Big Graph Processing Systems:

Reachabillity Indexes

Chao Zhang, Lyon 1 University & CNRS Liris (France)
eBISS Summer School 2022 (Cesena, Italy)

Plain reachability
Plain graph

Graphs

Path-constraint reachability

Edge-labeled graph

Agenda

1. Reachability on plain graphs

a. A panoramic view of reachability indexes

b. Milestones

2. Reachability on edge-labeled graphs
a. Techniques
m Alternation-based path constraints
m Concatenation-based path constraints

b. Challenges

Section I: Plain Reachability

Plain reachability query

e Q(s,t)on adirected graph G
o Checking the existence of a path fromstotin G

e Boolean query

o Either true or false

e Fundamental graph operator [Sah17]

o Inferring the relationships among objects
E.g., querying protein-protein interaction in biology networks [Yil]

E.g., querying related works in citation networks [Yil]

[Sah17] S. Sahu et al. The ubiquity of large graphs and surprising challenges of graph processing. VLDB J. 29(2-3): 595-618 (2020)
[Yil10] H.Yildirim et al. GRAIL: Scalable Reachability Index for Large Graphs. Proc. VLDB Endow. 3(1): 276-284 (2010)

Reachability query processing

e Query evaluation
o Online traversal: BFS, DFS, and BiBFS

o Problem: graphs are large

e An index for reachability queries

o Reachability index

Music recommendation graph: http://sixdegrees.hu/last.fm/interactive_map.html

<,\‘

Example: Vertex 10
reaches vertex 20 as the
cell is not empty

Naive index: transitive closure target

10 11 12 13 14 15 16 17 18 19 20

10 T T T T T T T T T T

11 T T T T T T T T T

-
.\‘ 13 T T T T T | T | T

//v@ \ 8 14 T T T T T T T
| .
O @ 2
15 T T T T T T T
@ —@ °
T~ 16 T T T T T T T

@

/ 17 T T T T T T T

18 T T T T T T T
19 T
20

Complexity Full online ?: Full offline

computation ® _ﬂ computation
Index size < >
A BFS Transitive Closure
G (V, E)
n=1|V| o
m = |E| \

"~ Transitive Closure

BFS

’
A (S ——

n*m |ndexing time

year: 1983 year: 1984 year: 1989 year: 1990 year: 2002
venue: [EEE Computer venue: Advances in Al venue: SIGMOD venue: TODS venue: SODA _umy

Interval Interval

el Tree Cover

labeling

1983 - 2002

10

year: 2008

venue: ICDI®

year: 2005 year: 2006 year: 2007 year: 2008 year: 2009

venue: VLDB venue: ICDE venue: SIGMOD venue: SIGMOD venue: SIGMOD

2005 - 2009

Dual Labeling

year: 2010
venue: VLDB

year: 2012
venue: SIGMOD

SCARAB

year: 2013
venue: SIGMOD

Pruned
Landmark

year: 2013
venue: SIGMOD

year: 2013
venue: VLDB

year: 2013
venue: ICDE

year: 2013
venue: CIKM

Pruned 2-Hop

year: 2014
venue: SIGMOD

year: 2014
venue: VLDB

year: 2014 year: 2017
venue: EDBT venue: TKDE

12

Tree Cover

2-Hop Labeling >

13

Step 2
Interval Labeling

AN

Tree

Step 3
Tree Cover

Step 1

i

Cyclic
Graph

14

AN

o IR

Tarjan's Algorithm [Tar72] to
compute Strongly Connected
Components

[Tar72] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2): 146-160 (1972)

Cyclic

Graph

15

Q: How to efficiently check
Q(10,14) on the tree?

(2

/ A: Subtree containment

0
o \®\@

)

16

Interval labeling, for each v

e postorder number of v
e the smallest postorder number of
[0,6] all the successors of v

Qr:nggt;) leverage the / A: Interval schema based on
property: postorder traversal
[0, 5]
Q(10, 14) = True
Interval of 10: [0,6]
Postorder number of 14: 1
1 €[0,6]
[0,1] [2, 2] [3, 4]

¥G o)

17
[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

From Tree to DAG

DAG 6 @
\ ~ah_ @/o—»o \1 @//‘—"
Om @

Q1: How about multiple trees? r: virtual root
: virtual edge
Assigning a virtual root 11 —: tree edge

18
[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

From Tree to DAG v

Q2: How about non-tree edges?
10

Inheriting the intervals
11

11 12

© i

4 14

/C\

/// \ "

16

Tt
/ 18

19

20

Interval
[0, 6]
[0, 5]
[3. 4]
[2. 2]
[0, 1]
[0, 0]
[7, 10]
[3. 3]
[7. 8]
[9, 9]

[7, 7]

[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

19

From Tree to DAG

Q2: How about non-tree edges?

Inheriting the intervals

1

©

/ /C\

A
SRR
O

Tree Cover

10

11

12

13

14

15

16

17

18

19

20

Interval
[0, 6]
[0, 3]

[3, 4], [2,2], [0,0]

[2, 2], [0, O]
[0, 1]
[0, 0]

[7,10], [3, 3],
[0,0], [3, 4], [2,2]

[3, 3], [0,0]
[7, 8], [0, O]
9,9 [7, 7]

[7, 7]

[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

Merging
intervals

[2, 4], [0, O]

[7, 10], [2, 4],
[0, 0]

20

Complexity

Index size: O(n?)
Indexing time: O(nm)
Query time: O(log n)
Bottleneck:

o Alarger number of intervals caused by non-tree edges

Q: how to reduce the number of intervals?

21

Reducing the number of intervals

e Bounding the number of intervals
o GRAIL[Yil10]: exactly k intervals by computing k spanning trees

o Ferrari [Seu13]: at most k intervals by merging non-adjacent intervals

e Incomplete indexes

o False positives for query processing using indexes

e Resort to online search

o Guided DFS by querying the incomplete indexes

[Yil10] H.Yildirim et al. GRAIL: Scalable Reachability Index for Large Graphs. Proc. VLDB Endow. 3(1): 276-284 (2010)
[Seu13] S. Seufert et al. FERRARI: Flexible and efficient reachability range assignment for graph indexing. ICDE 2013: 1009-1020

22

Other techniques based on tree cover

e Dual-labeling [Wan006]

o Compressing transitive closure for non-tree edges

e GRIPP [Tri07]

o Recursive querying intervals of rooted spanning trees

[Wan06] H. Wang et al. Dual Labeling: Answering Graph Reachability Queries in Constant Time. ICDE 2006: 75
[Tri07] S. Tril et al. Fast and practical indexing and querying of very large graphs. SIGMOD Conference 2007: 845-856

23

Tree Cover

2-Hop Labeling >

24

Rethinking of transitive closure

@

We can derive the existence of p(s, t)

® O
target
S U T using p(s, u) and p(u, t)
9 S 1 1
5
5 U 1

25

Rethinking of transitive closure

g U 1 1
3
brd T

V 1 1 1

S 1 1 1 @ W @

With the deriving, we only need to record
p(s, u), p(v, u), p(u, w), and p(u, t).

26

2-Hop labeling
e Assigning L(v) = (L, _(v), L (v)) foreach vin G,
o Vu€lL, (v), 3 apathfromutov

o VweL_.(v), 3 apathfromvtow

e \ertex sreachestin G, if and only if
o Case1: 3 telL (s) or
o Case2: 3 s€eL(t),or

o Case3:L ()L (s)#?

out(

e Indexsize:) . [L W]+ [V)

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

27

2-hop labeling v Lin(V) Loul¥)

10 @ 11,12, 15
11 @ 15
/.\.‘ 12 | 10,11, 15,16 g
<:§ii/////'<:> \\ 13 11 15

\ 14 11 15
@\@ 15 o 15

/ 16 17, 15 12, 15, 18

17 15 18
18 15 15
19 15 @
20 15,17, 18 Z

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946 28

2-hop labeling v
10

11

2

\e
@/\.
|
©

/ 16

17
Q(10, 20) = true, L_(10) N L, (20) =15 18
Q(15, 18) = true, 15 € L (18)
Q(16, 13) = false

19

20
[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

10, 11, 15, 16
11
11
@
17,15
15
15
15

15,17, 18

Lou¥)
11,12, 15
15
%]

15
15
15
12, 15, 18
18

15

29

Minimum 2-hop labeling

e The number of Case 3 should be maximized

e Minimum 2-hop: the one with the minimum index size

e NP-hard problem [1]
e Approximated algorithm [1]

o Bounded by a logarithmic factor
o Complexity

m Indexing time: O(n*)

m Index size: O(hm'?)

m Query time: O(m"?2)

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

Impractical for
real-world large graphs

30

Advanced 2-hop indexing heuristics

e TFL [Che13]

o Recursive topological folding over DAG
e DL [Jin13]

o Vertex order for non-redundant hop vertices
o PLL [Aki13]

o Greedy indexing according to vertex degree

e TOL [Zhu14]

o General total order for indexing

[Che13] J. Cheng et al. TF-Label: a topological-folding labeling scheme for reachability querying in a large graph. SIGMOD Conference 2013: 193-204
[Jin13] R.Jin et al. Simple, Fast, and Scalable Reachability Oracle. Proc. VLDB Endow. 6(14): 1978-1989 (2013)

[Aki13] E. Akiba et al. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. SIGMOD Conference 2013: 349-360
[Zhu14] A. Zhu et al. Reachability queries on large dynamic graphs: a total order approach. SIGMOD Conference 2014: 1323-1334

31

(s) O (1) 2-Hop

(s) : (1) 3-Hop [Jin09]
| Further reducing
index size

(1) Path-Hop [Cai10]

()

[Jin09] R. Jin et al. 3-HOP: a high-compression indexing scheme for reachability query. SIGMOD Conference 2009: 813-826
[Cai10] J. Cai et al. Path-hop: efficiently indexing large graphs for reachability queries. CIKM 2010: 119-128

32

Tree Cover

2-Hop Labeling >

33

Rethinking of transitive closure

/0\

/ AN

b —®
ol

\/

out(v): v and all the vertices that v can reach
If u reaches v, then out(v) € out(u)
Example: 10 reaches 13,

o out(10)={10, 11, 12,13, 14, 15, 17}

o out(13)={13, 15}
If out(v) € out(u), then u does not reach v

Similarly, if in(u) ¢ in(v), then u does not reaches
v, where in(v) denotes v and all the vertices that
can reach v

How to leverage the
contrapositive conditions?

34

Membership testing

K-min-wise independent permutation

Reachability Querying: An Independent Permutation
Labeling Approach

VLDB'14
Hao Wei, Jeffrey Xu Yu, Can Lu Ruoming Jin
Chinese University of Hong Kong Kent State University
Hong Kong, China Kent, OH, USA

Bloom filter

Reachability Querying: Can It Be Even Faster?

Jiao Suft, Qing Zhu', Hao Weit, and Jeffrey Xu Yu? TKDE'17

tRenmin University of China. Beijiing. China: * The Chinese University of Hong Kona. Hong Kona

35

Bloom filter labeling

e Compute in(v) and out(v) for each v

o Inin(v) and out(v), recording the hash codes of vertices

e Query processing

o set containment testing

e False positives require online traversal

o Guided DFS with recursively querying the index

36

Bloom Filter Labeling

4
e
&

@
/
@/

hash(v

O—\C

)= (vmod 7)

Q(12, 18): False because out(18) € out(12)

Q(11, 18): True, but false positive
Guided DFS leads to False

10

11

—

4

15

16

17

18

19

20

3,4
2,3,4,5
3,4,5,6

0,3,4
0,1,2,3,4,5,6
2
2,3,4,5

2,4

2,5

24,5

out(v)
0,1,3,4,5,6
0,1,3,4,5,6
1,3,5,6
1,6
0,1
1
1,2,3,4,5,6
1,3
1,4,6

5,6

37

Other reachability techniques

e Path-tree labeling [Jin08]: path partition + two-dimension labeling over a planar graph
e SCRAB [Jin12]: reachability backbone + reachability through backbone vertices

e HL [Jin13]: recursive reachability backbones

e Feline [Vel14]: dominance drawing (no false negatives) + online search

e Preach [Mer14]: contraction hierarchies + bidirectional online search

e (O’Reach [Han21]: partial hop labeling + topological order + existing indexes

[Jin08] R. Jin et al. Efficiently answering reachability queries on very large directed graphs. SIGMOD Conference 2008: 595-608
[Jin12] R. Jin et al. SCARAB: scaling reachability computation on large graphs. SIGMOD Conference 2012: 169-180

[Jin13] R.Jin et al. Simple, Fast, and Scalable Reachability Oracle. Proc. VLDB Endow. 6(14): 1978-1989 (2013)

[Vel14] R. Veloso et al. Reachability Queries in Very Large Graphs: A Fast Refined Online Search Approach. EDBT 2014: 511-522
[Mer14] F. Merz et al. PReaCH: A Fast Lightweight Reachability Index Using Pruning and Contraction Hierarchies. ESA 2014: 701-712
[Han21] K.Hanauer et al. O'Reach: Even Faster Reachability in Large Graphs. SEA 2021: 13:1-13:24

38

Readings

e 2 minutes
o T. Ozsu. Graph Processing: A Panoramic View and Some open Problems. Keynote at VLDB’19. (The section on reachability queries)
e 10 minutes
o J. Su et al. Reachability Querying: Can It Be even Faster? In TKDE'17. (The related work section)
e Half aday
o J. Xu yu et al. Graph Reachability Queries: A Survey. Managing and Mining Graph Data 2010.
e Oneday
o A. Bonifati et al. Querying Graphs. Morgan & Claypool Publishers 2018. (Chapter 6.5: Reachability Indexing)
e Unlimited time

o 9 SIGMOD/TODS + 4 VLDB + 4 ICDE/TKDE + 1 SODA + 1 EDBT, etc.

39

Section Il: Path-Constraint Reachability

Reachability queries with path-constraints

The overlapping: a single
label under the Kleene
operator.

RPQs

Regular path queries (RPQs):

o Having a regular expression as a constraint [Ang17]

Reachability

e Reachability:

o Checking the existence of a path that can satisfy a path
constraint

e The Kleene operator: either * or +

LCR RLC

e Two types (so far)
o LCR: alternation-based reachability

o RLC: concatenation-based reachability

[Ang17] R. Angles et al. Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv. 50(5): 68:1-68:40 (2017)

42

LCR (label-constrained reachability) queries

LC (label constraint)

o (I, U..UI)", where U is disjunction
LCR query (s, t, LC)

o Checking whether s reaches t

o Checking whether the path only contains
edges with labels in the LC

Boolean query

o Returning either True or False

e Supported languages
o SPARQL
o PGQL

o openCypher

43

follows

follows

Does Alice reach Henry
under the constraint
{friendOf, follows}?

True

ASK
WHERE({

:Alice (:friendOf|:follows)+ :Henry
}

44

follows

follows

Does Bob reach Star Wars
under the constraint
{friendOf, likes}?

False

ASK
WHERE({

:Bob (:friendOf|:likes)+ :Star_Wars
}

45

LCR query evaluation

e Online traversal
o DFS, BFS, or BiBFS, visiting only edges with labels in the LC
o Unfeasible for large graphs

e An index for LCR queries
o LCRindexes

e Index-based evaluation for Q(s, t, LC)

o Path-label set from s to t is mandatory

e Redundancy of path-label sets?

46

follows

follows

Two path-label sets from
Alice to Kim

1. {friendOf}
2. {friendOf, follows}

Do we need to record both
of them?

{friendOf} C {friendOf,
follows} S a given constraint

47

Sufficient path-label set (SPLS)

e Definition [Jin10]

o The minimal subsets of all the path-label sets from u to v

{a, b} te)

\\ {a, d} /

e Free for merging [1], i.e., distributive
o Computing SPLS(p(u, w)) by using SPLS(p(u, v)) and SPLS(p(v, w))
o SPLSfromutow:{a, b, e}, {a, b, d}, fa-bereh{abed}, {a, d, e}, and {a, d}

[Jin10] R. Jin et al. Computing label-constraint reachability in graph databases. SIGMOD Conference 2010: 123-134

48

GTC (Generalized transitive closure)

e GTC [1]: transitive closure with sufficient path-label set
o Foreach (u, v):
m recording whether u reaches v, and
m SPLS(u, V)
e Problems:

o Too much time to compute

o Too much space to store

e How to efficiently compute and effectively compress GTC?

[Jin10] R. Jin et al. Computing label-constraint reachability in graph databases. SIGMOD Conference 2010: 123-134

49

year: 2010 year: 2014 year: 2017 year: 2020 year: 2021
venue: SIGMOD venue: Information Systems : venue: SIGMOD venue: VLDB venue: TODS

| Zou et al Valstar et al Peng et al

50

year: 2010
venue: SIGMOD ,

GTC compression using spanning tree

e Path characterization [1]: e Query processing:

o Case 1:(u, x) or (y, v) is a tree edge o Case 2: partial GTC

o Case 1: spanning tree + partial transitive

o Case 2: neither (u, x) nor (y, v) is a tree closure

edge

m Partial GTC @/Wm W@W@
o ° Q a <Case 7 Path >

[Jin10] R. Jin et al. Computing label-constraint reachability in graph databases. SIGMOD Conference 2010: 123-134 51

Efficient GTC computation

e Observations:

o redundant path-label sets do not need to be expanded
e Dijkstra-like algorithm [Zou14]

o Simulating distance using distinct labels
e Example:

o two path-label sets from 1 to 5 {a} and {a,c}

o {a,c}can be pruned

year: 2014
venue: Information Systems

[Zou14] L. Zou et al. Efficient processing of label-constraint reachability queries in large graphs. Inf. Syst. 40: 47-66 (2014)

52

Landmark index

e Landmark vertices

o High degree vertices, e.g., hubs
e Landmark indexing [Val17]

o Computing GTC for each landmark
[

Query processing

O

BFS + Index lookup

Q(s, t, L): True, if L” S LC

year: 2017

venue: SIGMOD

(w, SPLS), ...

LH

[Val17] L. Valstar et al. Landmark Indexing for Evaluation of Label-Constrained Reachability Queries. SIGMOD Conference 2017: 345-358

~
~
~
~
~

O

53

~
N
N

Label constrained 2-hop labeling

e The free for merging properties
o SPLS
o 2-hop labeling
e LC 2-hop [Pen20]
o SPLS + PLL [Aki13]
e Example: Q(3, 6, {r, b})
o (1,{rb})in L (3)

o (1{f)inL (6)

year: 2020
venue: VLDB

2 (1,{}) (1, {b})
3 (1,{g}) (1.{r.b}), (2,{r})
4 (1.{rg}), (1,{r,b}),
(2,{g}). (3,{b})
5 (1.{rg}h). (2.{g}) (4.{9})
6 (1.{r}), (2,{r.g}), (5.{r})
7 (1.{r})

[Pen20] Y. Peng et al. Answering billion-scale label-constrained reachability queries within microsecond. Proc. VLDB Endow. 13(6): 812-825 (2020)
[Aki13]. Akiba et al. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. SIGMOD Conference 2013: 349-360

Peng et al

54

55

Person
External Entity
Account

@ —knows —»

7

Money laundering analysis:
Do accounts 14 and 19 have the

repeated outside-inside money
transferring pattern?

PGQL

PATH out_in AS (:Person) -[:debits-]> (:EnternalEntity)
-[:credits]-> (:Person)

SELECT *

FROM MATH (s) -/:out_in+/-> (t)

WHERE ID(s) = 14 AND ID(t) = 19

56

RLC (recursive label-concatenated) queries

e CL (concatenated labels)

O

O

O

O

O

O

(P Ik)", where labels are concatenated

RLC query (s, t, CL) [Zha22]

Checking whether s reaches t

Checking whether the path matches the
given CL pattern

Boolean query

Returning either True or False

Supported languages

SPARQL
PGQL

Path semantics
o Arbitrary paths

RLC queries appear quite often in timeout
query logs [Bon19]

[Zha22] C. Zhang et al. A Reachability Index for Recursive Label-Concatenated Graph Queries. CoRR abs/2203.08606 (2022)
[Bon19] A. Bonifati et al. Navigating the Maze of Wikidata Query Logs. WWW 2019: 127-138

57

A Reachability Index for Recursive
Label-Concatenated Graph Queries

Chao Zhang®, Angela Bonif:

*. Hugo Kapp', Vlad loan Haprian' and Jean-Pierre Lozit

“Lyon 1 University, Lyon, France
TOracle Labs, Ziirich, Switzerland
{chao zhang, angela.bonifati } @univ-lyon 1.fr, {hugokapp. vlad haprian, jean-pierre.lozi } @oracle.com

Abstract—Reachability queries checking the existence of a
path from a source node 0 a target node are fundamental
operators for querying and processing graph data. Current
approaches for index-based evaluation of reachability querics
either focus on plain ility or
with only altemation of labels. In this paper, for the first ime we
study the problem of index-based processing for recursive label-
concatenated reachability queries, referred to as RLC queries.
These queries check the existence of a path that can satisfy
the constraint defined by a concatenation of at most k edge
labels under the Kleene plus. Many practical graph database
and network analysis applications exhibit RLC queries. However,
their evaluation remains prohibitive in current graph database
engines.

We introduce the RLC index, the first reachability index to
efficiently process RLC queries. The RLC index checks whether
the source vertex can reach an intermediate vertex that can
also reach the target vertex under a recursive labelconcatenated
constraint. We popose an indexing algorithm to build the RLC
index, which guarantees the soundness and the completeness of
query execution and avoids recording redundant index entries.
Comprehensive experiments on real-world graphs show that the
RIC index can significantly reduce both the offfine processing
cost and the memory overhead of transitive closure, while
improving query processing up to six orders of magnitude over
online traversals. Finally, our open-s of the

Q@@ e

Fig. I A social and professionsl network on which RLC queries are
instantiaked.

concatenation of edge labels under the Kleene plus,
10 as recursive label-concatenated queries (RLC queries).
queries call for a novel indexing technique due to inherently
different path oomu.nnl\ comp.ned to ellhel pl.nn reachability
queries or i ly. To fur-
ther motivate RLC queries, we prcscnl a running example in
the following.

Running example. Figure[T)shows a property graph inspired
by a real-world use case encoding an interleaved social and

RIC index current mai graph
engines for evaluating RLC queries.

Index Terms—reachability index, graph query, graph
databases, RLC queries

I TRODUCTION

Graphs have been the natural choice of data representation
in various domains e.g., social, blncl\emlcd fraud de-
tection and networks, and y queries
are fundamental graph operators [2]. Plain reachability queries
check whether there exists a path from a source vertex to a
target vertex, for which various indexing techniques have been
proposed (3]-{18). To facilitate the representation of different
types of ips in real-world applicati lee-label
graphs and property graphs, where labels can be assigned
to edges, are more widely adopted nowadays than unlabeled
graphs. Such advanced graph models allow users to add path
constraints when defining reachability queries, which play a
key role in graph analytics. However, current index-based
focus on t-based ity with only al-
ternation [19)-[23). In this paper. we consider for the first time
reachability queries with a path constraint corresponding to a

network along with information of bank accounts
of persons. RLC queries can be used to detect fraud and
money laundering patterns among financial transactions. For
instance, the query Q1(Ajs.Ajq,(debits, credits)t)
checks whether there is a path from account Ay to Ajg
such that nm label sequence of the path is a concatenation
of an ai number (one or more) of occurrences of
(debits, cred which can lead to detect suspicious
patterns of money transfers between these accounts. The RLC
query Q1((Ay4,Ae. (debits, credits)h) evaluates to
true because of the existence of the path (A4, debits, Es,

i E\g, cred Aje). Another ex-
2(Pio, Pr, (knows, knows , worksFor)™) that
evaluates to false because there is no path from Py to Py
satisfying the constraint.

RLC queries are also frequently occurri
query logs. e.g.. Wikidata Query Logs (23], which is the
largest repository of open-source graph queries (of the order
of 500M queries). In particular, RLC queries often time out
in these logs [24] thus showing the limitations of graph query
engines to efficiently evaluate them. Moreover, Neodj (v4.3)
(25 and TigerGraph (v3.3) 26). two of the mainstream graph
data processing engines. do not yet support RLC queries in

in real-world

https://arxiv.org/abs/2203.08606

g-rpgs/rlc-index -

This repository provides the RLC index, a
reachability index for processing graph queries with
a concatenation of edge labels under...

A1 ®o ¥ 3 %0 O

Contributor Issues Stars Forks

https://github.com/g-rpgs/ric-index

UNIVERSITE

El:

Oracle Labs
PGX

58

https://github.com/g-rpqs/rlc-index
https://arxiv.org/abs/2203.08606

Challenges for reachability indexes with path constraints

1.

2.

3.

Limited resources
o Partial index + Guided online search
Beyond static graphs
o Dynamic graphs
m Append-only graphs
m Fully dynamic graphs
o Streaming graphs [Pac20]

Distributed graphs

[Pac20] A. Pacaci et al. Regular Path Query Evaluation on Streaming Graphs. SIGMOD Conference 2020: 1415-1430

4.
5.
6.
7

More regular expressions [Bon19]
Upper and lower bound of hops
REM [Lib12]: topology + data

Temporal graph query with time interval
[Ros22]

Vol:15 No:8 — DLCR: Efficient
Indexing for Label-Constrained

Reachability Queries on Large
Dynamic Graphs

[Bon19] A. Bonifati et al. Navigating the Maze of Wikidata Query Logs. WWW 2019: 127-138

[Lib12]

L. Libkin et al. Regular path queries on graphs with data. ICDT 2012: 74-85

[Ros22] C. Rost et al. Distributed temporal graph analytics with GRADOOP. VLDB J. 31(2): 375-401 (2022)

59

Thank you and Q&A

