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Graphs are everywhere! Everyone™ uses graphs!

Graphs provide a universal and simple blueprint for Tech-driving applications = data science +
how to look at the world and make sense of it. multi-hop relationships
not yet :-(
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[Cartoon by David Somerville, based on a two pane version by Hugh McLeod ]



Graphs as unifying abstractions

e Graphs are natural abstractions for representing interconnected objects when
encoding, explaining and predicting real-world and digital-world phenomena.

e Graphs are underpinning several data management ecosystems, in societal,
scientific, RDF, product and digital domains according to a recent user survey
[Sahu20].

e Nevertheless, the data models, query languages and system requirements
needed for graphs are constantly evolving.

[Sahu20] Siddhartha Sahu et al:The ubiquity of large graphs and surprising challenges of graph processing: extended survey. VLDB J.
29(2-3): 595-618 (2020)



COVID::GRAPH

A plethora of applications

e Among which, the covidgraph.org initiative
aiming at building the Covid19 knowledge
graph:

o  Collecting patents, publications about the
. Medical & Pharma Medical Data Scientists General Public,
human coronaviruses Researchers Dotobuses & Developers Press & Medin

o Biomedical data (genomics and omics)

o  Experimental data about clinical trials

o  Key demographic indicators



http://covidgraph.org

Web-scale Graph Processing

Google PageRank: Shift from MapReduce
to Vertex-centric computation

o  Both distributed but the latter improves
locality, while providing linear scalability
and achieving better performances

Other systems support more elaborate
computational models (task-based instead
of distributed i.e. Facebook and Apache
Giraph)
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Several graph database engines on the rise

e The number of graph engines is growing over the years as well as their
popularity

DB-Engines Ranking of Graph DBMS Neod;j

— Microsoft Azure Cosmos DB
ArangoDB
OrientDB

— Virtuoso

—— JanusGraph
GraphDB

— Amazon Neptune

— TigerGraph
Stardog
Dgraph

— Fauna
AllegroGraph
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Expressivity of the graphs/queries

e Dependence on the chosen data model and on how do humans
conceptualize graphs

e Interoperability issues (due to multiple heterogeneous data sources) are to be
taken into account

e A data model lattice to navigate across data models, balancing
understandability and expressive power

e New algebraic frameworks needed to account for an increasing variety of
graph workloads



Property graph example

21 :worksFor

12 :Apprentice

13 :Apprentice
24 :knows

10 :Novice salary = 2000
salary = 1000 20 :knows 55 K level ="'A'
C\ year = 2016 ‘\'—MWS/C\
11 :Expert
salary = 3000 23 knows
year = 2017
25 :knows 26 :worksFor

28 :worksFor

4
14 :Apprentice 15 :Expert

O

27 :worksFor

O

16 :Expert

30 :worksFor
since = 1997



Property graphs

Assume pairwise-disjoint sets of :
O (objects), L (labels), K (property keys), and N (values)

A property graph is a structure V/, E where

o

VY < O : finite set of objects (vertices)

E < O : finite set of objects (edges)
n:E—-VxV:

assignment of an ordered pair of vertices to each edge
AN VUE->PL):

assignment of a finite set of labels to each object
v:(VUE)xK >N :

partial assignment of values for properties to objects

10



A lattice of data models

e Adata model per use case

e Need of making different data models
interoperable via mappings or direct
translations

e How expressive and human-friendly is a
data model?

ISO/IEC GQL

WSC RDF Dataset Property Graph Model
Hyper vertices Multiple edge labels

Neodj / Oracle PGQL
Property Graph Model

Multiple vertex labels

|

Gremlin / MS Cosmos Property
Graph Model

W3C RDF Graph

A
Multiple edges between a pair of
nodes,
single edge label

T

Single vertex labels, vertex properties, edge properties

Pregel / Giraph Graph
(used for e.g. Node2vec)

o

Data Graph Weighted Graph
(used for e.g. Page rank, Connected (used for e.g. Shortest path, Louvain
component) modularity)
Vertex data Edge data

Directed Graph

-

A

Direction

Simple Graph

11



Basic

ingredients
Graph Queries
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Logic as the underlying formalism of graph query languages

+ = Oy
ot \._.
Input graph Graph pattern Binding table

e Semantics of the Graph Query Languages based on non-recursive Datalog with negation

e Several concrete query languages: OpenCypher, Oracle PGQL, ...then GQL and SQL/PGQ in the

future (ISO/IEC W3G standardization process ongoing with the participation of the LDBC community) .



Graph Pattern Matching and Filtering

SELECT n2.fname AS Authorl, n3.fname AS Author2, nl.title AS EntryTitle

FROM "biblio"

MATCH (nl:Entry)-[el:has_author]->(n2:Author), (nl1)-[e2:has_author]->(n3)

WHERE n2 !'= n3 AND el.order < e2.order

Authorl | Author?2 EntryTitle

"Mariano"|"Alberto"

"GraphLog: a Visual Formalism ..."
"Alberto"| "Peter" |"Finding regular simple paths ..."

Entry, InProceedings

order="1"

has_author

has_author

fname="Mariano”
Iname=“Consens”

fname=“Alberto”
Iname=“Mendelzon”

fname="Peter”
Iname="Wood”

has_author

has_author

title="GraphLog: a

Visual Formalism ...”

numpages=-13"
keyword="Datalog”

Entry, Article

simple paths ...”
numpages="24"

keyword="recursive queries”

keyword="“paths”

title="Finding regular

pages=“404-416"

booktitle

Proceedings
title="PODS”

year=“1990"
month="April”

cites

Journal

title="SIAM J. Comput.”
year=1995"

vol=*24"

num="“6"

published_in

pages=“1235-1258"




From basic graph patterns to complex graph patterns

e Basic graph patterns including joins (Conjunctive Queries - CQs), e.g.

:Apprentice Expert :Novice ~ ‘Apprentice
(X,y¥,z) <— :Novice (x),
:Apprentice(y), :Expert(z),
:knows(x,y), :knows(y,z),
:knows(z,x)

:Expel
=20, (X,y,z) <— :Apprentice (x), :Expert (y),
:Expert(z), :worksFor(x,y),
:worksFor(x,z)

e Complex graph patterns with joins and recursion (Conjunctive Regular Path
Queries - CRPQs), e.g.

knows * ° worksFor (n,e) <— :knows*(n,a,), :worksFor(a,,e),

:knows (n,a2), :worksFor(az,e),
:worksFor :worksFor(e,e)

:knows M

15



Regular Path Queries (RPQs)

- Aregular path query (RPQ) over the set of edge labels 2 is expressed as a
regular expression over 2.

- The answer Q(D) to an RPQ Q over a database D is the set of pairs of nodes
connected in D by a directed path traversing a sequence of edges forming a
word in the regular language L(Q) defined by Q.

- Ifa € L, thena € RPQ.

- Ife € RPQ, then e' € RPQ.

- Ife, f € RPQ, then (e)/(f) € RPQ.
- Ife, f € RPQ, then e + f € RPQ.
- Ife € RPQ, then e+ € RPAQ.

16



Beyond Regular Path Queries (UCRPQS)

-  UC2RPAQ: Unions of Conjunctions of Regular Path Queries

- Aunion of conjunctive regular path queries (UCRPQ) is a finite non-empty set R € CRPQ,
each element of which is of the same arity m. Each R is a rule of the form:

(Z1s.- v Zm) < a1(X1,Y1)s- .. Qn(Xn, Yn)

where the a are RPQs and x, y,are variables and each z is chosen in the set of variables {x,,
Yir oeeerX Y}

- Core constructs of the W3C’s SPARQL 1.1 1, , Oracle’s PGQL and Neo4j’'s openCypher
- Well understood theoretical properties (e.g., polynomial data complexity [Bar13])

[Bar13] P. Barceld. Querying graph databases. PODS’13.

17



Query evaluation semantics

The semantics Q(G) of evaluating query a Q on graph G is based on
embeddings of the rule body’s of Q in G:

Q(G) = L  {h(head) | h(body) C G}

head<«body€ Q

where h is a homomorphism, i.e., a function with domain N U Variables and
range N that is the identity on N.

Under homomorphism, different query variables can be mapped to the same
vertex

Alternatively, under isomorphism, the mapping between a query variable and
a graph vertex is injective

18



Homomorphism-based vs. Isomorphism-based semantics

flu

migraine ¢——_ treatsDisease
hasDisease has%?/‘ .

st jude's
worksAt
knows
knows
saori

patientOf
knows
umi patientOf
knows knows sriram

kotaro

knows

Example: Patients and their friends (homomorphisms)
Q =(?p, ?f ) — (?p, knows, ?f), (?p, patientOf , 2d)

Q(G)= {{kotaro, saori), {kotaro, sriramy, . . .}

19



Homomorphism-based vs. Isomorphism-based semantics

migraine flu

ﬂ—\treatsDisease
; hasDiseas .
hasDisease KE/‘ st jude's

sue worksAt
knows
knows

saori
patientOf
H knows
umi patientOf
'k,""_“ﬁ/ knows sriram
knows

kotaro

Example: Patients and their friends (isomorphisms)
Q = (?p, ?f) «— (?p, knows, ?f), (?p, patientOf , ?d)
Q(G)= {{ketare—saer—(kotaro, sriram), . . .}

20



Path semantics for Regular Path Queries (RPQs)

migraine flu

i—\treatsDisease
; hasDiseas .
hasDisease /9/‘ st jude's

sue worksAt

knows

knows R

saori
s patientOf
: knows nows
umi patientOf

"‘,"EVE/ knows sriram

kotaro

knows

Example: People who know each other (arbitrary path semantics)
Q =(?p, ?f ) — (?p, knows*, ?f)

Q(G)= {<kotaro, saori), {saori, kotaro), {kotaro, kotaro), {saori, saori), {sue, umi), {umi, kotaro), {sue, kotaro),
(kotaro, sriram), {saori, sriram), . . .}

21



Path semantics for Regular Path Queries (RPQs)

migraine flu

i—\treatsDisease
; hasDiseas .
hasDisease /9/‘ st jude's

sue worksAt

knows

knows R

saori
s patientOf
: knows nows
umi patientOf

"‘,"EVE/ knows sriram

kotaro

knows

Example: People who know each other (simple path semantics)

Q =(?p, ?f ) — (?p, knows*, ?f)

Q(G)= {kotaro, saori), {saori, kotaro), : : b ~(sue, umi), {umi, kotaro), {sue, kotaro),
(kotaro, sriram), {saori, sriram), . . .}

22



Algebraic operators for query processing

e An algebra for complex graph queries (UCRPQs)

e Example:

D¢

e = [{ | e* | eUe |[><]pos,'.p05j

:knows(x, y) AS k, :Expert(z) ,k.year > 2000,y = z.
-knows(x, y).

:worksFor(x, y) .

:knownExpert(x, x) , :related™ (x, y) ,

x.salary < 5000, y.salary < x.salary.

:knownExpert(y.y) IN a
related(x, y) IN b
related(x, y) IN b

result(x)

Tt

N?rc] (N:%f.trgl (:knows, (:knows U :worksFor)™)),

edge,.year > 2000 A A(trg,) = :Expert A trg, .salary < 5000
A trgy.salary > trg,.salary A trg; = srcy

[Bo18] A. Bonifati, G. Fletcher, H. Voigt and N. Yakovets.: Querying Graphs. Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2018
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Logic and Algebra for graph processing and learning

e Logical reasoning can help drive the interplay between graph databases,
statistical learning, and symbolic learning:

o Understand how to combine ontological reasoning, property graph querying and graph
embeddings

o Help predict recurrent structures into graphlets to be used in query processing and algebraic
operators by using graph neural networks

o Encode probabilistic models and causal inference relationships in property graphs to form the
basis of graph neural networks

[Zu21] Z. Wu et al.: A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32(1): 4-24 (2021)
[Ma21] G. Ma et al.: Deep graph similarity learning: a survey. Data Min. Knowl. Discov. 35(3): 688-725 (2021)

24



How do real-world queries look like: the Wikidata lesson
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e Higher percentages of large TO queries and organic (OK+TO) queries
e Avg nr. of triples for OK (TimeOut) queries is 2.58 (5.65)

e Highest nr. of triples is 67 (found in 68 queries in the logs)

e The largest property path length is 19

[Bo19] A. Bonifati, W. Martens, T. Timm: Navigating the Maze of Wikidata Query Logs. In Proceedings of the Web Conference, 2019



Characteristics of Robotic Property Paths

Expression Type AbsoluteV  RelativeV  AbsoluteU  RelativeU
" 27,850,487 50.48% 1,392,865 9.87%
ab*, at 9,417,166 17.07% 2,816,134 19.96%
ab*c* 823,153 1.49% 67,502 0.48%
A* 328,895 0.60% 51,860 0.37%
ab*c 122,286 0.22% 1,680 0.01%
a* b* 62,784 0.11% 608
abc* 27,287 0.05% 4,083 0.03%
a?’b* 15,893 0.03% 11,999 0.09%
At 4,674 0.01% 2,043 0.01%
Ab* 1,562 674
Other transitive 1,643 161
- ay 13,382,005 24.26% 9,368,442 66.41%
A 3,043,725 5.52% 381,434 2.70%
A? 31,150 0.06% 296
8132? X0 ak? 25,872 0.05% 5,940 0.04%
“a 21,202 0.04% 471
abc? 7,620 0.01% 8
Other non-transitive 697 289
Total 55,168,101 100% 14,106,489 100%
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Characteristics of Organic Property Paths

Expression Type  AbsoluteV  RelativeV  AbsoluteU  RelativeU

AB* 57,913 35.03% 28,034 33.87%
A¥* 41,777 25.27% 22,071 26.67%
ABCT 6,497 3.93% 3,044 68%
a* p* 3,330 2.01% 849 1.03%
ab*c* 2,704 1.64% 1,172 1.42%
a*B1?7by? - - by? 1,789 1.08% 422 0.51%
ab|c*d 1,514 0.92% 534 0.65%
a* |b* 347 0.21% 253 0.31%
abCD* 283 0.17% 219 0.26%
ab*c 113 0.07% 90 0.11%
a*|B 102 0.06% 76 0.09%
~ (ab)* 101 0.06% 82 0.10%

31,032 18.77% 19.03%
A 13,248 8.017% , 7%
a1?---ag? 1,938 1.17% 1,470 1.78%

total 165,343  100.00% 82,764 100.00%




Basic
ingredients

Streaming property
graphs
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Dynamic and streaming aspects

e Dynamic graphs are graphs that can accommodate updates (insertions, deletions,
changes) and allow querying on the new/old state

e Streaming graphs are graphs that are unbound as new data arrives at high-speed.
e Current systems and libraries (Gelly/Apache Flink) focus on aggregates/projections

e However, more complex query processing operators taking into account recursion,
path-oriented semantics etc. need to be investigated

e Graph processing systems are also inherently dynamic and need to respond to all
these challenges

29



Streaming graphs
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@ Combines two difficult problems:
streaming+graphs

@ Unbounded = don't see entire graph

@ Streaming rates can be very high
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Streaming graph models

e \Window-based semantics (use window to batch edges)
e Continuous semantics (edges are batched as they come)

e Complex vs. Simple operations

Sliding 18
window =

31



Streaming RPQs

(follows - mentions)™

- T T <
- ~
- ~

7 N

Q1 = (follows - mentions)™ —_ e

follows follows

mentions mentions

-

m m,
i, Dt
&) )

Simple paths Arbitrary paths

[Pa20] A. Pacaci, A. Bonifati and T. Ozsu.: Regular Path Query Evaluation on Streaming Graphs. SIGMOD Conference 2020:
1415-1430
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Towards a streaming graph query processor

Based on LDBC SNB Interactive Query 7:

G-CORE representation Datalog program:
PATH RL = (x)-[:follows]->(y), RL(u1, u2) = I(ur, m), f(u1, u2), p(u2, m)
(x)-[:1ikes] ->(m1)<-[:posts]-(y) Answer(u, m) < RL™ (u, u2), p(u2, m)

CONSTRUCT (p1) -[:notifyl-> (m)

MATCH (p1)-/ <"RL+> /->(p2),
(p2)-[:posts]->(m)

ON 1ldbc_stream WINDOW(24 hours)

33



Streaming graph algebra

G-CORE Query:

PATH RL = (x)-[:follows]->(y),
(x)-[:1likes]->(m1)<-[:posts]-(y)
CONSTRUCT (p1) -[:notify]l-> (m)
MATCH (p1)-/ <"RL+> /->(p2),
(p2)-[:posts]->(m)
ON ldbc_stream WINDOW(24 hours)

SGA Expression

Si = 01—iikes(W*(S))
St = T1—follows (W?*(S))
Sp = O|=posts (W24(S))

srcl,src3, RecentLiker

SRecentL iker =M & (Slikes s S follows s Sposts )
Notify
SReIated - PRece:tLiker* (SRecentLiker)

srcl,trg2,Noti
Answer =N = B (SRelateds Sp)

Logical query plan
Answer

[
(srcl,trg2.notify)

/\
RL* 24
PRL P w
| |
1 t
D<]srcl.src2.RL posts

%\
W24 W24 W24

likes posts follows

[Pa22] A. Pacaci, A. Bonifati and T. Ozsu. Evaluating Complex Queries on Streaming Graphs. In IEEE ICDE 2022 (Best Paper Award)

34



Lack of interoperability and potential solutions

e The lack of interoperability for graph processing systems hinders fair
comparison and benchmarking.

e Different communities involved (data management, data mining, large-scale
systems and ML)

e How to alleviate the problem?

e E.g. Indexing and sampling might help to improve and predict the
performances of graph queries

35



Indexing for graph queries

e Much of the attention has been devoted to LCR query (s, t, LC): Checking whether
there is a path from s to t using only edges with labels in LC

o LC (label constraint) (11 U ... U Ik)+, where U is disjunction

e GTC (Generalized Transitive Closure): for every pair of vertices (u,v), recording
whether u reaches v, and

o the minimal label set from u to v, i.e., the set of labels, where the element cannot be removed
anymore, e.g., two paths from u to v with label sets {a,b} and {a}, the minimal one is {a}

e All existing works about LCR queries are trying to compress GTC effectively with
efficient query processing

e Little attention has been devoted to other types of label constraints (e.g. with
concatenation instead of disjunction) - more during Chao’s part!

[Ha16] M. S. Hassan et al. Graph indexing for shortest-path, finding over dynamic sub-graphs. In SIGMOD 2016.
[Va17] L. Valstar et al. Landmark indexing for evaluation of label-constrained reachability queries. In SIGMOD 2017.



Basic
ingredients

Schemas and
constraints

for Property graphs

firstName: Jose
lastName:

Alonso

creationDate: 2010-10-30
browserUsed: Safari

imageFile: photo33711.jpg
creationDate: 2010-10-16
browserUsed: Firefox

HAS_CREATOR

POLYIUO SVH

<0
P
-~

firstName: Bryn

firstName: Jane
lastName: Murray

%,

<
‘%
Hg
\CR
EATOH
REPLY.OF

creationDate: 2010-10-30
lastName: Davies browserUsed: Firefox

creationDate: 2010-10-30
browserUsed: Safari
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The quest for schemas in property graphs

e Graph Databases are schema-less:
o NoSQL for efficiently storing & processing graph-shaped data.

o No a priori schema constraints — error-prone data integration

e In our previous work, we focused on schema validation and evolution for
property graphs
o Underlying property graph model:
m (labeled multigraph with key/value lists attached to nodes & edges)

m — rich formalism amenable to schema discovery

[Bo19] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko, Hannes Voigt: Schema Validation and Evolution for Graph Databases.

ER 2019: 448-456
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Towards schema inference for PGs

e Ongoing PG Schema standardisation process (ISO SC32/ WG3).

e Existing schema inference mechanisms are basic:
o no hierarchies

o no complex types

e Schema inference using MapReduce (MRSchema):
o considers either node labels or node properties — trade-off

o property co-occurrence information loss (label-oriented approach) vs. extraneous type
inference (property-oriented approach).

[Ba19] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani:Parametric schema inference for massive JSON datasets. VLDB J. 28(4):
497-521 (2019)
[Lb21] Hana Lbath, Angela Bonifati, and Russ Harmer. “Schema Inference for Property Graphs”. In: EDBT. 2021, pp. 499-504.
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GMM Schema

e Base Types (BT): set of element types (L,K,O, Eb), where: L € L: set of
labels, K € K: set of property names, O & K: subset of optional property
names, Eb C BT : set of element types b extends.

e Leverages hierarchical clustering, using Gaussian Mixture Model

e Example: LDBC Post node instance

fAPpostys | f

'creationDate': 2015-06-24T12:50:35.556+01:002,
'locationIP': 42, 'browser' : 'Chrome',
'length' : 10, 'language' : 'lat.',

'content' : 'Lorem ipsum'}}

o Base type: ({Post},K, {language, content}, ), where K = {creationDate, locationIP, length,
content}.

[Bo22a] Angela Bonifati, Stefania Dumbrava, Nicolas Mir: Hierarchical Clustering for Property Graph Schema Discovery. EDBT 2022: 2:449-2:453
[Bo22b] A. Bonifati et al. “DiscoPG: Property Schema Discovery and Exploration” VLDB 2022 (demo track - to appear)

40



LDBC inferred schema

1S_LOCATED_IN

AT IS_LOCATED_IN

HAS_)
[ €——HAS_MODERATOR——

CREAT(
LIKES,

ationDate : DateTime

e : String

_LOCATED_IN

HAS TAG

1§_LOCATED IN

AINER_OF

browserUsed
content : Text
creationDale : DateTime
length : 32-bit Integer
location!P : String

REPLY OF

REPLY_OF

broswerUsed : String

creationDate : DateTime
length : 32-b1 Integer
location!P : String
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Limited Support for Keys in Graph Databases

e Landscape is diverse:
o Some systems offer property-based primary keys for nodes
o Some systems support uniqueness

o Some systems support mandatoriness

e Yet we need to support all of these, and more, to satisfy current practical
needs.

e There is already a significant drift between database vendors
o We need to get on the same page

o  We need to bring the best of academic work to the needs of industry

42



PG-Keys: keys for property graphs

e Declaratively specify the scope of the key and its values in
your favourite PG query language (a parameter of PG-Keys).
Here we use Cypher-like syntax.

e Forinstance

o FOR p WITHIN (p:Person) IDENTIFIER p.login; says that “each person
is identified by their login”, and

o FORfWITHIN (f:Forum)<-[:joined]-(:Person) IDENTIFIER f.name, p
WITHIN (f)<-[:moderates]-(p:Person); says that “each forum with a
member is identified by its name and moderator”.

w
]
Pl

2019

:joined

year: 2020 year:

CNCNC N\

:joined

:has

€3 :Email

email: akirQg.jp
verified: 17.10.20

¢, :Email

email: ak@fuji.jp
verified: 14.07.20

p2 :Person

name: Akira
login: akira

fo :Forum

:moderates :has

title: Databases

1 :Person

name: Hayao
login: hkuro

€1 :Email

email: h@oki.nl
verified: 12.04.21

[An21] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens,
Filip Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda, Slawek Staworko, Dominik Tomaszuk:PG-Keys: Keys for Property

Graphs. SIGMOD Conference 2021: 2423-2436
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Ongoing standardization

e Graph standard data model, data manipulation language and data definition
language, as well as the schema language for property graphs constitute one
of the most important challenges in the upcoming years

e [SO/IEC GQL Project together with the LDBC community effort gathering
researchers, industry representatives and graph database vendors
o Goal: standardize languages for making them adoptable by existing implementations
o https://www.gqglstandards.org/

o https://ldbcouncil.org/gql-community/overview/

- GQL Standard:

44



LDBC member companies and institutions

C

grove ORACLE @ ArangoDB  jntel.

LABS

aWS O / MEM G KATANA GRAPH

GRAPH
CHOROGRAPH

.j;lEJCC Consulting, Inc. & TigerGraph *Sparsity
) 9 I 3 LIl D3 ~
ﬁ T :ontotext @neoqj g Birkbeck

EI J S R
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Towards
concluding

Our vision on Graph
Processing Systems
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Our vision [CACM 21]
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The Future Is Big Graphs: A Community View on Graph Processing
Systems

By Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru losup, Khaled Ammar, Renzo Angles, Walid Aref, Marcelo Arenas,
Maciej Besta, Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard

Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana lamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer ARTICLE CONTENTS:
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Comments Parfarmanca

47



Graph processing ecosystems

Complex workflows combining OLTP and OLAP processing are needed in
order to handle heterogeneous data and heterogeneous queries and

algorithms in full-fledged graph ecosystems

R s
. Processing :
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Non-Graph % :
Data Sources ' Graph '
P Data P H
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. h OLTP ti ‘ achine :

Extraction Gapne IOpera ons ' Learning Intelligence o ¥
et N i

Relational
Database Extracted 4 ! | R o
Graphs Graph OLAP Operations Scientific Augmented Reality| ! Prgcessed
: pa Computing & Visualization | utput
G%h Graph-Based Engines H
C ) ! Algorithm
Graph ETL for %" Graph .‘:nalytics
Data Graph Data : Graph Engine
i Workflow M

[Sa21] S.Sakr et al. The Future is Big Graphs! a community view on graph processing systems. Commun. ACM 64(9): 62-71 (2021)
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Graph analytics at scale

Multi-hop analysis faces combinatorial scaling problem: Every step deeper into the graph multiplies the number of
choices and cases to consider

Sl S et e
el IE i = R = )
e

R | - —-—E E.Il_:r

Dealing with this technical challenge is not the typical business interest of a user.
Which challenges are ahead of us to ready graph processing systems for the future?

Challenges to overcome: Abstractions, Ecosystems, Performance
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Challenges require expertise of many different fields

Computer systems

Data management systems
Data management theory
Data analytics

Visualization

Human computer interaction
ML/Artificial Intelligence

[collaborate by ArmOkay from the Noun Project]
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Graph Processing Ecosystems: Underlying Principles and
Knobs

e Complex workloads combining pre-processing, OLAP/OLTP,
application-driven components

e Standard data models and query languages
e Reference Architecture
e Scale-up vs. Scale-out

e Dynamic and Streaming endeavours
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Big Graph Processing Systems -
Open research directions

How to make the graph data models and query languages interoperable?

How to define meaningful metrics to execute a graph algorithm, program,
query or workflow?

How to generate heterogeneous workloads (analytical/transactional,
batch/streaming, temporal/spatial etc)?

How to benchmark entire graph pipelines and ecosystems (including ML and
simulation)?
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Thank you and Q&A



“If you put your mind to it you can accomplish anything.”

~Dr. Emmett Brown
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