in prediction

accuracy in the test sample when Z is omitted from the model.

• This approach is used, for instance, in multiple linear regression to
decide if the variable Z should be included in the model.

• The model must be fitted twice.
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Leave-one-covariate-out, LOCO

Relevance by LOCO, at a populational level

• It could happen that there would exist a natural reduced version of
f , say fp, depending only on p variables such that fp (X ) would be
the prediction of Y when Z is not available.

• For instance, the natural reduced version of
f (X ,Z ) = 𝛽0 + XT 𝛽x + Z 𝛽z could be fp (X ) = 𝛽′0 + XT 𝛽′x ,
for some 𝛽′0 and 𝛽′x , possibly different from 𝛽0 and 𝛽x , respectively.

• In this case, the usual relevance measure of Z is

R (fp (X ),Y ) − R (f (X ,Z ),Y )

the reduction in the risk function when using Z .

• An alternative measure: E(L(f (X ,Z ), fp (X ))).
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Leave-one-covariate-out, LOCO

The case of quadratic loss

• Under quadratic loss, the first measure of relevance is

R (fp (X ),Y ) −R (f (X ,Z ),Y ) = E((Y − fp (X ))2) −E((Y − f (X ,Z ))2),

while the second equals

E(L(f (X ,Z ), fp (X ))) = E((f (X ,Z ) − fp (X ))2).

• Both measures coincide under quadratic loss, when (Y − f (X ,Z ))
has zero mean and it is independent of (X ,Z ):
R (fp (X ) ,Y ) = E( (Y − fp (X ) )2 ) = E({ (Y − f (X , Z ) ) + (f (X , Z ) − fp (X ) ) }2 ) =

E( (Y −f (X , Z ) )2 )+E( (f (X , Z )−fp (X ) )2 )+2E(Y −f (X , Z ) )E(f (X , Z )−fp (X ) ) =
R (f (X , Z ) ,Y ) + E(L(f (X , Z ) , fp (X ) ) ) + 0 ⇒

R (fp (X ) ,Y ) − R (f (X , Z ) ,Y ) = E(L(f (X , Z ) , fp (X ) ) ) .

13/103 Pedro Delicado



Introduction Global measures of variable relevance Local measures IML in R and Python References

Leave-one-covariate-out, LOCO

LOCO, additivity, linearity and quadratic loss

• Additive model: Y = 𝛽0 + s1 (X ) + s2 (Z ) + Y

f (X ,Z ) = E(Y |X ,Z ) = 𝛽0 + s1 (X ) + s2 (Z )

fp (X ) = E(Y |X ) = 𝛽0 + s1 (X ) + E(s2 (Z ) |X ) = 𝛽0 + s ′1 (X )

• Relevance of Z by LOCO:

E(L(f (X ,Z ), fp (X ))) = E((s2 (Z ) − E(s2 (Z ) |X ))2) = E(Var(s2 (Z ) |X ))

• Under additional linearity: Y = 𝛽0 + XT 𝛽X + Z 𝛽Z + Y

• Relevance of Z by LOCO:

E(Var(Z 𝛽Z |X )) = 𝛽2ZE(Var(Z |X ))
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Random permutations

Variable importance by random permutations
In the context of random forests, Breiman (2001) proposed an alternative
to LOCO: randomly permute the values of Z in the test sample (oob):

1 Fit the model with the training sample using all the original
explanatory variables, X and Z .

2 Evaluate the accuracy of the estimated model in the test sample
using the observed values of X and Z .

3 Replace the values of Z in the test sample by a random
permutation: Z ′.

4 Evaluate the accuracy of the estimated model in the test sample
using the observed values of X and the permuted values Z ′.

5 Relevance of Z by random permutation: The relative decrease in
prediction accuracy in the test sample when Z is replaced by Z ′.

• Steps 3 and 4 can be repeated S times, and then the S accuracy
measures are averaged in Step 5.

• The model is estimated only once.
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Random permutations

Random permutations, at a population level

• The population counterpart of taking random permutations of values
of Z in the test sample, is to replace the random variable Z by an
independent copy of it, Z ′, with the same marginal distribution as Z
but independent from (X ,Y ).

• This approach does not require the reduced version fp of f .

• In this way the relevance measure for Z will be

E(L(f (X ,Z ), f (X ,Z ′))).
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Random permutations

Random permutations, additivity, linearity and quadratic
loss

• Consider the case of f being additive in X and Z :
f (X ,Z ) = 𝛽0 + s1 (X ) + s2 (Z ), with E(s2 (Z )) = 0.

• Under quadratic loss, E(L(f (X ,Z ), f (X ,Z ′))) =

E
(
{(𝛽0 + s1 (X ) + s2 (Z )) − (𝛽0 + s1 (X ) + s2 (Z ′))}2

)
= 2Var(s2 (Z )).

• If additional linearity happens, s2 (Z ) = Z 𝛽z , then this relevance
measure of Z equals 2𝛽2zVar(Z ).
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Random permutations

Random permutations: Undesirable properties.

At a first glance these relevance measures (2Var(s2 (Z )) or 2𝛽2zVar(Z ))
seem to be suitable, but:

(1) The relevance of Z would be the same in two completely different
cases:

• X and Z are independent; Z encode exclusive information about Y .
• X and Z are strongly related; in such a case X could make up for

the absence of Z .

Clearly Z is more relevant in the first case than in the second one,
but neither 2Var(s2 (Z )) nor 2𝛽2zVar(Z ) can detect it.
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Random permutations

(2) The replacement of Z by an independent copy Z ′ implies a drastic
alteration of the prediction function f (X ,Z ).

• Consider again the simple case of the linear predictor
f (X ,Z ) = 𝛽0 + XT 𝛽x + Z 𝛽z .

• Replacing Z by Z ′ is equivalent to using the following reduced
version of f :

fp (X ) = 𝛽′0 + XT 𝛽x + a,

where 𝛽′0 = 𝛽0 + 𝛽zE(Z ) and a = 𝛽z (Z ′ − E(Z )), a zero mean random
variable independent from (X ,Y ) that does not contribute in any
way to the prediction of Y .

• A preferred alternative would be to use the reduced version of f
given just by 𝛽′0 +X

T 𝛽x , that is equivalent to replacing Z by E(Z ) in
f (X ,Z ):

fp (X ) = f (X ,E(Z )) = 𝛽0 + XT 𝛽x + E(Z )𝛽z = (𝛽0 + E(Z )𝛽z ) + XT 𝛽x .

(3) When X and Z are strongly related, there is a risk of extrapolation
when evaluating f (X ,Z ′), because the support of (X ,Z ) could be
much smaller than the support of (X ,Z ′), which is the Cartesian
product of the supports of X and Z .
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Relevance by ghost variables

Relevance by ghost variables
• We have seen that replacing Z by E(Z ) in f (X ,Z ) is more
appropriate than replacing it by an independent copy Z ′ (random
permutations).

• But even better is to replace Z by E(Z |X ): the best prediction of Z
as a function of X , according to quadratic loss.

• If there is dependence between X and Z , we expect |Z − E(Z |X ) | to
be lower than |Z − E(Z ) |, so f (X ,E(Z |X )) is expected to be closer
to f (X ,Z ) than f (X ,E(Z )).

• Therefore, when Z is not available, replacing it by E(Z |X ) allows X
to contribute a little bit more in the prediction of Y than replacing
Z by E(Z ).

• The larger is this extra contribution of X , the smaller is the
relevance of Z in the prediction of Y , measured by

E( L(f (X ,Z ), f (X ,E(Z |X ))) ).

• We call ghost variable of Z to any estimator of E(Z |X ).
22/103 Pedro Delicado



Introduction Global measures of variable relevance Local measures IML in R and Python References

Relevance by ghost variables

Relevance by ghost variables (Delicado and Peña 2019)

1 Fit the model with the training sample using all the original
explanatory variables, X and Z .

2 Evaluate the accuracy of the estimated model in the test sample
using the observed values of X and Z .

3 Define the ghost variable for Z as Ẑ = �E(Z |X ), where the last
estimation is done in the test sample.

4 Evaluate the accuracy of the estimated model in the test sample
using the observed values of X and the ghost variable Ẑ .

5 Relevance of Z by its ghost variable: the relative decrease in
prediction accuracy in the test sample when Z is replaced by Ẑ .

The ghost variables approach to measure the effect of variable Z
combines the advantages of LOCO and random permutations:

• The model is estimated only once.

• It gives similar results to LOCO, which are better than those of
random permutations when there are dependence among covariates.
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Relevance by ghost variables

Ghost variables, additivity, linearity and quadratic loss

• If f is additive in X and Z , under quadratic loss, the relevance of Z
by its ghost variable is

E( L(f (X ,Z ), f (X ,E(Z |X ))) ) = E((s2 (Z ) − s2 (E(Z |X )))2).

It does not coincide neither with LOCO nor random permutations.

• If, additionally, there is linearity, s2 (Z ) = Z 𝛽z , it is equal to

𝛽2zE((Z − E(Z |X ))2) = 𝛽2zE(Var(Z |X )),

which coincides with the LOCO relevance of Z in this case.

• Relevance by random permutation gives a different measure:
𝛽2zE(Var(Z |X )) coincides with 𝛽2zVar(Z ) when X and Z are
independent, but otherwise the former would be preferred to the
second as relevance measure of Z .
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Relevance by ghost variables

Variable relevance for a data set
• Consider the regression model Y = m(X ,Z ) + Y and quadratic loss.
• A training sample of n1 independent realizations of (X ,Z ,Y ),
S1 = {(x1.i , z1.i , y1.i ), i = 1, . . . , n1}, is used to estimate m(x , z) as
m̂(x , z) by a statistical or algorithmic procedure.

• A test sample S2 = {(x2.i , z2.i , y2.i ), i = 1, . . . , n2} is available.
• Relevance by LOCO:

RelLOCO (Z ) =
1

n2

n2∑︁
i=1

(m̂(x2.i , z2.i ) − m̂p (x2.i ))2.

• Relevance by a random permutation:

RelRP (Z ) =
1

n2

n2∑︁
i=1

(m̂(x2.i , z2.i ) − m̂(x2.i , z ′2.i ))
2.

• Relevance by a ghost variable:

RelGh (Z ) =
1

n2

n2∑︁
i=1

(m̂(x2.i , z2.i ) − m̂(x2.i , Ê(Z |X = x2.i )))2.
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Relevance by ghost variables

Relevance measures in multiple linear regression
• If the relevance by LOCO is evaluated in the training sample, then

RelTrainLOCO (Z ) = 𝛽2z �̂�
2
[z ]n1 ⇒

n1
�̂�2

RelTrainLOCO (Z ) =
𝛽2z

�̂�2/(n1�̂�2
[z ]n1 )

= Fz = (t𝛽z )2.

• If the relevance by LOCO is evaluated in the test sample, then

RelLOCO (Z ) = 𝛽2z �̂�
2
[z ]n1 ,n2 ⇒

n1
�̂�2

RelLOCO (Z ) = Fz
�̂�2
[z ]n1 ,n2
�̂�2
[z ]n1

≈ Fz .

• Relevance by a random permutation,

RelRP (Z ) ≈ 2𝛽2z V̂ar(Z ).
• Relevance by a ghost variable,

RelTrainLOCO (Z ) = 𝛽2z �̂�
2
[z ]n2 ⇒

n1
�̂�2

RelGh (Z ) = Fz
�̂�2
[z ]n2

�̂�2
[z ]n1

≈ Fz .

(�̂�2
[z ]n1 , �̂�

2
[z ]n1 ,n2 and �̂�2

[z ]n2 are consistent estimators of Var(Yz ) in Z = XT 𝛼 + Yz )
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Relevance by ghost variables

Summary: LOCO, random permutations, and ghost variables

• It is desirable that any variable relevance method would measure
meaningful quantities when it is applied to simple models.

• We have seen that in the multiple linear regression model:
• LOCO and ghost variables give approximately the same results.
• The relevance of a variable Z , measured by LOCO or by its ghost

variable, is proportional to the classical F statistic used for testing
H0 : 𝛽Z = 0 against H0 : 𝛽Z ≠ 0.

• The relevance of Z measured by random permutations does not
reproduce any standard test statistic for the significance of 𝛽Z .

• We conclude that measuring variable relevance by ghost variables
combines the advantages of the other two methods:

• The predictive model has to be fitted only once.
• In linear regression, it reproduces the significance F statistics.

• When we measure variable relevance by ghost variables in any
predictive model, we are in some way extending the concept of
variable significance to that model.
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Other relevance measures based on perturbations

Other relevance measures based on perturbations

• Random permutations and ghost variables methods for computing
relevance of an explanatory variable Z follow a general scheme:

To replace the values of Z in the test set by “perturbed” values of
them, which are independent of the response variable Y , given the
other explanatory variables X .

• Other possibilities of “perturbation” of Z have been considered
recently in the literature.
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Other relevance measures based on perturbations

Conditional distributions and knockoffs

• Hooker, Mentch, and Zhou (2021) propose to replace zi by a
random value coming from the conditional distribution of
(Z | X = xi ), which is usually known for simulated data.

• This replacement can be done just once, or it can be repeated
several times and then record the average results.

• For realistic settings, where the conditional distribution is unknown,
Hooker, Mentch, and Zhou (2021) propose to use the Model-X
(MX) knockoff framework proposed by Candès et al. (2018) to
generate values of Z .

• In particular, they sample second-order multivariate Gaussian
knockoff variables as implemented in the R package knockoff
(Patterson and Sesia 2022).

30/103 Pedro Delicado



Introduction Global measures of variable relevance Local measures IML in R and Python References

Other relevance measures based on perturbations

Estimated conditional distribution
• In a related (but different) context, feature selection in complex
predictive models, Tansey et al. (2022) also deal with the problem
of working with an unknown conditional distribution (Z | X = x),
when they describe the general Holdout Randomized Test (HRT).

• Tansey et al. (2022) model the conditional distribution of
(Z | X = x) as a mixture of univariate Gaussian distributions.

• They fix the number of components in the mixture at 5.

• Then there are 5 + 5 + (5 − 1) = 14 conditional parameters to be
estimated as functions of the p values of x .

• Tansey et al. (2022) propose to estimate the conditional distribution
of (Z | X = x) following the proposal of Bishop (1994) on mixture
density networks.

• This method uses a neural network with 14 neurons in the output
layer (one for each parameter), instead of having just one output
neuron as it happens when the goal is to estimate simply the
conditional expectation E (Z | X = x).
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Other relevance measures based on perturbations

• It is worth to say that the estimation of the conditional distribution
models is a complicated task requiring a considerable computing
effort.

• On the contrary, ghost variables requires only to estimate the
conditional expectation using the regression model preferred by the
user.

• For instance, linear or additive models (or their generalized versions,
if the nature of Xj requires it) can be used.

• If there are many variables, it may be better to use lasso type
estimation.
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Other relevance measures based on perturbations

Example 1. A model with 10 explanatory variables

• We follow an example from Hooker, Mentch, and Zhou (2021).

• A multiple linear regression model with 10 explanatory variables
uniformly distributed on [0, 1], all independent except perhaps the
first two of them, which could be possibly correlated through a
Gaussian copula with 𝜌 = 0 or 𝜌 = 0.9.

• Data are generated from the model

Y = x1 + x2 + x3 + x4 + x5 + 0x6 + 0.5x7 + 0.8x8 + 1.2x9 + 1.5x10 + Y,

where Y ∼ N (0, 0.12). We have repeated 50 times the generation of
a training set of size 2000, plus a test set of size 1000.
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Other relevance measures based on perturbations

Computation times (in seconds) of different relevance measures applied
to several regression models.

Coded in Python Relevance measures
estimated

Models loco ghost variables conditional distribution

Linear model (OLS) 0.23 0.34 5102.78
Random forest 1341.62 29.83 12771.48

Coded in R ghost true conditional random
Lm, RF, NN loco variables distribution permutations knockoffs

Time (in seconds) 4267.84 49.78 42.93 43.07 46.76
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Other relevance measures based on perturbations
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Relative rankings of the explanatory variables according to different
relevance measures applied to two regression models. Implementation
done in Python.
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Other relevance measures based on perturbations
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Linear model fitted by OLS. ρ = 0.9
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Neural Network. ρ = 0.9

Relative rankings of the explanatory variables according to different relevance

measures applied to three regression models. Implementation done in R.
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The main conclusions are the following:

• The random permutation method is giving bad results when there
are some inter-dependent features, as expected from our arguments
as well as those given by Hooker et al. (2021).

• Ghost variables and knockoffs perform similarly to using random
data from the true conditional distributions, with the advantage that
the former are feasible in a real setting while the latter is not.

• Ghost variables and knockoffs perform similar to loco (except
perhaps when fitting neural networks), with the advantage that the
former are much faster that the latter.
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Knockoffs versus ghost variables
• Using ghost variables or using knockoffs to compute relevance of
features are comparable strategies regarding:

• the quality of the resulting relevance measures,
• the computational efficiency.

• Both are preferred to other alternatives considered in our simulation
study.

• When using ghost variables the practitioner has to propose
regression models of each explanatory variable over the others, and
then fit these models.

• This is a routine process which is easily implemented in any standard
platform (R or Python, for instance), even if the linearity assumption
is not fulfilled by our data.

• On the other hand, generating knockoffs variables is difficult even in
the most standard settings.

• Moreover, when the data are far from well mimicked with Model-X
Gaussian knockoffs there is no easy way to generate knockoffs.

• Simplicity and flexibility of the ghost variable procedure are a clear
advantage with respect to using knockoffs.
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Nonlinear relation between explanatory variables

• We modify the previous multiple linear regression model introducing
a nonlinear dependence between the first two explanatory variables
(X1,X2).

• First we generate data (\,R) uniformly in the set
{[0, 𝜋/2] ∪ [𝜋, 3𝜋/2]} × [0.9, 1].

• Then we define

X1 = (R cos(\) + 1)/2, X2 = (R sin(\) + 1)/2.

• This way X1 and X2 are both in [0, 1] and they present a non-linear
dependence pattern.
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Neural Network, non−linear (x1,x2)

Relative rankings of the explanatory variables according to different
relevance measures applied three regression models. A nonlinear
dependence pattern has been simulated between the first two explanatory
variables.
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Example 2. A large model with 100 features
• We simulate now data following a linear model with 100 explanatory
Gaussian variables, grouped into three subsets with 5, 45 and 50
variables each, respectively.

• The 5 variables in the first group are independent standard normal.
• In the second group, the 45 variables are marginally standard normal
but they are correlated to each other with correlation coefficient
𝜌2 = 0.95.

• The 50 variables in the third group are independent normal with
zero mean and standard deviation 𝜎3 = 2.

• Variables in different groups are independent from each other.
• For each observed set of explanatory variables, x1, . . . , x100, the
response variable Y is generated from the linear model

Y =

100∑︁
j=1

𝛽jxj + Y,

where Y follows a N (0, 1) and 𝛽j = 𝛾1 = 0.5, for j = 1, . . . , 5,
𝛽j = 𝛾2 = 1, for j = 6, . . . , 50, and 𝛽j = 𝛾3 = 0.1, for j = 51, . . . , 100.
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Relevance of the explanatory variables in the linear model with 100
features of Example 2, estimated by OLS.
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Linear model estimated by lasso

• Measuring relevance based on ghost variables gives results at least
as good as those of loco, with a much lower computational cost.

• Knockoffs is faster than ghost variables in this example, but gives
unsatisfactory relevance results.

• The same applies to using random permutations.
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The relevance matrix

1 Introduction to model-agnostic interpretability methods

2 Global measures of variable relevance
Leave-one-covariate-out, LOCO
Variable importance by random permutations
Relevance by ghost variables
Other relevance measures based on perturbations
The relevance matrix
Variable relevance measures as Shapley’s values
Global graphical methods.

3 Local measures
LIME
Explaining individual predictions from Shapley values
Local graphical methods

4 IML in R and Python
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The relevance matrix

The relevance matrix

• We jointly measure the relevance of all the explanatory variables.

• Given the random vector (X ,Y ), X = (X1, . . . ,Xp) ∈ Rp, Y ∈ R, the
prediction of Y from the p components of X through the estimation
of the regression function m(x) = E(Y |X = x) is considered.

• A training sample (X1, y1) ∈ Rn1×(p+1) has been used to build an
estimator m̂(x) of m(x).

• An additional test sample (X2, y2) ∈ Rn2×(p+1) is available.

• X2. �̂� = (x2.1, . . . , x2.j−1, x̂2.j , x2.j+1, . . . , x2.p), j = 1, . . . , p.

• ŷ2 = m̂(X2), ŷ2. �̂� = m̂(X2. �̂�).
• Case-variable relevance matrix: A = (ŷ2 − ŷ2.1̂, . . . , ŷ2 − ŷ2.p̂).
• Variable relevance matrix: V = 1

n2
ATA.

• In the diagonal of V: vjj = RelGh (Xj ), j = 1, . . . , p.

• Similarly for random permutations: Ṽ.
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Comparing relevance matrices in linear regression

Let S2, R and P be, respectively, estimations of the covariance matrix,
the correlation matrix, and the partial correlation matrix of X computed
in the test sample.

• Ghost variables:

V = −diag(𝛽) diag(�̂�[1] , . . . , �̂�[p ]) P diag(�̂�[1] , . . . , �̂�[p ]) diag(𝛽) =

n2 − 1

n2
diag(𝛽) diag(�̂�2

[1] , . . . , �̂�
2
[p ]) S

−1
2 diag(�̂�2

[1] , . . . , �̂�
2
[p ]) diag(𝛽).

• Random permutations:

Ṽ ≈ 2 diag(𝛽) diag(S1, . . . , Sp) R diag(S1, . . . , Sp) diag(𝛽) =

2 diag(𝛽) S2 diag(𝛽).
• In linear regression V and Ṽ codify complementary information.
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Relevance matrix in action: One case from Example 1
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Ghost variables relevance matrix analysis in one data set generated
according to Example 1.47/103 Pedro Delicado
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One case from Example 1
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Ghost variables relevance matrix analysis in one data set generated
according to Example 2
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A real data example: Rent housing prices

• Data on rental housing in Spain, downloaded from Idealista.com on
February 27th, 2018, by Alejandro German (Alex seralexger).

• Data available at
https://github.com/seralexger/idealista-data

• Original data set: 67201 rows (advertisements) and 19 attributes.
All cities in Spain.

• We have selected Madrid and Barcelona: 16480 rows.

• Training set 70%, test set 30%.

• Response variable: logarithm of the rental price.

• We work with 16 explanatory variables (some of them calculated
from the original data).
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## [1] "price" "Barcelona"

## [3] "categ.distr" "type.chalet"

## [5] "type.duplex" "type.penthouse"

## [7] "type.studio" "floor"

## [9] "hasLift" "floorLift"

## [11] "size" "exterior"

## [13] "rooms" "bathrooms"

## [15] "hasParkingSpace" "isParkingSpaceIncludedInPrice"

## [17] "log_Days_since_first_activation"
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## lm(formula = log(price) ~ ., data = rhBM.price[Itr, ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.72437 -0.17604 -0.02316 0.15692 1.45330
##
## Coefficients: Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8169658 0.0344596 110.766 < 2e-16 ***
## Barcelona 0.1126307 0.0052554 21.431 < 2e-16 ***
## categ.distr 0.1169468 0.0033806 34.593 < 2e-16 ***
## type.chalet -0.0846942 0.0203106 -4.170 3.07e-05 ***
## type.duplex -0.0177992 0.0151519 -1.175 0.24013
## type.penthouse 0.0428160 0.0101282 4.227 2.38e-05 ***
## type.studio -0.0762350 0.0139991 -5.446 5.27e-08 ***
## floor 0.0128181 0.0009696 13.220 < 2e-16 ***
## hasLift 0.0480363 0.0118432 4.056 5.02e-05 ***
## floorLift -0.0013898 0.0044109 -0.315 0.75270
## log.size 0.6186668 0.0090654 68.245 < 2e-16 ***
## exterior -0.0372539 0.0068935 -5.404 6.64e-08 ***
## rooms -0.0501949 0.0034204 -14.675 < 2e-16 ***
## bathrooms 0.1431973 0.0047167 30.359 < 2e-16 ***
## hasParkingSpace -0.0074934 0.0129971 -0.577 0.56426
## isParkingSpaceIncludedInPrice -0.0408757 0.0138863 -2.944 0.00325 **
## log_Days_since_first_activation 0.0418803 0.0018552 22.574 < 2e-16 ***
## ---
##
## Residual standard error: 0.2647 on 11519 degrees of freedom
## Multiple R-squared: 0.7602, Adjusted R-squared: 0.7599
## F-statistic: 2282 on 16 and 11519 DF, p-value: < 2.2e-16
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Neutral network fit

• Tuning parameters size and decay are chosen using caret.

• size in c(10,15,20), decay in c(0,.1,.3,.5).

# > nnet.logprice
#
# a 16-10-1 network with 181 weights
#
# inputs: Barcelona categ.distr type.chalet type.duplex type.penthouse type.studio
# floor hasLift floorLift log.size exterior rooms bathrooms hasParkingSpace
# isParkingSpaceIncludedInPrice log_Days_since_first_activation
#
# output(s): .outcome
# options were - linear output units decay=0.5

# > 1-mean(nnet.logprice$residuals^2)
# [1] 0.8009131
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Rent housing prices: Relevance by ghost variables for a neural network.
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Variable relevance measures as Shapley’s values
• Consider a linear regression model with response y and explanatory
variables x1, . . . , xp, estimated by OLS from the sample
{(xi = (xi1, . . . , xip), yi ) : i = 1, . . . , n}.

• Let ȳ = (1/n)∑n
i=1 yi and let ŷi be the i-th fitted value.

• A quality measure of the model is the coefficient of determination

R2 = 1 −
∑n

i=1 (yi − ŷi )2∑n
i=1 (yi − ȳ )2 .

• Moreover, R2 is equal to the squared sampling correlation coefficient
between the observed responses yi and the fitted values ŷi .

• When the p explanatory variables are uncorrelated,

R2 =

p∑︁
j=1

R2
j ,

where R2
j is the coefficient of determination in the simple linear

regression of y against the j-th explanatory variable xj .
• Therefore, R2

j is the contribution of xj to the global quality measure

R2, and it is a good measure of the relevance of xj in the model.
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• The previous decomposition of R2 is not longer true when the
explanatory variables are correlated.

• Lipovetsky and Conklin (2001) propose an alternative decomposition
of R2, based on Shapley value1 (Shapley 1953), a useful tool coming
from the cooperative games field.

• A cooperative game with p players, P = {1, . . . , p}, is characterized
by a payoff function v : 2P → R such that for any coalition of
players S ⊆ P the total payoff the members of S can obtain is v (S).

• It is assumed that v (∅) = 0.

• When all the players collaborate, the total payoff is v (P).
• The relevant question in cooperative games theory is to find a fair
distribution of v (P) among the p players, 𝜙i (v ), i = 1, . . . , p, or
rephrased differently, to determine the importance of each player to
the overall cooperation.

1He won the Nobel Prize in Economic Sciences for this contribution in 2012.
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Shapley Value Axiomatic Definition: Four desirable properties
• Efficiency. The global payoff is distributed among the players. That is, the sum

of the individual payoffs of all players equals the value of the grand coalition, so
that all the gain is distributed among the players:∑︁

i∈P
𝜙i (v ) = v (P ) .

• Symmetry. If i and j are two players who are equivalent in the sense that

v (S ∪ {i }) = v (S ∪ {j })
for every subset S of P which contains neither i nor j , then 𝜙i (v ) = 𝜙j (v ). This
property is also called “equal treatment of equals”.

• Linearity. If two coalition games described by payoff functions v and w are
combined, then the distributed gains should correspond to the gains derived
from v and the gains derived from w :

𝜙i (v + w ) = 𝜙i (v ) + 𝜙i (w )
for every i in P. Also, for any real number a,

𝜙i (av ) = a𝜙i (v )
for every i in P.

• Null player. The payoff 𝜙i (v ) of a null player i in a game v is zero. A player i is
“null” in v if v (S ∪ {i }) = v (S ) for all coalitions S that do not contain i .
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• Theorem: The only distribution satisfying these four desirable
properties (axioms) is the Shapley value of the game defined as
follows for the j-th player:

𝜙j (v ) =
∑︁

S⊆P\{j }

|S |!(p − |S | − 1)!
p!

(v (S ∪ {j}) − v (S)) .

• The quantity (v (S ∪ {j}) − v (S)) is the marginal contribution of
player j to the coalition S , and its Shapley value 𝜙j (v ) is the
average of these marginal contributions over the possible different
permutations of the set P (S being formed by the elements
preceding j at each permutation).

• In fact, an alternative expression for the Shapley value (see, e.g.,
Cohen, Dror, and Ruppin 2007) is

𝜙j (v ) =
1

p!

∑︁
𝜋∈Π (P )

(
v (Sj (𝜋) ∪ {j}) − v (Sj (𝜋))

)
,

where Π(P) is the set of permutations over P, and Sj (𝜋) is the set
of players preceding j in permutation 𝜋.
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• Lipovetsky and Conklin (2001) propose to consider the cooperative
game at which the p players are the explanatory variables.

• For a subset S of the p predictors, the characteristic function v (S) is
the coefficient of determination R2

S in the regression of y against the
variables belonging to S .

• Therefore, the Shapley value of this game is a fair distribution of the
total R2 among the p predictors: R2 =

∑
j∈P 𝜙j (v ), and 𝜙j (v )

measures the importance of the j-th regressor in the model.

• Given that the exact computation of Shapley values is quite time
intensive, Lipovetsky and Conklin (2001) suggest to average over a
moderate number of random permutation of the explanatory
variables.

• This average estimation is founded in the second alternative
expression for 𝜙j (v ) given above, that for linear regression models
was previously proposed by Lindeman, Merenda, and Gold (1980)
(see also Grömping 2009) with arguments not based on cooperative
games.
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• Cohen, Dror, and Ruppin (2007) propose to use the Shapley value as
global measure of variable relevance in classification problems using
any prediction model (or algorithm).

• They propose to use the accuracy in a test set as the characteristic
function v (S).

• Note that the calculation of the Shapley value requires fitting the
prediction model as many times as different subsets v (Sj (𝜋)) and
v (Sj (𝜋) ∪ {j}) are found.

• This task can be prohibitive (even if sampling over permutations is
done) for prediction models with moderate or large fitting cost.
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Variable relevance measures as Shapley’s values

Practice:
Washington D.C. Bike Sharing Dataset

Follow the points
2. Shapley Values
3. Relevance by Ghost Variables
in the R-markdown file
eBISS IML bike sharing data.Rmd.
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Global graphical methods.

Global graphical methods.

• The general problem of graphically representing a function f
depending on p variables, x = (x1, . . . , xp) ∈ Rp, is not an easy one.

• We present here several approaches that take into account that the
function f to be represented is a prediction function estimated from
a training set with data assumed to come from a p-dimensional
random variable X .

• Availability of an additional test set is also assumed.

• We refer to either the training or the test set as {xi : i = 1, . . . , n}.
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Partial Dependence Plot
• The Partial Dependence Plot (PDP), introduced by Friedman
(2001) in the context of boosting, is useful for any prediction model.

• The PDP corresponding to the j-th variable aims to represent the
j-th partial dependence profile function, defined as

fj (z) = E(f (X(−j ) , z)) for all z ∈ [xmin,j , xmax,j ],

where the notation (X(−j ) , z) refers to the p dimensional random
vector having all the coordinates as X except the j-th, that is
constant and equals to z .

• [xmin,j , xmax,j ] denotes the support of the j-th marginal of X .
• The natural estimator of fj (z) is

f̂j (z) = (1/n)
n∑︁
i=1

f (xi (−j ) , z).

• Therefore the j-th PDP is the graphical representation of the f̂j .
• For any additive model f (x) = 𝛼0 +

∑
j gj (xj ), the j-th PDP is the

graph of gj (z) + Cj , for some constant Cj .
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Local-dependence plots, or marginal plots

• When explanatory variables are not independent, much more
interesting than PDPs would be the plots representing the
conditional expectation functions

hj (z) = E(f (X ) |Xj = z)

because the relevant distribution of X(−j ) when Xj = z is not the
marginal distribution of X(−j ) but the conditional distribution
(X(−j ) |Xj = z).

• The functions hj (z) can be estimated using any non-parametric
regression tool to smooth the scatter plot

(xij , f (xi (−j ) , xij )) = (xij , f (xi )), i = 1, . . . , n.

• The graphical representation of the estimated functions hj (z) are
known as local-dependence plots (Section 18.3.1 in Biecek and
Burzykowski 2021) and as marginal plots (Apley and Zhu 2020).
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• Nevertheless, local-dependence plot are not fully satisfactory when
there are interactions between explanatory variables in the definition
of f , because a problem of omitted variables can appear, as pointed
out by Apley and Zhu (2020).

• Consider, for instance, the function f (x1, x2) = x2 − 0.1x1x2 and
(X1,X2) uniformly distributed in the set

U = {|x1 − x2 | ≤ 0.1} ∩ ([0, 1] × [0, 1]) .

• The local dependence function corresponding to the first explanatory
variable is, for z ∈ [0, 1, 0.9], h1 (z) = z − 0.1z2, with
h′1 (z) = 1 − 0.2z > 0 even if f (x1, x2) is decreasing in x1 for any
(x1, x2) ∈ U.

• Apley and Zhu (2020) overcome this difficulty by introducing the
accumulated local effects (ALE) plots.
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Accumulated local effects (ALE) plot
• The ALE plot definition for p = 2 explanatory variables is as follows
(see Apley and Zhu 2020 for the general definition).

• The local effect of x1 on f at (x1, x2) is computed as the partial
derivative f 1 (x1, x2) = 𝜕f (x1, x2)/𝜕x1.

• Therefore,

E
(
f 1 (X1,X2) |X1 = x1

)
= E

(
f 1 (x1,X2) |X1 = x1

)
is the conditional expected local effect of x1 on f .

• Then the accumulated local effect of the first argument of f until
the value x1 is defined as

f1,ALE (x1) =
∫ x1

xmin,1

E
(
f 1 (X1,X2) |X1 = z

)
dz ,

where xmin,1 is the lower bound of the support of X1.

• The ALE plot is the graphical representation of (x1, f1,ALE (x1)) for
x1 ∈ [xmin,1, xmax,1].
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• For a linear function f (x1, x2) = 𝛽0 + 𝛽1x1 + 𝛽2x2, the conditional
expected local effect of x1 at f is always equal to 𝛽1, and the ALE
plot is the graph of the straight line (x1, 𝛽1x1 +C ) for C = −𝛽1xmin,1.

• For an additive model f (x1, x2) = 𝛼0 + g1 (x1) + g2 (x2), the
conditional expected local effect of x1 at f is equal to g ′

1 (x1), and
the ALE plot is (x1, g (x1) + C ) for C = −g1 (xmin,1).

• For the previous example of f (x1, x2) = x2 − 0.1x1x2, f1,ALE (x1) is
approximately equal to −0.05x21 , correctly reflecting the negative
dependence of f with respect to x1.
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• Apley and Zhu (2020) show that the computation cost of ALE plots
is lower than that of PDPs.

• Several examples of use of partial-dependence plots,
local-dependence plots, and accumulated local effects plots can be
found in Chapter 18 of Biecek and Burzykowski (2021).

• These authors point out that the three methods could provide
different results when dependence between explanatory variables,
and/or interaction effects are present.

• When this is the case, they recommend to explore these causes and
take them into account.
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Global graphical methods.

Practice:
Washington D.C. Bike Sharing Dataset

Follow the point
4. Global Importance Measures and Plots using the
library DALEX
in the R-markdown file
eBISS IML bike sharing data.Rmd.
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Local measures

• This section is devoted to model-agnostic methods that provide
explanations for a single prediction f (x) of a non-transparent model
f .

• Most of the local explanation methods have a common structure: a
simple interpretable method g is fitted locally around x in such a
way that g (x ′) ≈ f (x ′) when x ′ is in a neighborhood of x .

• Then it is expected that the available interpretation of g remains
valid for f around x .

• This general approach (called explanation by simplification by
Barredo-Arrieta et al. 2020) has certain similarities to local
polynomial fitting in non-parametric regression (see, e.g., Fan and
Gijbels 1996).
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LIME

Local Interpretable Model-agnostic Explanations (LIME)

• Among the methods of explanation by simplification, Local
Interpretable Model-agnostic Explanations (LIME, Ribeiro, Singh,
and Guestrin 2016) is probably the most popular one.

• In LIME, d << p easily recognizable properties of x are selected
(e.g., if x is a car image, a property can be the presence of a wheel
in the image; if x is a text, a property could be the presence of a
certain key word), and their influence in the prediction f (x) is
explored.

• The simple interpretable model g is assumed to take values in
d-dimensional space, and only z ∈ {0, 1}d are allowed as arguments
of g .

• Let G be the class of models to which g belongs to (for instance, G
can be the class of linear models with d explanatory variables).
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• Additionally, a one-to-one application hx is established between the
elements in {0, 1}d and 2d neighbors x ′ ∈ Rp of x .

• For r = 1, . . . , d , zr = 1 means that hx (z) shares the r -th selected
property with x . It is assumed that hx (1d ) = x , where 1d is the
vector of ones in Rd .

• The definition of hx is specific for each problem at hand.

• For instance, when x is a text and the selected properties are the
presence of d chosen key words contained in x , hx (z) returns the
text x without the key words for which zr = 0.

• If x is a car image, and the r -th property is the presence of a
super-pixel contained in x showing a wheel, for a z with zr = 0 the
function hx (z) will return the same image x with the wheel
super-pixel replaced by gray colored pixels.
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LIME

• A sufficiently large number N ≤ 2d of random points z ∈ {0, 1}d are
chosen, and the pairs (zk , f (hx (zk ))), k = 1 . . . ,N, are annotated.

• The explanation produced by LIME to the prediction f (x) is

gx = argmin
g ∈G

{
N∑︁
k=1

L(g (zk ), f (hx (zk )))𝜋x (hx (zk )) +Ω(g )
}
,

where L(y , y ′) is a loss function measuring how different the real
numbers y and y ′ are, 𝜋x (x ′) is a proximity measure between x and
x ′ (as the kernel function used in non-parametric regression), and Ω

is a measure of complexity of the models belonging to G.

• Not every g ∈ G may be equally interpretable.

• For instance, for linear models Ω(g ) can be a L1 penalty term in
order to favor sparse solutions, as in LASSO estimation (Tibshirani
1996).
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• In practical examples, Ribeiro, Singh, and Guestrin (2016) apply
LIME with

• quadratic loss L(y , y ′) = (y − y ′)2,
• a Gaussian Kernel as 𝜋x (x ′) (with the euclidean distance between x

and x ′, possibly replaced by a more suitable one at each particular
case),

• linear models as family G,
• LASSO estimation (or least squares after having selected K < d

variables by LASSO).

• Using these setting, the LIME explanation gx for f (x) consists on
the selection of K properties among the d that originally were of
interest, plus the corresponding estimated coefficients.
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• As it was introduced in Ribeiro, Singh, and Guestrin (2016), LIME is
more a general methodology than a specific method for local
explanation.

• Many details have to be tuned before LIME can be applied to a
specific problem.

• Some of them have been already mentioned:
• class of models,
• loss function,
• proximity function (if a kernel function is chosen, the bandwidth is

an additional tuning parameter),
• penalty term,
• number K of selected properties among the d available.

• There are other important aspects that must also be specified:
• how many properties d to choose and how they are chosen,
• how to fix the sample size N,
• how to define the one-to-one function hx .
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• In fact, Ribeiro, Singh, and Guestrin (2016) do not explicitly talk
about the function hx (they just say that they recover the sample in
the original space) that were formalized later in the unifying paper
by Lundberg and Lee (2017) when they reviewed LIME (we are
coming back to this paper soon).

• In a posterior paper (Ribeiro, Singh, and Guestrin 2018) the authors
of LIME focus on the binary classification problem and are much
more specific when defining anchors (if-then rules providing
high-precision local model-agnostic explanations), a tool that
outperform LIME in this context.

• See Section 5.7 in Molnar (2019) and Chapter 9 in Biecek and
Burzykowski (2021) for more details on LIME, and examples of
applications to image or text data.
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Explaining individual predictions from Shapley values
• Štrumbelj and Kononenko (2010) present a general method for
explaining individual predictions of classification models, based on
Shapley values.

• Their proposal extends easily to regression problems.
• Given an instance x , the goal is to explain how its feature values

(x1, . . . , xp) contribute to the prediction difference between f (x) and
the expected prediction if no feature values are known.

• Štrumbelj and Kononenko (2010) consider the framework of a
cooperative game at which the p players are the observable features.

• Assuming that the feature values are random observations of a
p-dimensional random variable X , the characteristic function
proposed by Štrumbelj and Kononenko (2010) is vx (∅) = 0 and, for
any nonempty subset S of P = {1, . . . , p},

vx (S) = E (f (X ) | XS = xS ) − E (f (X )) ,

where xS is the vector containing the coordinates of x with indices
in S (similarly for XS).
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• Using the same arguments and notation as in the global relevance
problem, the Shapley value of this game for feature j is

𝜙j (vx ) =
1

p!

∑︁
𝜋∈Π (P )

(
E
(
f (X ) | XSj (𝜋 )∪{j } = xSj (𝜋 )∪{j }

)
−

E
(
f (X ) | XSj (𝜋 ) = xSj (𝜋 )

))
,

and this is the way Štrumbelj and Kononenko (2010) define
theoretically the contribution of feature j to the prediction f (x).

• Observe that

f (x) = E (f (X )) +
p∑︁
j=1

𝜙j (vx )

because the sum of all the Shapley values is equal to
vx (P) = f (x) − E (f (X )).

• Therefore 𝜙j (vx ) is effectively measuring how the j-th feature of x is
contributing to move the prediction from the information-less
prediction E (f (X )) to the actual prediction f (x).
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• In order to give a feasible version of Shapley value, Štrumbelj and
Kononenko (2010) propose a sampling approach which:

• avoids the initial exponential computational time complexity,
• does not require to repeatedly retrain the classifier.

• To estimate E (f (X ) | XS = xS ), they assume that X is uniform over
the product space of the supports of the marginals X1, . . . ,Xp, say
A1, . . . ,Ap, that are assumed to be finite or bounded.

• Note that the multivariate uniformity assumption is equivalent to
assume that the p features are independent and uniform.
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• A simple random sample of size m in the product set
Π(P) × A1 × · · · × Ap is taken.

• Let {(𝜋h, uh = (uh1, . . . , uhp)) : h = 1, . . . ,m}, be a sample
realization.

• Then, the proposed estimation of 𝜙j (vx ) is

𝜙j (vx ) =
1

m

m∑︁
h=1

{
f
(
x , uh, Sj (𝜋h) ∪ {j}

)
− f

(
x , uh, Sj (𝜋h)

)}
,

where the notation f (x , u, S) means that the function f is evaluated
in a point with its r -th coordinate equal to xr if r ∈ S , and equal to
ur otherwise, for r = 1, . . . , p.

• Štrumbelj and Kononenko (2010) give a rule for choosing the sample
size m, once a precision and a significance level have been fixed.

86/103 Pedro Delicado



Introduction Global measures of variable relevance Local measures IML in R and Python References

Explaining individual predictions from Shapley values

SHAP: A unifying approach

• Lundberg and Lee (2017) propose a method for local explanations,
that they call SHAP (SHapley Additive exPlanations), unifying six
existing methods, among them

• LIME (Ribeiro, Singh, and Guestrin 2016),
• Shapley value based local explanations (Štrumbelj and Kononenko

2010).

• The SHAP framework has several common elements with LIME:
• a number d << p of properties of x are selected (here they are called

simplified input features) for which presence-absence is codified as a
vector z ∈ {0, 1}d ,

• a local one-to-one function hx is defined from {0, 1}d to the
neighborhood of x in Rd ,

• an explanation model g (z) is fitted, which in this case is linear:

g (z) = 𝜙0 +
d∑︁
r=1

𝜙r zr .
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Instead of estimating the parameters of g (z) using any linear regression
model estimator (as it is done in LIME), Lundberg and Lee (2017)
propose three desirable properties (Axioms) for this function:

• Local accuracy: The explanation model g matches the original
model f for z = 0d (the vectors of zeros in Rd ) and for z = 1d :

𝜙0 = g (0d ) = f (hx (0d )) and f (x) = f (hx (1d )) = g (1d ) = 𝜙0 +
d∑︁
r=1

𝜙r .

• Missingness: If the r -th simplified input feature is not present in x
(that is, the r -th coordinate of h−1x (x) is 0), then 𝜙r = 0.

• Consistency: For any z ∈ {0, 1}d let z \ r the vector z with the r -th
coordinate replaced by 0. Let f and f ′ be two prediction models. If

f ′ (hx (z)) − f ′ (hx (z \ r )) ≥ f (hx (z)) − f (hx (z \ r ))

for all inputs z ∈ {0, 1}d , then 𝜙r (f ′, x) ≥ 𝜙r (f , x).
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• Lundberg and Lee (2017) prove that the only explanation linear
model g verifying these three properties is the one with
𝜙0 = f (hx (0d )) and coefficients 𝜙r , r = 1, . . . , d , equal to the
Shapley values of the cooperative game with d players and
characteristic function vx (S) = f (hx (zS )) for any S ⊆ {1, . . . , d},
where zS is the vector in {0, 1}d having coordinates 1 for the indices
in S .

• The exact computation of the coefficients 𝜙r can be done using the
general expression for Shapley values given before or, more efficiently,
using the previously seen sampling estimation leading to 𝜙r .

• In any case, SHAP results from Lundberg and Lee (2017) coincide
with the results derived from the proposals of Štrumbelj and
Kononenko (2010).
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Kernel SHAP

• Lundberg and Lee (2017) also prove that the SHAP coefficients 𝜙r ,
r = 1, . . . , d , can be computed much more efficiently using the LIME
framework;

• with quadratic loss,
• with no penalty (Ω(g ) = 0 for any g ∈ G), and
• using what they call Shapley kernel as proximity function:

𝜋x (hx (z)) =
d − 1( d

|z |
)
|z | (d − |z |)

,

where |z | is the number of non-zero elements of z .

• The Shapley kernel gives infinite weight to z = 0d and to z = 1d ,
enforcing the local accuracy property to be fulfilled.

• With these choices, LIME reduces to a weighted least square
problem that can be solved efficiently.

• This way of computing SHAP is known as Kernel SHAP.
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Break-down plots

• Staniak and Biecek (2018) introduce the break-down plots, as a
simplification of Shapley value based proposals of Štrumbelj and
Kononenko (2010) and Lundberg and Lee (2017).

• They propose to decompose the difference f (x) − E(f (X )) as the
sum of p terms, each accounting for the contribution of one of the p
coordinates of x , but their proposal is much more straightforward:

f (x) = E(f (X )) +
p∑︁
j=1

E(f (x1, . . . , xj ,Xj+1, . . . ,Xp))−

E(f (x1, . . . , xj−1,Xj , . . . ,Xp))

(where the second term in the sum is just E(f (X )) for j = 1).
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• Then the break-down contribution of the j-th coordinate of x to the
value f (x) is defined as
𝜓j = E(f (x1, . . . , xj ,Xj+1, . . . ,Xp)) − E(f (x1, . . . , xj−1,Xj , . . . ,Xp))
and can be easily estimated as

𝜓j =
1

n

n∑︁
i=1

{
f (x1, . . . , xj , xi ,j+1, . . . , xip) − f (x1, . . . , xj−1, xi ,j , . . . , xip)

}
.

• Staniak and Biecek (2018) propose to represent the estimated
break-down contributions in a break-down plot, a horizontal bar-plot
(or waterfall plot) with indices j as ordinates and the values 𝜓j as
abscissas.
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Explaining individual predictions from Shapley values

• A clear downside of this proposal is that it depends on the order of
the explanatory variables when interactions between them are present
in the prediction function (that is, when f (x) is not additive).

• Staniak and Biecek (2018) propose to adopt a greedy strategy and
either a step-down or a step-up approach.

• An alternative is to average the 𝜓j values across all possible
orderings, leading to Shapley values as in Štrumbelj and Kononenko
(2010).

• A different proposal is given in Gosiewska and Biecek (2020), the
break-down plots for interactions, that are able to capture local
interactions between explanatory variables and to visualized them by
waterfall plots.
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Local graphical methods

Local graphical methods
• Goldstein et al. (2015) introduced the Individual Conditional
Expectation (ICE) plot as a refinement of the PDP: the ICE plot
shows the relationship between a specific explanatory variable and
the response at the individual level, while the PDP does so in an
aggregated way.

• Given the prediction function f (x), x ∈ Rp, the ICE plot
corresponding to the i-th observed case (xi , yi ) ∈ Rp+1 and the j-th

explanatory variables is the plot of the function f (i )
j

(z) = f (xi (−j ) , z)
for z ∈ [xmin,jxmax,j ].

• It is usual to mark the point of interest (xij , f (xi )) on the ICE plot.

• Observe that this ICE plot shows how the prediction for the i-th case
is changing when the value of the j-th predictor Xj is changing from
the observed value xij to any other possible value z of Xj , assuming
that other things xi (−j ) hold constant, or ceteris paribus in Latin.

• This is the reason why Biecek and Burzykowski (2021) call
ceteris-paribus profiles to ICE plots.
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Local graphical methods

• From the definitions of PDP and ICE plots, it follows that the
partial dependence profile function f̂j (z) represented by the PDP is
the average over all the n data of the individual conditional profiles

f (i )
j

(z) represented by the ICE plots.

• A useful graphical representation of the prediction function f (x)
consists of drawing in gray color the n ICE profiles f (i )

j
(z) at the

same plot, and then superimpose in black color their average, the
PDP.

• The ability of decomposing the global PDP into individual ICE
curves is a nice property that is not shared by the ALE plot: there
are not individual curves for the ALE plot, as pointed out by Molnar
(2019, Chapter 5).
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Local graphical methods

• Biecek and Burzykowski (2021) suggest to complement ICE plots
with additional exploratory plots.

• First, for a given ICE profile f (i )
j

(z) (or ceteris-paribus profile, using
their terminology) Biecek and Burzykowski (2021, Chapter 11)

define its oscillation as E( |f (i )
j

(Xj ) − f (x) |), and propose how to
estimate it.

• In case of a prediction function f with a large number of explanatory
variables p, Biecek and Burzykowski (2021) recommend to represent
only the ICE plots with the largest oscillation values.

• Additionally, Biecek and Burzykowski (2021, Chapter 12) propose
two local-diagnostic plots:

• The local-fidelity plot, comparing the distribution of neighboring
residuals with that of all the residuals,

• The local-stability plot, representing in a joint graph the ICE plot for
the case of interest xi and those corresponding to neighboring cases.
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Local graphical methods

Practice:
Washington D.C. Bike Sharing Dataset

Follow the point
5. Local explainers with library DALEX
in the R-markdown file
eBISS IML bike sharing data.Rmd.
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IML in R and Python
• Regarding model-specific methods, the R and Python libraries
implementing CART and random forests usually include functions
helping the interpretation of the fitted models.

• See, for instance, the R packages randomForest (Liaw and Wiener
2002) and randomForestSRC (Ishwaran and Kogalur 2021), and the
specific functions they include for computing variable importance.

• Also worth mentioning is the R package randomForestExplainer
(Paluszynska, Biecek, and Jiang 2020), devoted to explain which
variables are most important in a random forest.

• In neural networks, the standard implementations are usually less
worried about interpretation than in random forests.

• Therefore there are specific packages devoted to provided
interpretation to neural network models fitted elsewhere.

• Among them are the following: validann (Humphrey et al. 2017),
NeuralNetTools (Beck 2018), and NeuralSens (Portela González
et al. 2020).
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• With respect to model-agnostic methods, the books Molnar (2019)
and Biecek and Burzykowski (2021) are good guides for exploring
the different implementations in R and/or Python of the IML/XAI
methods we have revised so far.

• At the end of each chapter, both monographs include examples of
use for the corresponding methods, and links to R and Python
packages implementing them.

• Biecek and Burzykowski (2021) also include code fragments for R
and Python that show how to replicate the examples.

• Molnar (2019) uses mainly the R package iml (Molnar, Bischl, and
Casalicchio 2018), while Biecek and Burzykowski (2021) tend to use
the R package DALEX (Biecek 2018).
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• Alternatively, Maksymiuk, Gosiewska, and Biecek (2020) offer a
broad and updated outlook to the available packages in R to perform
IML/XAI, covering also the most popular libraries from Python.

• After having presented a taxonomy of methods for model
explanations (similar to that in Biecek and Burzykowski 2021),
Maksymiuk, Gosiewska, and Biecek (2020) identify and compare 27
packages available in R and six in Python.

• Some examples of application of several packages are included, and
a web page with examples of use for all the revised packages is
available (xai-tools.drwhy.ai).

• The authors compare the packages in several aspects: variety of
implemented methods, interoperability, and time of operation.

• From the variety of implemented methods point of view, DALEX, iml
and flashlight (Mayer 2021) stand out.
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Maksymiuk, Gosiewska, and Biecek (2020) also identify packages that
compute automatic standalone reports, as well as those that are able to
compare two or more prediction models fitted to the same data:

• DALEXtra (Maksymiuk and Biecek 2020),

• modelDown (Romaszko, Tatarynowicz, Urbanski, and Biecek 2019),

• modelStudio (Baniecki and Biecek 2019).
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Barredo-Arrieta, A., N. D́ıaz-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
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