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Course material

• https://pedrodelicado.moodlecloud.com/

• Username: estudent

• Password: eBISS2022
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Outline of the course

1 Introduction to interpretability in machine learning

2 Interpretability methods for specific models

3 Model-agnostic interpretability methods
• Global methods
• Local methods
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Introduction to model interpretability and variable
relevance

• In a stimulating and provocative paper, Breiman (2001)1 shook the
statistical community by making it to be aware that traditional
Statistics was no longer the only way to learn from data:

• Data Modeling Culture (traditional Statistics):
• Linear regression, logistic regression, additive models, etc.
• They allow to interpret how the response variable is associated with

the input variables: Transparent models.
• Algorithmic Modeling Culture (Machine Learning, Data Science):

• Neural networks, support vector machines, random forest, etc.
• They have extremely good predictive accuracy, and they usually

outperform in this criterion statistical models.
• Low interpretability: Black boxes.

• An apparent dichotomy: predictive capacity versus interpretability.

• Breiman claimed for procedures allowing better interpretation of the
algorithmic models results, without giving up their predictive ability.

1Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science 16, 199–231.
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A real data example: Rent housing prices

• Data on rental housing in Spain, downloaded from Idealista.com on
February 27th, 2018, by Alejandro German (Alex seralexger).

• Data available at
https://github.com/seralexger/idealista-data

• Original data set: 67201 rows (advertisements) and 19 attributes.
All cities in Spain.

• We have selected Madrid and Barcelona: 16480 rows.

• Training set 70%, test set 30%.

• Response variable: logarithm of the rental price.

• We work with 16 explanatory variables (some of them calculated
from the original data).
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## [1] "price" "Barcelona"

## [3] "categ.distr" "type.chalet"

## [5] "type.duplex" "type.penthouse"

## [7] "type.studio" "floor"

## [9] "hasLift" "floorLift"

## [11] "size" "exterior"

## [13] "rooms" "bathrooms"

## [15] "hasParkingSpace" "isParkingSpaceIncludedInPrice"

## [17] "log_Days_since_first_activation"
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## lm(formula = log(price) ~ ., data = rhBM.price[Itr, ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.72437 -0.17604 -0.02316 0.15692 1.45330
##
## Coefficients: Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8169658 0.0344596 110.766 < 2e-16 ***
## Barcelona 0.1126307 0.0052554 21.431 < 2e-16 ***
## categ.distr 0.1169468 0.0033806 34.593 < 2e-16 ***
## type.chalet -0.0846942 0.0203106 -4.170 3.07e-05 ***
## type.duplex -0.0177992 0.0151519 -1.175 0.24013
## type.penthouse 0.0428160 0.0101282 4.227 2.38e-05 ***
## type.studio -0.0762350 0.0139991 -5.446 5.27e-08 ***
## floor 0.0128181 0.0009696 13.220 < 2e-16 ***
## hasLift 0.0480363 0.0118432 4.056 5.02e-05 ***
## floorLift -0.0013898 0.0044109 -0.315 0.75270
## log.size 0.6186668 0.0090654 68.245 < 2e-16 ***
## exterior -0.0372539 0.0068935 -5.404 6.64e-08 ***
## rooms -0.0501949 0.0034204 -14.675 < 2e-16 ***
## bathrooms 0.1431973 0.0047167 30.359 < 2e-16 ***
## hasParkingSpace -0.0074934 0.0129971 -0.577 0.56426
## isParkingSpaceIncludedInPrice -0.0408757 0.0138863 -2.944 0.00325 **
## log_Days_since_first_activation 0.0418803 0.0018552 22.574 < 2e-16 ***
## ---
##
## Residual standard error: 0.2647 on 11519 degrees of freedom
## Multiple R-squared: 0.7602, Adjusted R-squared: 0.7599
## F-statistic: 2282 on 16 and 11519 DF, p-value: < 2.2e-16
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Neutral network fit

• Tuning parameters size and decay are chosen using caret.

• size in c(10,15,20), decay in c(0,.1,.3,.5).

# > nnet.logprice
#
# a 16-10-1 network with 181 weights
#
# inputs: Barcelona categ.distr type.chalet type.duplex type.penthouse type.studio
# floor hasLift floorLift log.size exterior rooms bathrooms hasParkingSpace
# isParkingSpaceIncludedInPrice log_Days_since_first_activation
#
# output(s): .outcome
# options were - linear output units decay=0.5

# > 1-mean(nnet.logprice$residuals^2)
# [1] 0.8009131
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Interpretable Machine Learning (IML), eXplainable Artificial Intelligence (XAI)

• Machine learning community has been worried about interpretability:
if the users do not trust a model or a prediction, they will not use it
(Ribeiro, Singh, and Guestrin 2016)

• In 2018 the General Data Protection Regulation of the European
Union established the users’ right to explanation: when an
algorithmic decision significantly affects a user, he or she has the
right to ask for an explanation of such a decision.

• A powerful research line has been developed:
Interpretable Machine Learning, eXplainable Artificial Intelligence.

• A search query in the Web of Science (November 5th, 2021) with
the terms “explainable artificial intelligence”, “explainable machine
learning” or “interpretable machine learning” found a total of 5673
publications, 51% of them published in 2020 or later.

• In Scopus, 7465 publications where found, 80% of which ≥ 2020.
• Several review papers (Barredo-Arrieta et al. 2020 is one of the
most recent and extensive reviews).

• Three monographs:
Molnar (2019), Biecek and Burzykowski (2021) and Maśıs (2021).
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Supervised learning

Supervised Learning (the prediction problem)

• Let (X,Y ) be a r.v. with support X × Y ⊆ Rp × R.
• General supervised learning or prediction problem:

• Training sample: S = {(x1, y1), . . . , (xn, yn)}, i.i.d. from (X,Y ).
• The goal is to define a function (possibly depending on the sample)

hS : X ↦→ Y such that for a new independent observation
(xn+1, yn+1), from which we only know xn+1, it happens that

ŷn+1 = hS (xn+1) is close to yn+1 (in some sense).

• Function hS is called generically prediction function (or classification
function or regression function, depending on the case).

• We say that we have a problem of binary classification (or discrimination) when
Y = {0, 1} (you can also use Y = {−1, 1}).

• The problem of classification in K classes arises when Y = {1, . . . ,K } (or

Y =

{
y ∈ {0, 1}K :

∑K
k=1 yk = 1

}
).

• When Y = R (or Y is an interval) we have a standard regression problem.
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Supervised learning

Loss function, risk, Bayes rule

• The (lack of) closeness between h(X) and Y is usually measured by
a loss function L(Y , h(X)).

• For instance, the squared error loss is L(Y , h(X)) = (Y − h(X))2.
• L(Y , h(X)) is a r.v., with expected value R (h) = E(L(Y , h(X))),
called risk or expected loss, that only depends on h.

• Decision problem: To find the prediction function h : X ↦→ Y that
minimizes the expected loss.

• The optimal prediction function is the Bayes rule

hB (x) = arg min
y ∈Y
E(L(Y , y ) |X = x).
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Supervised learning

The regression problem

• Let (X,Y ) be a (p + 1)-dimensional random variable. We consider
the regression problem: To predict Y from known values of X.

• The most common and convenient loss function is the squared error
loss: L(Y , h(X)) = (Y − h(X))2.

• The expected loss is known as Prediction Mean Squared Error,
(PMSE):

PMSE(h) = E
(
(Y − h(X))2

)
.

• The Bayes rule in this case is

hB (x) = arg min
y ∈Y
E
(
(Y − y )2 |X = x

)
= E(Y |X = x),

also known as regression function of Y over x and denoted by m(x).
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Supervised learning

• Parametric regression models assume that m(x) is known except for
a finite number of unknown parameters,

m(x) ≡ m(x; 𝜃), 𝜃 ∈ Θ ⊆ Rq,
• For instance, the multiple linear regression model postulates that
m(x) = 𝛽0 + xT𝜷1, with unknown parameters 𝛽0 ∈ R, 𝜷1 ∈ Rp.

• The training sample, S = {(x1, y1), . . . , (xn, yn)}, i.i.d. from (X,Y ),
is used to estimate the parameter 𝜃.

• In this case hS (x) = m(x; 𝜃), where 𝜃 = 𝜃 (S) is the estimation of 𝜃
from sample S .
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Supervised learning

Least squares estimation

• In this context the usual way to estimate 𝜃 is by least squares (LS):

𝜃 = argmin
𝜃∈Θ

n∑︁
i=1

(yi −m(xi ; 𝜃))2.

• This is equivalent to the maximum likelihood estimation of 𝜃 if
(X,Y ) is assumed to have a joint normal distribution.

• In this case:
• The regression function m(x) is linear in x.
• It is equivalent to state the model as

Y = m(X) + 𝜀,

where 𝜀 is an additive noise normally distributed with zero mean
and independent from X, also normally distributed.
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Supervised learning

The nonparametric regression model

• We observe n pairs of data (xi , yi ) coming from the nonparametric
regression model

yi = m(xi ) + 𝜀i , i = 1, . . . , n,

where 𝜀1, . . . , 𝜀n are independent r.v. with

E (𝜀i ) = 0,V (𝜀i ) = 𝜎2 for all i ,

and the predicting variable values x1, . . . , xn are known.

• The functional form of the regression function m(x) is not specified.
• Certain regularity conditions on m(x) could be assumed. For
instance, it is usually assumed that m(x) has continuous second
derivatives.
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Supervised learning

What does it mean “to fit a nonparametric regression model”?

• To provide an estimator m̂(t) of m(t) for all t ∈ Rp.
• This implies to give an algorithm that computes m̂(t) for any input

value t ∈ Rp .
• Statistical nonparametric regression estimators: local averages (kernel

regression, k nearest neighbors), local polynomial regression, spline
smoothing, (generalized) additive models, CART (Classification and
Regression Trees), ...

• Machine learning prediction models: Neural networks, support vector
machines, ensemble meta-algorithm (random forest, XGBost, ...), ...

• In both cases, the algorithm uses the information contained in the
observed sample S. The algorithm itself is hS (t) = m̂(t).

• For the particular case of only one explanatory variable, usually the
graphic of the pairs (tj , m̂(tj )), j = 1, . . . , J, is drawn, where
tj , j = 1, . . . , J is a regular fine grid covering the range of the
observed values xi , i = 1, . . . , n.

• To give an estimator 𝜎̂2 of the residual variance 𝜎2.
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Supervised learning

Example: k nearest-neighbors

• The k nearest-neighbor estimator of m(t) = E (Y |X = t) is defined as

m̂(t) = 1

k

∑︁
i∈Nk (t)

yi ,

where Nk (t) is the neighborhood of t defined by the k closest points
xi in the training sample.

• Closeness is defined according to a previously chosen distance
measure d (t, x), for instance, the Euclidean distance.
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Supervised learning

k-nn regression, in R
knn_regr <- function(x, y, t=NULL , k=3,

dist.method = "euclidean"){

nx <- length(y)

if (is.null(t)){

t<- as.matrix(x)

}else{

t<-as.matrix(t)

}

nt <- dim(t)[1]

Dtx <- as.matrix( dist(rbind(t,as.matrix(x)),

method = dist.method) )

Dtx <- Dtx [1:nt,nt+(1:nx)]

mt <- numeric(dim(t)[1])

for (i in 1: length(mt)){

d_t_x <- Dtx[i,]

d_t_x_k <- sort(d_t_x,partial=k)[k]

N_t_k <- unname( which(d_t_x <= d_t_x_k) )

mt[i]=mean(y[N_t_k])

}

return(mt)

}
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Supervised learning

Example of k-nn regression
n <- 200; sd_eps <- .05

x <- sort(2*runif(n) -1)

mx <- 1-x^2

eps <- rnorm(n,0,sd_eps)

y <- mx+eps

plot(x,y,xlim=c(-1,1),ylim=c(-3*sd_eps ,1+3*sd_eps),col=8)

k <- n/20

hat_mx <- knn_regr(x,y,k=k)

lines(x,hat_mx ,col=2,lwd=2)

title(main=paste0("k-nn regression estimator , k=",k))
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k−nn regression estimator, k=10
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Supervised learning

Attention! The borders are less and less clear:

• Parametric models - Nonparametric models.
Example: lasso for p >> n.
The estimation of parameter 𝜃 is done by penalized least squares:

𝜃 = argmin
𝜃∈Θ

n∑︁
i=1

(yi −m(xi ; 𝜃))2 + 𝜆Penalty(𝜃),

for a pre-chosen 𝜆 > 0 and a given penalty function Penalty(𝜃).
Example: A one-hidden layer neural network is, in fact, a parametric
regression model with a very large number of parameters (the
connection weights).

• Statistical models - Machine learning models.
Example: Random forests.
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IML/XAI concepts

• Desirable properties for predictive models: transparency,
interpretability, explainability.

• Not well defined concepts that are difficult to be measured.
• Lipton 2018: The term interpretability is ill-defined.
• Barredo-Arrieta et al. 2020: The derivation of general metrics to

assess the quality of XAI approaches remain as an open challenge.
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Transparency, interpretability, explainability

• An algorithm is said to be transparent if the mechanism by which it works can
be understood by a human (Lipton 2018, Barredo-Arrieta et al. 2020).

• This definition encompasses different degrees of algorithm transparency, given
the wide range of human expertise (Lipton 2018).

• The concept of interpretability is both important and slippery, as acknowledge
by Lipton (2018), who mentions that a general goal of interpretability might
simply be to get more useful information from the model.

• Barredo-Arrieta et al. (2020) consider than transparency and interpretability are
synonymous in this context, and that what is relevant is what information you
want to extract from a model and how to get it.

• Miller (2019) gives a slightly different sense to interpretability, equating this
term to explainability with the meaning of how well a human could understand
the decisions in the given context, that is, the ability of an algorithm to provide
humans an explanation for any of its particular decisions.
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• We can summarize telling that in the last years the quality
perception of a prediction algorithm is no longer focused exclusively
on the accuracy of predictions.

• In addition to that, the possibility of obtaining information on the
performance of the algorithm, in both the global and local sense, is
now appreciated.
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Global versus local interpretability

• Information about the global performance refers to determining
which is the role of each explanatory variable in the prediction
process over the whole support of the explanatory variables.

• Global interpretability: Measures of variable importance or
relevance.

• On the other hand, the goal of understanding local performance is
to provide a meaningful explanation of why the algorithm returns a
certain prediction, given a particular combination of the predicting
variables values.

• Local interpretability: Why the prediction model does a particular
prediction for a given individual?

• The local aspect of interpretability is directly related with the users’
right to explanation advocated for by, for instance, the EU’s GDPR.
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Transparent models versus black-box modeels

According Barredo-Arrieta et al. (2020) and Maksymiuk, Gosiewska, and
Biecek (2020), the prediction models can be classified as follows:

1 Transparent models, or interpretable by design models, or
white-boxes, or glass-boxes.

• Models that, by design, have an easily interpretable structure.
• Linear models (LM, and generalized linear models, GLM), generalized

additive models (GAM, including additive models), classification and
regression trees (CART), decision rules, k-nearest neighbors, and
Bayesian models (including Näıve Bayes prediction rules).

• They offer sufficient interpretation and/or diagnostic tools, both
numeric and graphic.

2 Non-transparent models or black-box models.
• Their design does not provide a directly interpretable structure.
• These models require additional interpretation tools.
• All the prediction methods not explicitly mentioned before.
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Non-transparent models can be divided into two subgroups:

(a) Models for which there exist model-specific methods for knowledge
extraction:

• Tree ensembles (including random forests and boosted methods).
• Neural networks (NN, including deep learning based on multi-layer,

recurrent or convolutional NN).
• Support vector machines (SVM).

Model-specific methods require full access to the model structure.

(b) The rest of the models:
• Only model-agnostic methods are available for interpretation.

• Do not need to know the internal structure of the prediction model to
be explained.

• Only requirement: the ability to evaluate the prediction model
repeated times on data from the training or the test set, or on
perturbations of them.

• They can be applied to any predictive model, even to those having
model-specific methods or those that are transparent models.

30/35 Pedro Delicado



Introduction IML/XAI concepts References

• All the interpretation methods applicable to non-transparent
prediction models are globally known as post-hoc interpretation
methods, a term that encompasses model-specific as well as
model-agnostic methods.

• The results provided by these methods can be numerical and
graphical, although most of the methods choose one or the other
format.

• Finally, it is worth mentioning that most of the interpretation
methods are heuristic, and only some of them are derived from a
formal axiomatic statement.

31/35 Pedro Delicado



Introduction IML/XAI concepts References

Classification of models and interpretability tools
Transparent models Black-boxes: Post-modeling interpretability

Linear model (LM)
GLM
GAM
CART
Rule based models
Näıve Bayes
k-nearest neighbours

Model-specific methods:

• Tree ensembles

• Neural networks

• Support vector machines

Model-agnostic methods:
Global measures

• Variable importance by

- Leave-one-covariate-out
(LOCO)

- Perturbing a variable in the

test set: Random

permutations, knockoffs,

Ghost-variables, ...

• Variable importance based on
Shapley’s value

• Partial dependence plot (PDP)

• Accumulated local effects plot
(ALE)

Local measures

• Local interpretable
model-agnostic explanations
(LIME)

• Local variable importance
based on Shapley’s value

• SHAP (SHapley Additive
exPlanations)

• Break-down plots

• Individual conditional
expectation (ICE) plot, or
ceteris paribus plot

32/35 Pedro Delicado



Introduction IML/XAI concepts References

Books on IML/XAI: Molnar (2019)

• Molnar (2019) offers a broad overview of techniques aimed at
making machine learning models and their decisions interpretable.

• The concepts of interpretability are explored first.

• Then interpretable models (including linear and additive models,
decision trees, and decision rules) are covered.

• Later, general model-agnostic methods for interpreting black-box
models are introduced.

• An additional chapter is devoted to neural network interpretability.

• Three real data sets are used throughout the book to present the
explained methods.

• At the end of the book, the R packages used for examples are listed,
among which iml package should be highlighted (not for nothing
Molnar is one of the authors of iml).
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Books on IML/XAI: Biecek and Burzykowski (2021)
• In Biecek and Burzykowski (2021), the authors focus on
model-agnostic techniques. They do not assume anything about the
structure of the model.

• The only interaction allowed with the fitted model is its evaluation
on a specific data set.

• There are two main parts in the book: one devoted to instance-level
exploration (or local interpretability), and the other to dataset-level
exploration (or global variable relevance).

• Every interpretability method in the book is introduced first at an
intuitive level, and then its mathematical and computational aspects
are presented in detail.

• The examples throughout the book are based on three real data sets.
• Additionally, a detailed full case study is presented in the last
chapter of the book.

• All the methods presented in the book are available in both R
(DALEX package) and Python (dalex library).

• The code for reproducing the examples is also available.
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Books on IML/XAI: Maśıs (2021)
• Maśıs (2021) is structured in 3 sections, each including several
chapters.

• Section 1 gives an introduction to machine learning interpretation,
stating the key concepts and presenting several real data examples
which are used through the book.

• In Section 2 the main interpretation methods are covered: global
and local model-agnostic methods, counterfactual explanations, and
visual interpretation methods for convolutional neural networks.

• Finally, Section 3 is devoted to more specific and technical
interpretability issues.

• The book is practice oriented. Each chapter offers the reader the
Python code to reproduce step-by-step the analysis and figures
included in the book.

• A github repository (https://github.com/PacktPublishing/
Interpretable-Machine-Learning-with-Python) contains the
example code files for the book, ready to be downloaded.
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