
Big Graph Processing Systems:
Reachability Indexes

Chao Zhang, Lyon 1 University & CNRS Liris (France)
 eBISS Summer School 2022 (Cesena, Italy)

Graphs

Plain graph Edge-labeled graph
Plain reachability Path-constraint reachability

Agenda

1. Reachability on plain graphs

a. A panoramic view of reachability indexes

b. Milestones

2. Reachability on edge-labeled graphs

a. Techniques

■ Alternation-based path constraints

■ Concatenation-based path constraints

b. Challenges

3

Section I: Plain Reachability

4

Is there a path from vertex 14 to vertex 20?

5

Plain reachability query

● Q(s, t) on a directed graph G

○ Checking the existence of a path from s to t in G

● Boolean query

○ Either true or false

● Fundamental graph operator [Sah17]

○ Inferring the relationships among objects

E.g., querying protein-protein interaction in biology networks [Yil]

E.g., querying related works in citation networks [Yil]

[Sah17] S. Sahu et al. The ubiquity of large graphs and surprising challenges of graph processing. VLDB J. 29(2-3): 595-618 (2020)
[Yil10] H. Yildirim et al. GRAIL: Scalable Reachability Index for Large Graphs. Proc. VLDB Endow. 3(1): 276-284 (2010) 6

Reachability query processing

● Query evaluation

○ Online traversal: BFS, DFS, and BiBFS

○ Problem: graphs are large

● An index for reachability queries

○ Reachability index

7
Music recommendation graph: http://sixdegrees.hu/last.fm/interactive_map.html

Naive index: transitive closure
10 11 12 13 14 15 16 17 18 19 20

10 T T T T T T T T T T

11 T T T T T T T T T

12

13 T T T T T T T

14 T T T T T T T

15 T T T T T T T

16 T T T T T T T

17 T T T T T T T

18 T T T T T T T

19 T

20

so
ur

ce

target

8

Example: Vertex 10
reaches vertex 20 as the

cell is not empty

Complexity

G (V, E)

n = |V|

m = |E|

Query time Indexing time

Index size

1

n+m

n * m

n2

BFS

Transitive Closure

BFS Transitive Closure

Full online
computation

Full offline
computation

9

10

1983 - 2002

11

2005 - 2009

12

2010 - 2017

13

2-Hop Labeling

Tree Cove
r

Approximate TC

14

Tree DAG Cyclic
Graph

Interval Labeling Tree Cover

Transformation

Step 1

Step 2 Step 3

15

Tree DAG

Tarjan's Algorithm [Tar72] to
compute Strongly Connected

Components

[Tar72] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2): 146-160 (1972)

Cyclic
Graph

16

Q: How to efficiently check
Q(10,14) on the tree? A: Subtree containment

17

Q: How to leverage the
property? A: Interval schema based on

postorder traversal

[0,0]

[2,2]

[3,3]

[0,6]

[0,5]

[0,1] [3,4]

Q(10, 14) = True
Interval of 10: [0,6]
Postorder number of 14: 1
1 ∊ [0,6]

[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

Interval labeling, for each v
● postorder number of v
● the smallest postorder number of

all the successors of v

18

DAG

r: virtual root
→: virtual edge
→: tree edge

0

1

2

3

4

5

6

78

9

10

11

Q1: How about multiple trees?

Assigning a virtual root

From Tree to DAG

[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

19

V Interval

10 [0, 6]

11 [0, 5]

12 [3, 4]

13 [2, 2]

14 [0, 1]

15 [0, 0]

16 [7, 10]

17 [3, 3]

18 [7, 8]

19 [9, 9]

20 [7, 7]

Q2: How about non-tree edges?

Inheriting the intervals

0

1

2

3

4

5

6

78

9

10

11

From Tree to DAG

[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

20

0

1

2

3

4

5

6

78

9

10

11
[2, 4], [0, 0]

[7, 10], [2, 4],
[0, 0]

Tree Cover

Inheriting the intervals

Merging
intervals

V Interval

10 [0, 6]

11 [0, 5]

12 [3, 4], [2,2], [0,0]

13 [2, 2], [0, 0]

14 [0, 1]

15 [0, 0]

16 [7, 10], [3, 3],
[0,0], [3, 4], [2,2]

17 [3, 3], [0,0]

18 [7, 8], [0, 0]

19 [9, 9], [7, 7]

20 [7, 7]

Q2: How about non-tree edges?
From Tree to DAG

[Agr89] R. Agrawal et al. Efficient management of transitive relationships in large data and knowledge bases. SIGMOD Conference 1989: 253-262

Complexity

● Index size: O(n2)

● Indexing time: O(nm)

● Query time: O(log n)

● Bottleneck:

○ A larger number of intervals caused by non-tree edges

● Q: how to reduce the number of intervals?

21

Reducing the number of intervals

● Bounding the number of intervals

○ GRAIL [Yil10]: exactly k intervals by computing k spanning trees

○ Ferrari [Seu13]: at most k intervals by merging non-adjacent intervals

● Incomplete indexes

○ False positives for query processing using indexes

● Resort to online search

○ Guided DFS by querying the incomplete indexes

22[Yil10] H. Yildirim et al. GRAIL: Scalable Reachability Index for Large Graphs. Proc. VLDB Endow. 3(1): 276-284 (2010)
[Seu13] S. Seufert et al. FERRARI: Flexible and efficient reachability range assignment for graph indexing. ICDE 2013: 1009-1020

Other techniques based on tree cover

● Dual-labeling [Wan06]

○ Compressing transitive closure for non-tree edges

● GRIPP [Tri07]

○ Recursive querying intervals of rooted spanning trees

23
[Wan06] H. Wang et al. Dual Labeling: Answering Graph Reachability Queries in Constant Time. ICDE 2006: 75
[Tri07] S. Tril et al. Fast and practical indexing and querying of very large graphs. SIGMOD Conference 2007: 845-856

24

2-Hop Labeling

Tree Cove
r

Approximate TC

Rethinking of transitive closure

S U T

S U T

S 1 1

U 1

T

so
ur

ce

target
We can derive the existence of p(s, t)
using p(s, u) and p(u, t)

25

Rethinking of transitive closure

S U T

S U T V W

S 1 1 1

U 1 1

T

V 1 1 1

W

so
ur

ce

target

With the deriving, we only need to record
p(s, u), p(v, u), p(u, w), and p(u, t).

V W

26

2-Hop labeling

● Assigning L(v) = (Lin(v), Lout(v)) for each v in G,

○ ∀ u ∊ Lin(v), ∃ a path from u to v

○ ∀ w ∊ Lout(v), ∃ a path from v to w

● Vertex s reaches t in G, if and only if

○ Case 1: ∃ t ∊ Lout(s), or

○ Case 2: ∃ s ∊ Lin(t), or

○ Case 3: Lin(t) ∩ Lout(s) ≠ ∅

● Index size: ∑v∊V |Lin(v)| + |Lout(v)|

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946 27

28

v Lin(v) Lout(v)

10 ∅ 11, 12, 15

11 ∅ 15

12 10, 11, 15, 16 ∅

13 11 15

14 11 15

15 ∅ 15

16 17, 15 12, 15, 18

17 15 18

18 15 15

19 15 ∅

20 15, 17, 18 ∅

2-hop labeling

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

29

v Lin(v) Lout(v)

10 ∅ 11, 12, 15

11 ∅ 15

12 10, 11, 15, 16 ∅

13 11 15

14 11 15

15 ∅ 15

16 17, 15 12, 15, 18

17 15 18

18 15 15

19 15 ∅

20 15, 17, 18 ∅

Q(10, 20) = true, Lout(10) ∩ Lin(20) = 15

Q(15, 18) = true, 15 ∈ Lin(18)

Q(16, 13) = false

2-hop labeling

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

Minimum 2-hop labeling

30

● The number of Case 3 should be maximized
● Minimum 2-hop: the one with the minimum index size

● NP-hard problem [1]

● Approximated algorithm [1]
○ Bounded by a logarithmic factor

○ Complexity

■ Indexing time: O(n4)

■ Index size: O(nm1/2)

■ Query time: O(m1/2)

Impractical for
real-world large graphs

[Coh02] E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA 2002: 937-946

Advanced 2-hop indexing heuristics

● TFL [Che13]

○ Recursive topological folding over DAG

● DL [Jin13]

○ Vertex order for non-redundant hop vertices

● PLL [Aki13]

○ Greedy indexing according to vertex degree

● TOL [Zhu14]

○ General total order for indexing

31

[Che13] J. Cheng et al. TF-Label: a topological-folding labeling scheme for reachability querying in a large graph. SIGMOD Conference 2013: 193-204
[Jin13] R. Jin et al. Simple, Fast, and Scalable Reachability Oracle. Proc. VLDB Endow. 6(14): 1978-1989 (2013)
[Aki13] E. Akiba et al. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. SIGMOD Conference 2013: 349-360
[Zhu14] A. Zhu et al. Reachability queries on large dynamic graphs: a total order approach. SIGMOD Conference 2014: 1323-1334

32

S T

S T

S T

2-Hop

3-Hop [Jin09]

vertex

chain

tree

Path-Hop [Cai10]

[Jin09] R. Jin et al. 3-HOP: a high-compression indexing scheme for reachability query. SIGMOD Conference 2009: 813-826
[Cai10] J. Cai et al. Path-hop: efficiently indexing large graphs for reachability queries. CIKM 2010: 119-128

Further reducing
index size

33

2-Hop Labeling

Tree Cove
r

Approximate TC

Rethinking of transitive closure

34

● out(v): v and all the vertices that v can reach

● If u reaches v, then out(v) ⊆ out(u)

● Example: 10 reaches 13,

○ out(10) = {10, 11, 12, 13, 14, 15, 17}

○ out(13) = {13, 15}

● If out(v) ⊈ out(u), then u does not reach v

● Similarly, if in(u) ⊈ in(v), then u does not reaches
v, where in(v) denotes v and all the vertices that
can reach v

How to leverage the
contrapositive conditions?

Membership testing

K-min-wise independent permutation

Bloom filter

35

VLDB’14

TKDE’17

Bloom filter labeling

● Compute in(v) and out(v) for each v

○ In in(v) and out(v), recording the hash codes of vertices

● Query processing

○ set containment testing

● False positives require online traversal

○ Guided DFS with recursively querying the index

36

37

hash(v) = (v mod 7)

V in(v) out(v)

10 3 0,1,3,4,5,6

11 3,4 0,1,3,4,5,6

12 2,3,4,5 1,3,5,6

13 3,4,5,6 1,6

14 0,3,4 0,1

15 0,1,2,3,4,5,6 1

16 2 1,2,3,4,5,6

17 2,3,4,5 1,3

18 2,4 1,4,6

19 2,5 5,6

20 2,4,5 6

0

1

2

3
4

5

6

3

4

5

6

Bloom Filter Labeling

Q(12, 18): False because out(18) ⊈ out(12)

Q(11, 18): True, but false positive
Guided DFS leads to False

Other reachability techniques

● Path-tree labeling [Jin08]: path partition + two-dimension labeling over a planar graph

● SCRAB [Jin12]: reachability backbone + reachability through backbone vertices

● HL [Jin13]: recursive reachability backbones

● Feline [Vel14]: dominance drawing (no false negatives) + online search

● Preach [Mer14]: contraction hierarchies + bidirectional online search

● O’Reach [Han21]: partial hop labeling + topological order + existing indexes

38

[Jin08] R. Jin et al. Efficiently answering reachability queries on very large directed graphs. SIGMOD Conference 2008: 595-608
[Jin12] R. Jin et al. SCARAB: scaling reachability computation on large graphs. SIGMOD Conference 2012: 169-180
[Jin13] R. Jin et al. Simple, Fast, and Scalable Reachability Oracle. Proc. VLDB Endow. 6(14): 1978-1989 (2013)
[Vel14] R. Veloso et al. Reachability Queries in Very Large Graphs: A Fast Refined Online Search Approach. EDBT 2014: 511-522
[Mer14] F. Merz et al. PReaCH: A Fast Lightweight Reachability Index Using Pruning and Contraction Hierarchies. ESA 2014: 701-712
[Han21] K.Hanauer et al. O'Reach: Even Faster Reachability in Large Graphs. SEA 2021: 13:1-13:24

Readings

● 2 minutes

○ T. Özsu. Graph Processing: A Panoramic View and Some open Problems. Keynote at VLDB’19. (The section on reachability queries)

● 10 minutes

○ J. Su et al. Reachability Querying: Can It Be even Faster? In TKDE’17. (The related work section)

● Half a day

○ J. Xu yu et al. Graph Reachability Queries: A Survey. Managing and Mining Graph Data 2010.

● One day

○ A. Bonifati et al. Querying Graphs. Morgan & Claypool Publishers 2018. (Chapter 6.5: Reachability Indexing)

● Unlimited time

○ 9 SIGMOD/TODS + 4 VLDB + 4 ICDE/TKDE + 1 SODA + 1 EDBT, etc.

39

Section II: Path-Constraint Reachability

40

Reachability queries with path-constraints

41

● Regular path queries (RPQs):

○ Having a regular expression as a constraint [Ang17]

● Reachability:

○ Checking the existence of a path that can satisfy a path
constraint

● The Kleene operator: either * or +

● Two types (so far)

○ LCR: alternation-based reachability

○ RLC: concatenation-based reachability

RPQs

LCR RLC

Reachability

[Ang17] R. Angles et al. Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv. 50(5): 68:1-68:40 (2017)

The overlapping: a single
label under the Kleene

operator.

42

LCR Queries

RLC Queries

LCR (label-constrained reachability) queries

● LC (label constraint)

○ (l1 ∪ ... ∪ lk)
+, where ∪ is disjunction

● LCR query (s, t, LC)

○ Checking whether s reaches t

○ Checking whether the path only contains
edges with labels in the LC

● Boolean query

○ Returning either True or False

43

● Supported languages

○ SPARQL

○ PGQL

○ openCypher

44

Does Alice reach Henry
under the constraint
{friendOf, follows}?

True

ASK
WHERE{
 :Alice (:friendOf|:follows)+ :Henry
}

SPARQL

45

Does Bob reach Star Wars
under the constraint

{friendOf, likes}?

False

ASK
WHERE{
 :Bob (:friendOf|:likes)+ :Star_Wars
}

SPARQL

LCR query evaluation

● Online traversal

○ DFS, BFS, or BiBFS, visiting only edges with labels in the LC

○ Unfeasible for large graphs

● An index for LCR queries

○ LCR indexes

● Index-based evaluation for Q(s, t, LC)

○ Path-label set from s to t is mandatory

● Redundancy of path-label sets?

46

47

Do we need to record both
of them?

Two path-label sets from
Alice to Kim

1. {friendOf}

2. {friendOf, follows}

{friendOf} ⊂ {friendOf,
follows} ⊆ a given constraint

● Definition [Jin10]
○ The minimal subsets of all the path-label sets from u to v

Sufficient path-label set (SPLS)

48

u v

{a, b}

{a, b, c}

{a, d}

[Jin10] R. Jin et al. Computing label-constraint reachability in graph databases. SIGMOD Conference 2010: 123-134

w

{e}

{d}

● Free for merging [1], i.e., distributive
○ Computing SPLS(p(u, w)) by using SPLS(p(u, v)) and SPLS(p(v, w))

○ SPLS from u to w: {a, b, e}, {a, b, d}, {a, b, c, e}, {a, b, c, d}, {a, d, e}, and {a, d}

GTC (Generalized transitive closure)

● GTC [1]: transitive closure with sufficient path-label set

○ For each (u, v):

■ recording whether u reaches v, and

■ SPLS(u, v)

● Problems:

○ Too much time to compute

○ Too much space to store

● How to efficiently compute and effectively compress GTC?

49
[Jin10] R. Jin et al. Computing label-constraint reachability in graph databases. SIGMOD Conference 2010: 123-134

50

2010 - 2021

● Path characterization [1]:

○ Case 1: (u, x) or (y, v) is a tree edge

○ Case 2: neither (u, x) nor (y, v) is a tree
edge

■ Partial GTC

GTC compression using spanning tree

51

u y vx

s v tu

Tree Path Tree PathCase 2 Path

Edge Path Edge

● Query processing:

○ Case 2: partial GTC

○ Case 1: spanning tree + partial transitive
closure

[Jin10] R. Jin et al. Computing label-constraint reachability in graph databases. SIGMOD Conference 2010: 123-134

Efficient GTC computation

● Observations:

○ redundant path-label sets do not need to be expanded

● Dijkstra-like algorithm [Zou14]

○ Simulating distance using distinct labels

● Example:

○ two path-label sets from 1 to 5 {a} and {a,c}

○ {a,c} can be pruned

52[Zou14] L. Zou et al. Efficient processing of label-constraint reachability queries in large graphs. Inf. Syst. 40: 47-66 (2014)

2

43

1

5 6

a

a

a

a

a

a

c

Landmark index

● Landmark vertices

○ High degree vertices, e.g., hubs

● Landmark indexing [Val17]

○ Computing GTC for each landmark

● Query processing

○ BFS + Index lookup

53[Val17] L. Valstar et al. Landmark Indexing for Evaluation of Label-Constrained Reachability Queries. SIGMOD Conference 2017: 345-358

s v

(w, SPLS), ...

t
L’⊆ LC L’’

Q(s, t, L): True, if L’’ ⊆ LC

Label constrained 2-hop labeling

● The free for merging properties

○ SPLS

○ 2-hop labeling

● LC 2-hop [Pen20]

○ SPLS + PLL [Aki13]

● Example: Q(3, 6, {r, b})

○ (1, {r,b}) in Lout(3)

○ (1,{r}) in Lin(6)

54[Pen20] Y. Peng et al. Answering billion-scale label-constrained reachability queries within microsecond. Proc. VLDB Endow. 13(6): 812-825 (2020)
[Aki13]. Akiba et al. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. SIGMOD Conference 2013: 349-360

7

1

6 5

2 4

3
r

r

r

r r

gg

bb
g

V Lin(v) Lout(v)

1

2 (1, {r}) (1, {b})

3 (1, {g}) (1,{r,b}), (2,{r})

4 (1,{r,g}), (1,{r,b}),
(2,{g}), (3,{b})

5 (1,{r,g}), (2,{g}) (4,{g})

6 (1,{r}), (2,{r,g}), (5,{r})

7 (1,{r})

55

LCR Queries

RLC Queries

56

Person
External Entity
Account

Money laundering analysis:

Do accounts 14 and 19 have the
repeated outside-inside money
transferring pattern?

PATH out_in AS (:Person) -[:debits-]> (:EnternalEntity)
 -[:credits]-> (:Person)
SELECT *
FROM MATH (s) -/:out_in+/-> (t)
WHERE ID(s) = 14 AND ID(t) = 19

PGQL

RLC (recursive label-concatenated) queries

● CL (concatenated labels)

○ (l1, …, lk)
+, where labels are concatenated

● RLC query (s, t, CL) [Zha22]

○ Checking whether s reaches t

○ Checking whether the path matches the
given CL pattern

● Boolean query

○ Returning either True or False

● Supported languages

○ SPARQL

○ PGQL

57[Zha22] C. Zhang et al. A Reachability Index for Recursive Label-Concatenated Graph Queries. CoRR abs/2203.08606 (2022)
[Bon19] A. Bonifati et al. Navigating the Maze of Wikidata Query Logs. WWW 2019: 127-138

● Path semantics

○ Arbitrary paths

● RLC queries appear quite often in timeout
query logs [Bon19]

58

https://github.com/g-rpqs/rlc-index

https://arxiv.org/abs/2203.08606

https://github.com/g-rpqs/rlc-index
https://arxiv.org/abs/2203.08606

Challenges for reachability indexes with path constraints

1. Limited resources

○ Partial index + Guided online search

2. Beyond static graphs

○ Dynamic graphs

■ Append-only graphs

■ Fully dynamic graphs

○ Streaming graphs [Pac20]

3. Distributed graphs

59

4. More regular expressions [Bon19]

5. Upper and lower bound of hops

6. REM [Lib12]: topology + data

7. Temporal graph query with time interval
[Ros22]

[Pac20] A. Pacaci et al. Regular Path Query Evaluation on Streaming Graphs. SIGMOD Conference 2020: 1415-1430
[Bon19] A. Bonifati et al. Navigating the Maze of Wikidata Query Logs. WWW 2019: 127-138
[Lib12] L. Libkin et al. Regular path queries on graphs with data. ICDT 2012: 74-85
[Ros22] C. Rost et al. Distributed temporal graph analytics with GRADOOP. VLDB J. 31(2): 375-401 (2022)

60

Thank you and Q&A

