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Course material

® https://pedrodelicado.moodlecloud.com/
® Username: estudent
® Password: eBISS2022
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Outline of the course

@ Introduction to interpretability in machine learning
® Interpretability methods for specific models

©® Model-agnostic interpretability methods

® Global methods
® | ocal methods
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c Introduction to model interpretability and variable relevance
Supervised learning

The regression problem

g IML /XAl concepts
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0 Introduction to model interpretability and variable relevance
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Introduction to model interpretability and variable
relevance

® In a stimulating and provocative paper, Breiman (2001)! shook the
statistical community by making it to be aware that traditional
Statistics was no longer the only way to learn from data:
® Data Modeling Culture (traditional Statistics):
® Linear regression, logistic regression, additive models, etc.
® They allow to interpret how the response variable is associated with
the input variables: Transparent models.
® Algorithmic Modeling Culture (Machine Learning, Data Science):
® Neural networks, support vector machines, random forest, etc.
® They have extremely good predictive accuracy, and they usually
outperform in this criterion statistical models.
® Low interpretability: Black boxes.

® An apparent dichotomy: predictive capacity versus interpretability.

® Breiman claimed for procedures allowing better interpretation of the
algorithmic models results, without giving up their predictive ability.

1Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science 16, 199-231.
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A real data example: Rent housing prices

® Data on rental housing in Spain, downloaded from Idealista.com on
February 27th, 2018, by Alejandro German (Alex seralexger).

® Data available at
https://github.com/seralexger/idealista-data

® Original data set: 67201 rows (advertisements) and 19 attributes.
All cities in Spain.

® We have selected Madrid and Barcelona: 16480 rows.
e Training set 70%, test set 30%.
® Response variable: logarithm of the rental price.

® We work with 16 explanatory variables (some of them calculated
from the original data).
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Neutral network fit

® Tuning parameters size and decay are chosen using caret.

® size in ¢(10,15,20), decay in c(0,.1,.3,.5).

# > nnet.logprice

#

# a 16-10-1 network with 181 weights

#

# inputs: Barcelona categ.distr type.chalet type.duplex type.penthouse type.studio
# floor hasLift floorLift log.size exterior rooms bathrooms hasParkingSpace
# isParkingSpaceIncludedInPrice log_Days_since_first_activation
#
# output(s): .outcome
#

options were - linear output units decay=0.5

# > 1-mean(nnet.logprice$residuals”2)
# [1] 0.8009131
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Interpretable Machine Learning (IML), eXplainable Artificial Intelligence (XAl)

® Machine learning community has been worried about interpretability:
if the users do not trust a model or a prediction, they will not use it
(Ribeiro, Singh, and Guestrin 2016)

® In 2018 the General Data Protection Regulation of the European
Union established the users’ right to explanation: when an
algorithmic decision significantly affects a user, he or she has the
right to ask for an explanation of such a decision.

® A powerful research line has been developed:
Interpretable Machine Learning, eXplainable Artificial Intelligence.

® A search query in the Web of Science (November 5th, 2021) with
the terms “explainable artificial intelligence”, “explainable machine
learning” or “interpretable machine learning” found a total of 5673
publications, 51% of them published in 2020 or later.

® |n Scopus, 7465 publications where found, 80% of which > 2020.

® Several review papers (Barredo-Arrieta et al. 2020 is one of the
most recent and extensive reviews).

® Three monographs:
Molnar (2019), Biecek and Burzykowski (2021) and Masis (2021).
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Supervised learning

c Introduction to model interpretability and variable relevance
Supervised learning
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Supervised learning

Supervised Learning (the prediction problem)

® Let (X,Y) be ar.v. with support X x ¥ C RP X R.
® General supervised learning or prediction problem:
® Training sample: S = {(x1,y1),--.,(Xn, ¥n)}, i.i.d. from (X, Y).
® The goal is to define a function (possibly depending on the sample)

hs : X — Y such that for a new independent observation
(Xn+1> Yn+1), from which we only know xp11, it happens that

Vn+1 = hs(Xp41) is close to ype1 (in some sense).
® Function hg is called generically prediction function (or classification

function or regression function, depending on the case).

® We say that we have a problem of binary classification (or discrimination) when
Y ={0,1} (you can also use Y = {-1,1}).

® The problem of classification in K classes arises when Y = {1, ..., K} (or

Y=lyc 0083, ne=1).

® When Y =R (or Y is an interval) we have a standard regression problem.

References
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Supervised learning

Loss function, risk, Bayes rule

® The (lack of) closeness between h(X) and Y is usually measured by
a loss function L(Y, h(X)).

® For instance, the squared error loss is L(Y, h(X)) = (Y — h(X))2.

® [(Y,h(X)) is a r.v., with expected value R(h) = E(L(Y, h(X))),
called risk or expected loss, that only depends on h.

® Decision problem: To find the prediction function h: X — Y that
minimizes the expected loss.

® The optimal prediction function is the Bayes rule

hg(x) = argmin E(L(Y, y)|X = x).
yey

14/35 Pedro Delicado



Introduction IML /XAl concepts References

Supervised learning

The regression problem

® Let (X,Y) be a (p+1)-dimensional random variable. We consider
the regression problem: To predict Y from known values of X.

® The most common and convenient loss function is the squared error
loss: L(Y,h(X)) = (Y = h(X))2.
® The expected loss is known as Prediction Mean Squared Error,
(PMSE):
PMSE(h) =E ((Y - h(X))?).

® The Bayes rule in this case is

he(x) = argminE ((¥ = y)?IX = x) = E(YIX = x).

also known as regression function of Y over x and denoted by m(x).
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Supervised learning

® Parametric regression models assume that m(x) is known except for

a finite number of unknown parameters,
m(x) = m(x;6), 8 € ® C RY,

® For instance, the multiple linear regression model postulates that
m(x) = Bo +x' B, with unknown parameters o € R, B; € RP.

® The training sample, S = {(x1,y1), ..., (Xpn, ¥n)}, i.i.d. from (X, Y),
is used to estimate the parameter 6.

* In this case hs(x) = m(x;6), where § = 6(S) is the estimation of 6
from sample S.
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Supervised learning

Least squares estimation

® In this context the usual way to estimate 6 is by least squares (LS):
n
0=arg gweingm - m(x;; 0))°.
=

® This is equivalent to the maximum likelihood estimation of 6 if
(X,Y) is assumed to have a joint normal distribution.

® |n this case:

® The regression function m(x) is linear in x.
® |t is equivalent to state the model as

Y =m(X) +e,

where ¢ is an additive noise normally distributed with zero mean
and independent from X, also normally distributed.
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Supervised learning

The nonparametric regression model

® We observe n pairs of data (x;, y;) coming from the nonparametric
regression model

vi=m(xj)+egj, i=1,...,n,
where &1, ..., &, are independent r.v. with
E(gi) =0, V(gj) = o2 for all i,

and the predicting variable values x4, ..., X, are known.
® The functional form of the regression function m(x) is not specified.

® Certain regularity conditions on m(x) could be assumed. For
instance, it is usually assumed that m(x) has continuous second
derivatives.
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Supervised learning

What does it mean “to fit a nonparametric regression model”?

® To provide an estimator m(t) of m(t) for all t € RP.
® This implies to give an algorithm that computes mi(t) for any input
value t € RP.

® Statistical nonparametric regression estimators: local averages (kernel
regression, k nearest neighbors), local polynomial regression, spline
smoothing, (generalized) additive models, CART (Classification and
Regression Trees), ...

® Machine learning prediction models: Neural networks, support vector
machines, ensemble meta-algorithm (random forest, XGBost, ...), ...

® In both cases, the algorithm uses the information contained in the
observed sample S. The algorithm itself is hs(t) = m(t).

® For the particular case of only one explanatory variable, usually the
graphic of the pairs (t;, M(t;)), j=1,...,J, is drawn, where
ti, j=1,...,J is a regular fine grid covering the range of the
observed values x;, i=1,...,n.

® To give an estimator &2 of the residual variance 2.
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Supervised learning

Example: k nearest-neighbors

® The k nearest-neighbor estimator of m(t) = E(Y|X =t) is defined as

. 1
MO =7 D v
i€ N (t)

where N (t) is the neighborhood of t defined by the k closest points
x; in the training sample.

® (loseness is defined according to a previously chosen distance
measure d(t, x), for instance, the Euclidean distance.
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Supervised learning

k-nn regression, in R

knn_regr<- function(x, y, t=NULL, k=3,
dist.method = "euclidean"){
nx <- length(y)
if (is.null(t)){
t<- as.matrix(x)
Yelseq{
t<-as.matrix (t)
}
nt <- dim(t) [1]
Dtx <- as.matrix( dist(rbind(t,as.matrix(x)),
method = dist.method) )
Dtx <- Dtx[1l:nt,nt+(1:nx)]
mt <- numeric(dim(t) [1])
for (i in 1:length(mt)){
d_t_x <- Dtx[i,]
d_t_x_k <- sort(d_t_x,partial=k) [k]
N_t_k <- unname( which(d_t_x <= d_t_x_k) )
mt [i]l=mean (y[N_t_k])
}

return (mt)
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Supervised learning

Example of k-nn regression

22/35

n <- 200; sd_eps <- .05

x <- sort(2*runif(n)-1)

mx <- 1-x72

eps <- rnorm(n,0,sd_eps)

y <- mx+eps

plot(x,y,xlim=c(-1,1) ,ylim=c(-3*sd_eps,1+3*xsd_eps),col=8)
k <- n/20

hat_mx <- knn_regr(x,y,k=k)

lines(x,hat_mx,col=2,1lwd=2)

title(main=pasteO("k-nn regression estimator, k=",k))

k=nn regression estimator, k=10

0.6 1.0
|

0.2

-1.0 -0.5 0.0 0.5 1.0
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Attention! The borders are less and less clear:

® Parametric models - Nonparametric models.
Example: lasso for p >> n.
The estimation of parameter 6 is done by penalized least squares:

n

H_ H . . 2

0 =arg min le(y, m(x;; 0))° + A Penalty(0),
=

for a pre-chosen A > 0 and a given penalty function Penalty ().
Example: A one-hidden layer neural network is, in fact, a parametric
regression model with a very large number of parameters (the
connection weights).

e Statistical models - Machine learning models.
Example: Random forests.
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® Desirable properties for predictive models: transparency,
interpretability, explainability.
® Not well defined concepts that are difficult to be measured.

® Lipton 2018: The term interpretability is ill-defined.
® Barredo-Arrieta et al. 2020: The derivation of general metrics to
assess the quality of XAl approaches remain as an open challenge.
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Transparency, interpretability, explainability
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An algorithm is said to be transparent if the mechanism by which it works can
be understood by a human (Lipton 2018, Barredo-Arrieta et al. 2020).

This definition encompasses different degrees of algorithm transparency, given
the wide range of human expertise (Lipton 2018).

The concept of interpretability is both important and slippery, as acknowledge
by Lipton (2018), who mentions that a general goal of interpretability might
simply be to get more useful information from the model.

Barredo-Arrieta et al. (2020) consider than transparency and interpretability are
synonymous in this context, and that what is relevant is what information you
want to extract from a model and how to get it.

Miller (2019) gives a slightly different sense to interpretability, equating this
term to explainability with the meaning of how well a human could understand
the decisions in the given context, that is, the ability of an algorithm to provide
humans an explanation for any of its particular decisions.

References
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® We can summarize telling that in the last years the quality
perception of a prediction algorithm is no longer focused exclusively
on the accuracy of predictions.

® In addition to that, the possibility of obtaining information on the
performance of the algorithm, in both the global and local sense, is
now appreciated.
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Global versus local interpretability

® [nformation about the global performance refers to determining
which is the role of each explanatory variable in the prediction
process over the whole support of the explanatory variables.
® Global interpretability: Measures of variable importance or
relevance.
® On the other hand, the goal of understanding local performance is
to provide a meaningful explanation of why the algorithm returns a
certain prediction, given a particular combination of the predicting
variables values.
® Local interpretability: Why the prediction model does a particular
prediction for a given individual?
® The local aspect of interpretability is directly related with the users’
right to explanation advocated for by, for instance, the EU's GDPR.
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Transparent models versus black-box modeels

According Barredo-Arrieta et al. (2020) and Maksymiuk, Gosiewska, and
Biecek (2020), the prediction models can be classified as follows:

@ Transparent models, or interpretable by design models, or
white-boxes, or glass-boxes.
® Models that, by design, have an easily interpretable structure.
® Linear models (LM, and generalized linear models, GLM), generalized
additive models (GAM, including additive models), classification and
regression trees (CART), decision rules, k-nearest neighbors, and
Bayesian models (including Naive Bayes prediction rules).
® They offer sufficient interpretation and/or diagnostic tools, both
numeric and graphic.
® Non-transparent models or black-box models.
® Their design does not provide a directly interpretable structure.

® These models require additional interpretation tools.
® All the prediction methods not explicitly mentioned before.
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Non-transparent models can be divided into two subgroups:

(a) Models for which there exist model-specific methods for knowledge
extraction:

® Tree ensembles (including random forests and boosted methods).

® Neural networks (NN, including deep learning based on multi-layer,
recurrent or convolutional NN).

® Support vector machines (SVM).

Model-specific methods require full access to the model structure.
(b) The rest of the models:

® Only model-agnostic methods are available for interpretation.

® Do not need to know the internal structure of the prediction model to
be explained.

® Only requirement: the ability to evaluate the prediction model
repeated times on data from the training or the test set, or on
perturbations of them.

® They can be applied to any predictive model, even to those having
model-specific methods or those that are transparent models.
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® All the interpretation methods applicable to non-transparent
prediction models are globally known as post-hoc interpretation
methods, a term that encompasses model-specific as well as
model-agnostic methods.

® The results provided by these methods can be numerical and
graphical, although most of the methods choose one or the other
format.

® Finally, it is worth mentioning that most of the interpretation
methods are heuristic, and only some of them are derived from a
formal axiomatic statement.
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Classification of models and interpretability tools

Transparent models

Black-boxes: Post-modeling interpretability

Linear model (LM)
GLM

GAM

CART

Rule based models
Naive Bayes
k-nearest neighbours

Model-specific methods:
® Tree ensembles
® Neural networks

® Support vector machines

Model-agnostic methods:
Global measures
® Variable importance by
- Leave-one-covariate-out

(LOCO)

- Perturbing a variable in the
test set: Random
permutations, knockoffs,
Ghost-variables, ...

® Variable importance based on
Shapley’s value

® Partial dependence plot (PDP)

® Accumulated local effects plot
(ALE)

Local

measures

Local interpretable
model-agnostic explanations
(LIME)

Local variable importance
based on Shapley’s value
SHAP (SHapley Additive
exPlanations)

Break-down plots

Individual conditional
expectation (ICE) plot, or
ceteris paribus plot
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Books on IML/XAI: Molnar (2019)
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Molnar (2019) offers a broad overview of techniques aimed at
making machine learning models and their decisions interpretable.

The concepts of interpretability are explored first.

Then interpretable models (including linear and additive models,
decision trees, and decision rules) are covered.

Later, general model-agnostic methods for interpreting black-box
models are introduced.

An additional chapter is devoted to neural network interpretability.

Three real data sets are used throughout the book to present the
explained methods.

At the end of the book, the R packages used for examples are listed,
among which iml package should be highlighted (not for nothing
Molnar is one of the authors of iml).
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Books on IML/XAI: Biecek and Burzykowski (2021)

® In Biecek and Burzykowski (2021), the authors focus on
model-agnostic techniques. They do not assume anything about the
structure of the model.

® The only interaction allowed with the fitted model is its evaluation
on a specific data set.

® There are two main parts in the book: one devoted to instance-level
exploration (or local interpretability), and the other to dataset-level
exploration (or global variable relevance).

® Every interpretability method in the book is introduced first at an
intuitive level, and then its mathematical and computational aspects
are presented in detail.

® The examples throughout the book are based on three real data sets.

® Additionally, a detailed full case study is presented in the last
chapter of the book.

® All the methods presented in the book are available in both R
(DALEX package) and Python (dalex library).

® The code for reproducing the examples is also available.
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Books on IML/XAI: Masis (2021)
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Masis (2021) is structured in 3 sections, each including several
chapters.

Section 1 gives an introduction to machine learning interpretation,
stating the key concepts and presenting several real data examples
which are used through the book.

In Section 2 the main interpretation methods are covered: global
and local model-agnostic methods, counterfactual explanations, and
visual interpretation methods for convolutional neural networks.

Finally, Section 3 is devoted to more specific and technical
interpretability issues.

The book is practice oriented. Each chapter offers the reader the
Python code to reproduce step-by-step the analysis and figures
included in the book.

A github repository (https://github.com/PacktPublishing/
Interpretable-Machine-Learning-with-Python) contains the
example code files for the book, ready to be downloaded.
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