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Research Topics: 
• Data Warehousing (ETL and OLAP) 
• Data Visualization and Schema Evolution
• Graph Data Analytics, Evolving Graphs

Panos Vassiliadis Panayiotis Tsaparas Nikos Mamoulis Evaggelia Pitoura

…+ 16 
students

• Spatial Data Management and 
• Analysis
• Querying with Preferences and Diversity
• Social Media Data Mining and Analysis
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Biological networks

The Web

The Internet

Why Graphs?

Proteins - interactions

metabolites, enzymes 
- chemical reactions

Communication networks (email, 
phones)

Online social networks

Linked open data, RDF
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Graph Model (basics)
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Graph G=(V,E)
– V = set of vertices (nodes)
– E = set of edges
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Undirected graph Directed graph
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𝑤12
𝑤23

𝑤13

𝑤34

𝑤45

(edge-) Weighted graph 
weight: distance/similarity, volume 
of communication
(node-) weights
Labels or attributes
Properties (key-value pairs)
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Why Time-Evolving?
1 2

43

5

1 2

43

5
6

Who talks/communicates with 
whom

Cooperation network (citation 
network) Who cooperates with 
whom

Social network
Underlying network
Interaction networks - Who interacts (likes, 
befriends, reposts, retweets) with whom

Both 
 Structure (nodes, edges)
 Content (weight, labels, 
property values)

Protein interactions
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Why evolving graphs (simple example)?

@eBISS17 Brussels, July 3, 2017 

If we look only at 2017, just that the three users are 
similar

2012 2013 2014

U
se

r 
ra

n
ki

n
g

YEAR

2015 2016 2017

We would like to be able to query/analyze  the whole history of the graph 
as the graph evolves – why?
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 Metrics evolve over time
 Knowledge discovery: Understand the  network (e.g., social 

network analysis, biology, etc) 
 Useful in predicting the future  (link recommendations, 

marketing, etc)
 Digital forensics (e.g., virus propagation), disease 

propagation, etc
 Temporal correlations and causality 

Why evolving graphs?

@eBISS17 Brussels, July 3, 2017 

And  of course, recall this morning talk: Not only BIG but 
also LONG data



Evolving Graph: definition

Discrete time points correspond to
Real time (e.g., minutes)

Time-evolving or historical graph is a sequence of 
graph snapshots Gt capturing the state of the graph at 
time point or instance t
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G2
G1 Gn

..  .

G3

time
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Granularity (what is the chronon?)
Time (second, minutes, etc) or a new operation 
happens
Operational (number of operations)

Quiz:  Discrete or continuous?  Transaction or valid time?
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Historical vs Dynamic  Graphs

@eBISS17 Brussels, July 3, 2017 

Focus of this talk:

Query/analyze the full history of an evolving graph

Dynamic (non static) graphs: Maintain only one snapshot: the 
current/most recent one
Apply queries on the most current snapshot

Example
Given a time-evolving graph, (page)-rank query

 Calculate each vertex’s current PageRank (dynamic)

vs
 Analyze the change of each vertex’s PageRank for a given time range (historical)
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Historical vs Dynamic  Graphs

@eBISS17 Brussels, July 3, 2017 

In dynamic graphs
Real-time evaluation (metrics, queries) so that they reflect the 
current state  (efficiency)
Avoid re-computation and support incremental evaluation and update of any 

data structures 

Special cases of dynamic graphs
 Graph streams

 Graph updates arrive in a streaming fashion
 Continuous evaluation
 Additional issues

 Limited memory storage for the updates (cannot store the whole stream)
 Incremental update of the result

 Online graphs
 we do not know the whole graph at each time point, but need to probe



Introduction, problem definition
Taxonomy of historical queries 
Part 1 (general techniques)

Representation, Storage, Processing
Part 2 

Specific Types of Analysis and Queries
Conclusions and Future Work

Outline

12@eBISS17 Brussels, July 3, 2017 
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Graph processing

@eBISS17 Brussels, July 3, 2017 

 Offline graph analytics (graph mining)

 Centrality measures (PageRank, betweenness, etc)
 Triangle counting, cliques, cores, density
 Diameter
 Clustering, community detection
 Frequent patterns, or motives

 Online query processing
 Traversals

 Reachability, shortest, paths,
 Graph pattern matching
 …

No standard query language, or analysis
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Graph processing in historical graphs: 
taxonomy

@eBISS17 Brussels, July 3, 2017 

historical

durable

evolution
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Graph processing in historical graphs
Historical graph processing: Typical graph query (or, analysis) Q
applied in some time interval I in the past (time travel)

Single point or interval (time slice) or a time expression 
(every Sunday)

@eBISS17 Brussels, July 3, 2017 
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G1

..  .

G3 GT

Aggregation semantics when more than one time instance
Reachability: At all instances, at least one instance, at least-k
Shortest path: the shortest among the paths that exist in (all, one, at least 
k)? Or, the shortest path may be different at each instance
Distance: as before, but also, average?

Example: Pagerank in t1, Shortest path distance (or, paths) between node1 and 
node3 in [1, 3], Matches of a given pattern in [1, 3]
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Persistence or durability graph processing: The most persistent 
results of Q in a time interval I in the past (that is, the result 
that appears in the largest number of instances)

@eBISS17 Brussels, July 3, 2017 

Graph processing in historical graphs
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G2
G1

..  .

G3 GT

Example: The most durable shortest path between node1 and node3 in [1, 3]
The most durable match, that is the subgraph that matches input pattern P at 
the largest number of instances in [10, 30]

Semantics
 Contiguous and non-contiguous

Variations
 Top-k most durable
 Results that appear in at least-k instances (to avoid  transient results, or, even 

noise)
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Ad-hoc evolution queries

 What is the first time that X happened (the first time that u 
and v connected)

 The maximum time interval for X
 How many times X happened
 Patterns of evolution: What/how much X changed
 Peaks, intensity, etc
 Results similar in evolution

@eBISS17 Brussels, July 3, 2017 

Graph processing in historical graphs
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Summary

@eBISS17 Brussels, July 3, 2017 

historical

durable

evolution

Online (queries)Offline (analytics)

centrality triangle 
counting

communities
traversals patterns

.. . .. .

 All combinations are possible with varying semantics
Example 
Find the (twitter) users that liked posts of X and Y in [2009, 2017]
Historical: apply query in past intervals and combine the results
Durable: report the most durable result (not same as all (since all may be empty)
Ad hoc-evolution (how the pattern change over time -> various plots?)
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Generality is hard

@eBISS17 Brussels, July 3, 2017 

 There is no single model of large graphs
 There is no single query (declarative) 

language or API for processing large 
graphs

 There is no single system for processing 
large graphs (analysis: GraphX, Giraph, 
etc, databases: Neo4j, Sparksee, Titan, etc, 
in memory ad-hoc algorithms)



Outline
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Introduction, problem definition
Taxonomy of historical queries 
Part 1 (general techniques)

Representation, Storage, Processing
Part 2 

Specific Types of Analysis and Queries
Conclusions and Future Work
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Representation, 
Storage, Processing

Part 1



 How to represent the historical graph
 Store 
 On disc or, in memory
 Partition, or distribute the historical graph

 Processing approaches

Representation
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First, two useful aggregated graphs
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G3 GT

Given a historical graph (graph sequence):

Note: only nodes and edges – but also, weights, labels, 
properties



Union Graph
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G∪
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 An element belongs to the union 
graph, if it belongs to any of the 
snapshots

 Time information is lost
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Intersection Graph
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 An element belongs to the 
intersection graph, if it belongs 
to all snapshots

 Transient elements are lost

@eBISS17 Brussels, July 3, 2017 
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Overview: on disk or in memory
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On-Disk Historical Graph All snapshots in 
 Files
 DBMS (relational or graph 

database)

Selected snapshots

In-Memory Historical Graph

v2v1 ...v2'v1' v2”v1”...

... ... (v1)→ v2 111 (v1)→ v3 111 ... ...

@eBISS17 Brussels, July 3, 2017 



Copy and Log representation
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Two straw man approaches 

 COPY: Store every snapshot (G1, … G5)

 LOG: Store only operations – delete-node(2), delete-edge(2, 
1), delete-edge(2, 3), add-edge(5, 6) – snapshot3: add-
node(1, 2), etc

G2

1

4
3

5
6

G5

1 2

4
3

6

1 2

4
3

5
6

G3
G1

1 2

4
3

5
6

1 2

4
3

5
6

G4

Tradeoffs: redundant storage vs performance time
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Hybrid representation: deltas
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Store:
(1) selected graph snapshots
(2) operational deltas (logs) Δ from selected snapshots

 To create any snapshot Gt: apply deltas on other 
materialized snapshots

G2

1

43

5
6

1 2

43

5
6

G3

Δ = add(node(2)) add(edge(2,1)), 
add(edge(2,3)) add(edge(2,4)), add(edge(3,4))

materialized G2 delta log

@eBISS17 Brussels, July 3, 2017 



Hybrid: Versioning
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{[1,1],[3,5}}

{[1,5]}VG

1
2

4
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5
6

{[1,5]}

{[1,5]}

{[1,5]}
{[1,4]}

 Keep the union graph
 Each graph element is annotated 

with its lifetime (lifespan)
 Sets of intervals  (Quiz: how is this 

called?) to allow the deletion and 
the re-insertion of an element

 A version graph for all, or subsets of 
the sequence e.g., one for G1, G2

and one for G3, G4, G5
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Hybrid: Indexing [SIAMCSE17]
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Persistent adaptive radix tree



(Static) Graph Representation

 Adjacency Matrix

 unsymmetric matrix for undirected graphs

























00000

10000

01010

00001

00110

A
1

2

3

45

Various compression techniques
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(Static) Graph Representation
 Adjacency List

 For each node keep a list of the nodes it points to

1

2

3

45

1: [2, 3]
2: [1]
3: [2, 4]
4: [5]
5: [null]

Common in-memory

@eBISS17 Brussels, July 3, 2017 



(Static) Graph Representation

 Compressed Sparse Row (CSR) format
– Keep nodes and edges in separate arrays with  array indexed 

correspondingly to the node id 

– Node array stores offsets into the edge array  (first edge)

– Edge array sorted  first by source of each edge then by destination 

4

2

1
3

5

 In memory -- Minimizes memory use to O(n + m)

2 3 1 2 4 5

1 2 3 4 5

dst_nid

scr_nid

Edge array

Node array

@eBISS17 Brussels, July 3, 2017 



(Static) Graph Representation

 Compressed Sparse Row (CSR) format (mutability)

@eBISS17 Brussels, July 3, 2017 

memory



(Static) Graph Representation

 List of Edges 

 Keep a list of all the directed edges in the graph

1

2

3

45

(1,2)
(2,1)
(1,3)
(3,2)
(3,4)
(4,5)

Common in disk (files)

@eBISS17 Brussels, July 3, 2017 
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id name value …

1 N1

2 N2

3 N3

4 N4

5 N5

src dst

1 2

1 3

2 1

3 3

3 4

4 5

Vertex Table
Edge Table

(Static) Graph Representation

 Relational 
database
– A vertex and an edge 

table

4

2

1
3

5

Disk storage

Or a separate table 
with vertex and 
edge properties

@eBISS17 Brussels, July 3, 2017 

Path from 1 to 4?



Dynamic Graph Representation
COPY approach: one static graph representation for each 
snapshot

LOG/Delta approach: static graph representation for select 
snapshots – special structures for the deltas

Versioning approach: Extend the structures to “code” the 
lifespan of each element

{[1,5]}VG

1
2

4
3

5
6

{[1,5]}

{[1,5]}

{[1,5]}
{[1,4]}

{[4,4]}

src dst lifespan

1 2

1 3

2 1

3 3

3 4

4 5

Edge Table

@eBISS17 Brussels, July 3, 2017 



(Static) Property Graph Model (native 
graph database)

In disk -- separate stores for nodes, relationships, properties

@eBISS17 Brussels, July 3, 2017 

Example from Neo4j



(Static) Property Graph Model (native 
graph database)

@eBISS17 Brussels, July 3, 2017 

Example from Neo4j



Graph database (historical)

Store information about the snapshots [ADBIS17]

Multi-edge
Single-edge



Graph database: Multi-edge

 A different edge type (label)  between two nodes 𝑢 and 𝑣 for each 
time instance of the lifespan of the edge (𝑢 −> 𝑣).

 Provides an efficient way of retrieving the graph snapshot 𝐺𝑡

corresponding to time instance 𝑡. 

u1 u2 u3

u5u4 u6

[1] [3] [4] [5]

Time Instances

[1][1]

[1]

[2]

[2]
[2]

[2]

[3]

[3]

[3][3]

[3]
[1]

[2]

[4]

[4]

[4]

[4]

[4]

[4]

[5]

[5]

[5]

[5]

[5]



 A single edge 
 Lifespan as a property of the edge
 How to represent lifespans? (e.g.,, list of timepoints)
 Storage efficient, but may slow-down traversals

[2, 3, 4, 5]

u1 u2 u3

u5u4 u6

[1,3,4]

[4, 5]

[4, 5]

[1, 2, 3, 4, 5]

[1, 3, 5]SETP

Graph database: Single-edge



Time index
 Nodes of type of 𝑇, where each node of the given type has a unique value that 

corresponds to a specific time instance.
 Add edge to alive nodes

u1 u2 u3 u4

T: [1] T: [2] T: [3]

u5 u6

T: [4] T: [5]

Graph database: Index



Next: Processing

43

So far,
Different ways to store a graph (in files, databases, 
main memory)
Adapt them for historical graphs

Now,
generic ways to do processing , mainly historical 
(or, time travel) queries



Simple 2-Level Strategy
1.Construct the required snapshots (e.g., apply 

the deltas, or (use a time-index to) project 
from the version graph the live elements) 

2. Apply best known static algorithms at each 
snapshot

3. (optional) Combine the results

Processing

44

Example of this approach: Delta Graph
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2P Processing

45

G2

1

43

5
6

1 2

43

5
6

G4

1 2

43

5
6

G3
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Apply Q

Q in [2, 4]

Construct

Apply Q Apply Q

G2 Result

Historical Graph

Combine

G3 Result G4 Result



Delta Graph [ICDE13, EDBT16]

Scope: historical queries

2-level: Access past snapshots of the graph and perform static 
graph analysis on these snapshots

Focus: compact storage and efficient retrieval of snapshots

46

Hybrid Approach
 Materialize selected snapshots
 Maintain Eventlists: log of events (insert, deletes, etc)

Two main components
 Temporal Graph Index: Delta Graph
 Graph Pool: in memory data structure

@eBISS17 Brussels, July 3, 2017 



Delta Graph: Index

47

Leaves: snapshots (not necessarily materialized), bidirectional leaf event lists 
Internal nodes: graphs constructed by combining the lower level graphs (not 
necessarily corresponding to any actual snapshot)
Edge deltas: information for reconstructing the parent node for the child node 

Used to construct:
 a single snapshot
 multiple snapshots 

@eBISS17 Brussels, July 3, 2017 



Delta Graph: Graph Pool

48

 In memory data structure

 Union of 
 the current graph reflecting the current state 
 the historical snapshots, retrieved from the past 
 materialized graphs corresponding to internal or leaf nodes of the Delta Graph

 Each element associated with a bitmap indicating which of the active graphs 
include the element

@eBISS17 Brussels, July 3, 2017 



2P Processing: Extensions

49
@eBISS17 Brussels, July 3, 2017 

 Targeted reconstruction (partial views)
 No Reconstruction



 Snapshot construction is expensive
 Many queries refer to only part of the graph
 Restrict snapshots reconstruction around a specific 

node (partial views)

Local queries or node-centric queries
Traverse only a specific subgraph of G
Examples: Queries similar to Facebook graph search

 Find my friends that live in Brussels
 Find the friends of my friends that are interested in graph

management, etc…

Targeted reconstruction: Partial Views 
[GRADES13]

50@eBISS17 Brussels, July 3, 2017 



Partial Views

 Partial views modeled as
extended egonets

 Egonet(v, R, t)
 Node v center of the egonet
 R radius of the induced

subgraph
 t time point at which the

egonet is valid (i.e. egonet is
a subgraph of SGt)

v

Radius extension
 Egonet of v with R=1
 Egonet of v with R=2

Time extension

@eBISS17 Brussels, July 3, 2017 



 Model local queries as egonets similar to
partial views

 Given a query Q, construct the partial view
required by the query (not the whole
snapshot)

 view construction: for example, apply only the
related parts of the log file

 Evaluate the query on the derived partial
view

Partial Views

@eBISS17 Brussels, July 3, 2017 



Partial Views: Can we reuse materialized 
views?

 View subsumption between partial views:

Given two partial views, EG1 and EG2, EG1 subsumes EG2, if the result of the 

evaluation of any local query Q on EG2 is equal to the result of evaluating Q

on EG1.

 View selection

Given a query workload W,  an estimation of the construction cost, a storage 

budget C

Select a set S of egonets, size(S) < C, to materialize

Such that the total evaluation cost of the query workload W is minimized.

@eBISS17 Brussels, July 3, 2017 



 Group egonets according to their center

 At each iteration

 For each group

 Select the egonet with the largest construction cost

 Re-evaluate the total construction cost of the group

 Compute the benefit from materializing the egonet

 Select the group with the largest benefit 

 Update all costs

 Proceed to next iteration until storage limit is met

Partial Views: View selection

@eBISS17 Brussels, July 3, 2017 



No snapshot reconstruction [WOS12]

 Delta-only query plan
 The query is evaluated directly on the delta

 Hybrid query plan
Use the delta and the current snapshot

Is this possible?
Yes, for specific type of queries

@eBISS17 Brussels, July 3, 2017 



No snapshot reconstruction

Graph

Time Local Global

Point the degree of ui at tk the diameter of G at tk

Interval

Evolution how much the degree of ui 

changed in [tk, tl]

how much the diameter of G

changed in [tk, tl]

Historical 

(Aggregate)

average degree of ui in [tk, tl] average diameter of G in [tk, tl]

Query Types Query Plans

Two-Phase Delta only Hybrid

Point
Local  

Global 

Interval

evolution

Local   

Global 

Interval

aggregate

Local  

Global 

@eBISS17 Brussels, July 3, 2017 



Can we avoid running the same algorithm 
to all snapshots? 

Idea: apply the algorithm to representative 
snapshots

Processing

57@eBISS17 Brussels, July 3, 2017 



Find-Verify-and-Fix  (FVF) Processing Framework
1. Preprocessing

cluster similar snapshots
extract representatives from each cluster

2. Apply query to each representative (find)
3. For each graph snapshot Gt, verify the solution
4. If not verified, apply query on Gt (fix)

Find-Verify-and-Fix [VLDB11, IS17]

58@eBISS17 Brussels, July 3, 2017 



Find-Verify-and-Fix: Preprocessing

59

Graphs gradually evolving, many edges in common
Exploit graph redundancy by clustering

@eBISS17 Brussels, July 3, 2017 
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Find-Verify-and-Fix: Preprocessing

For each cluster maintain two representatives: 
G∩ and G∪

@eBISS17 Brussels, July 3, 2017 
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Segmentation clustering algorithm:
 A cluster consists of successive snapshots
 A cluster satisfies:

Graph snapshot 
sequence

Find-Verify-and-Fix: Preprocessing

@eBISS17 Brussels, July 3, 2017 
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Find-Verify-and-Fix: Preprocessing

For each cluster maintain (in memory):

 G∩ 

 G∪

 Δ(Gi, G∩)

@eBISS17 Brussels, July 3, 2017 



Find-Verify-and-Fix: Find

Shortest path query: Find shortest path between a and e in all snapshots 

Find: Apply query on the cluster representatives

@eBISS17 Brussels, July 3, 2017 



Bounding property:

Find-Verify-and-Fix: Verify
Verify: Is the result correct on all snapshots?
Depends on the query

@eBISS17 Brussels, July 3, 2017 



√

× ×

×

Find-Verify-and-Fix: Verify
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√ √

×

Find-Verify-and-Fix: Verify
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Find-Verify-and-Fix: Fix
Fix: Run shortest path queries for the snapshots that cannot be 
verified

@eBISS17 Brussels, July 3, 2017 



2-phase Processing
1. Re-construct snapshot 

 either the whole graph or a subgraph

2. Apply static algorithm in each of them

FVF Processing
 Find: apply query to cluster representatives
 Verify: check if the result is correct for each 

snapshot Gi, or can easily be modified
 Fix: apply query to all snapshots that cannot be 

verified

Processing methods (so far)
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Processing Models

69
@eBISS17 Brussels, July 3, 2017 

Incremental (more applicable to dynamic graphs)

Static view 1 Static view 2 Static view 3

Slide from sigmod2016 tutorial



2 Phase and FVF high redundancy:
The same static algorithm is applied many times

Can we avoid this by exploiting time locality?

Batch (Iterative) Processing

70

Batch Computation across time 
(snapshots) => Chronos

@eBISS17 Brussels, July 3, 2017 

Requires a specific node layout based on graph 
partitioning



Applications
 parallel or distributed computation, assign a different 

partition to a core or machine
 (in memory) caching: storage layout
 computation (propagate information among nodes)

Partitioning: why?

71

Graphs low 
(structural) locality

@eBISS17 Brussels, July 3, 2017 



In static graphs
 Random (hash on nodes) (load balancing)
 Structural locality ((normalize) edge cut, max 

flow, METIS, modularity, spectral clustering)

Partitioning (background)

72

Partitioning as an 
optimization problem: 
Partition the nodes in the graph 
such that 
 nodes within clusters are well 

interconnected (high edge 
weights), and 

 nodes across clusters are 
sparsely interconnected (low 
edge weights)
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Two levels of locality (at a high level):

 Structural: partition by node (as in static)
 Temporal (or time): partition by time e.g., every 10 

snapshots 

Partitioning historical graphs

73@eBISS17 Brussels, July 3, 2017 



74

Vertex Data Array

v2 ...v1 ...... v3 ...

v2' ...v1' ...... v3' ...

v2” ...v1” ...... v3” ...

Snapshot
1

Snapshot
2

Snapshot
3

Temporal Partition 1

Temporal Partition 2

Temporal Partition 3

Partitioning (high level)

Structural Partition (based on graph locality)
all versions of the same node together
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Chronos [EuroSys14, ACM ToS, 2015]

In main memory, multi core graph engine

75

Scope: multi-snapshot historical analytical queries
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Typical graph operation (GAS)
Works in iterations

 Each vertex assigned a value

 In each iteration, each vertex:

 Gathers values from its immediate 
neighbors (vertices who join it directly with 
an edge). E.g., @A: BA, CA, DA,…

 Applies some computation using its 
own value and its neighbors values. 

 Updates its new value and scatters it 
out to its neighboring vertices. E.g., 
AB, C, D, E

 Graph processing terminates after: (i) fixed 
iterations, or (ii) vertices stop changing 
values

A

B

C

D

E

Think like a vertex (background)

Push Mode

Pull Mode

v1

v2

v3

v4

v5

v2

v1

v6

v7

v8
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Propagation (vertex) based graph computation model

Vertex Data Array

Edge Array

v2 ...v1 ...... v3 ...

scan

v1 → v2 v1 → v3... ...... v3 → v5 ...

77

Local computation

Data Propagation

v1

v3

v2

v5

slides from EuroSys14 presentation

Chronos: Revisit Static Graph Analysis
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Vertex Data Array

Edge Array

v2 ...v1 ...... v3 ...

scan

v1 → v2 v1 → v3... ...... v3 → v5 ...

78

Local computation

Data Propagation

v1

v3

v2

v5

Cache 
Miss

Chronos: Revisit Static Graph Analysis

slides from EuroSys14 presentation

Propagation (vertex) based graph computation model
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In parallel: partition graph & computations among CPU cores

79

v2 ...v1 ...... v3 ...

Core 0 Core 1

scan
Core 0 Core 1

v1 → v2 v1 → v3... ...... v3 → v5 ...

Core 0

Core 1

v1

v3

v2

v5

Cross-partition edgeVertex Data Array

Edge Array

Inter-core 
Communication

slides from EuroSys14 presentation

Chronos: Revisit Static Graph Analysis
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Computation on multiple graph snapshot – multiple cost

80

N snapshots
 N cache misses
 N inter-core comm.

v2' ...v1' ...... v3' ...

v2” ...v1” ...... v3” ...

Snapshot
2

Snapshot
3

Vertex Data Arrays

v2 ...v1 ...... v3 ...

Snapshot
1

Chronos: snapshot by snapshot 
(2phase) QP

slides from EuroSys14 presentation
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Real-world graph often evolve gradually (similar snapshots)

81

v1

v3

v2

v5

v4

v1

v3

v2

v5

v4

v1

v3

v2

v5

v4

Snapshot 2Snapshot 1 Snapshot 3

' '

''

'

"

"

" "

"

slides from EuroSys14 presentation

Chronos observation: Time locality
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Similar propagations across snapshots
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v1

v3

v2

v5

v4

v1

v3

v2

v5

v4

v1

v3

v2

v5

v4'

' '

''

"

""

"

"

Snapshot 2Snapshot 1 Snapshot 3

slides from EuroSys14 presentation

Chronos observation: Time locality
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Group propagations by source & target, not by snapshot
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v1

v3

v2

v5

v4

v1

v3

v2

v5

v4

v1

v3

v2

v5

v4'

' '

''

"

""

"

"

Step 1 Step 2 Step 3 Step 4

Step 1 Step 2 Step 3

1 41 3 1 51 2Propagations:

Snapshot 2Snapshot 1 Snapshot 3

slides from EuroSys14 presentation

Chronos



Chronos: Data Layout

 Place together data 
for the same vertex 
across multiple 
snapshots

84

fit in a cache line

v2 ...v1 ...... v3 ...

v2' ...v1' ...... v3' ...

v2” ...v1” ...... v3” ...

Snapshot
1

Snapshot
2

Snapshot
3

Vertex Data Arrays (snapshot-by-snapshot)

v2v1 ...... ... v2'v1' ...v2”v1” v3 v3' v3” ...

(with time-locality)

Snapshot
1, 2, 3

Vertex Data Array (Chronos)

slides from EuroSys14 presentation



Chronos: Propagation Scheduling

 Locality Aware Batch Scheduling (LABS):

 Batching propagating across snapshots

85

vertex 1 -> vertex 2
across snapshots

v2v1 ...... ... v2'v1' ...v2”v1” v3 v3' v3” ...

Vertex 
Data Array

Edge Array

... v1 → v3 v1'→v3' v1”→v3” ...v1 → v2 v1'→v2' v1”→v2”

fit in a cache line

scan

vertex 1 -> vertex 3
across snapshots

slides from EuroSys14 presentation
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v2v1 ...... ... v2'v1' ...v2”v1” v3 v3' v3” ...

Vertex 
Data Array

Edge Array

... v1 → v3 v1'→v3' v1”→v3” ...v1 → v2 v1'→v2' v1”→v2”v1 → v2... v1 → v3 v1'→v3' v1”→v3” ...v1'→v2' v1”→v2”v1 → v2 v1'→v2' v1”→v2”... v1 → v3 v1'→v3' v1”→v3” ...

fit in a cache line

N propagations
 1 cache misses

Cache 
Hit

scan

slides from EuroSys14 presentation

Chronos: Propagation Scheduling

 Locality Aware Batch Scheduling (LABS):

 Batching propagating across snapshots
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v2v1 ...... ... v2'v1' ...v2”v1” v3 v3' v3” ...

Vertex 
Data Array

Edge Array

... v1 → v3 v1'→v3' v1”→v3” ...v1 → v2 v1'→v2' v1”→v2”v1 → v2... v1 → v3 v1'→v3' v1”→v3” ...v1'→v2' v1”→v2”v1 → v2 v1'→v2' v1”→v2”... v1 → v3 v1'→v3' v1”→v3” ...

Core 0 Core 1

v1 → v2 v1 → v3v1'→v2' v1”→v2”... v1'→v3' v1”→v3” ...

N propagations
 1 inter-core comm.

access in a batchInter-core 
Communication

scan

slides from EuroSys14 presentation

 Locality Aware Batch Scheduling (LABS):

 Batching propagating across snapshots

Chronos: Propagation Scheduling



 A graph layout

 Place together nodes/edge data across snapshots

 QP mechanism

 Batch propagations across snapshots

88

Chronos: Key Points
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... ...

Vertex
index

Edges of v1

Temporal Edge

(v1)→ v2 110 (v1)→ v3 111 ... ...

89

Edge Array

Vertex Data Array

indicate which snapshots 
the edge exists in

v2v1 ...v2'v1' v2”v1”...

Vertex
index

Data of v1 Data of v2

v1 → v2 v1'→v2' v1”→v2”
Logically
Equals to:

Chronos: In main memory

slides from EuroSys14 presentation



Partition
Parallelism

Snapshot
Parallelism

LABS-
Parallelism

Cache Miss More More Less

Inter-core
Communications More No Less

Chronos: Parallelization Summary

90

Snapshot by snapshot LABS

Good partitioning: Num. of intra-partition edge > Num. of inter-partition edge

?

Partition-Parallelism: Computing partitions of the same snapshot in parallel
Snapshot-Parallelism: Computing snapshots in parallel
LABS-Parallel: Computing LABS-batched partition in parallel

slides from EuroSys14 presentation



SAMS [PVLDB17]

91
@eBISS17 Brussels, July 3, 2017 

Same idea with Chronos
Scope: multi-snapshot historical analytical queries

Single Algorithm Multiple Snapshots  (SAMS): same algorithm 
many snapshots

But  Chronos is vertex-centric, while SAMS propose automatic 
transformation of  graph algorithms and also not only for GAS 
computation

Two basic transformations
 Program instance interleaving
 Synchronization of graph accesses



SAMS: example

92
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One snapshot at a time

Interleaving: automatically transform 
an algorithm so that all its instances 
concurrently execute the same 
statement

Synchronization: ensures that all active 
instances process the same graph 
element (an instance is active for a 
statement, if the single snapshot 
would execute statement)
works for for-loops over nodes and 
neighbors sets



Processing Models (summary) 
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2 Phase 
execute static algorithm at each snapshot

snapshot parallelism
partial snapshots
no snapshots

FVF
cluster similar snapshots
execute static algorithm on cluster representatives
verify results
execute static algorithm on non verifiable snapshots

Incremental 
use results on snapshot at time t to compute result on snapshot at time t+1

Iterative (or batch)
concurrently execute all instances of the algorithm



Recency-based processing
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 So far, in historical graphs, all snapshots consider 
equal

 In dynamic graphs, only the recent one

 Introduce aging or decay, to favor recent 
snapshot

Example: TIDE [ICDE2015]



TIDE [ICDE15]
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 Target query: continuously deliver analytics results 
on a dynamic graph

 Model social interactions as a dynamic interaction 
graph

 New interactions (edges) continuously added

 Probabilistic edge decay (PED) model to produce 
static views of dynamic graphs
 Intuition: sample edges  from each snapshot with probability that 

decreases with the time of the edge so that older edges have a smaller 
probability to be included in the static view than newer edges



TIDE
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Aggregate graph:
Union graph where 
each edge appears 
many times

1

2

4
3

5
6

G2

1

43

5
6

G5

1 2

43

6

1 2

43

5
6

G4

1 2

43

5
6

G3
G1

1 2

43

5
6
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1

3
2

4

1 2 3
5

4

Let τ be the current time
Sample each edge e with probability
Pf(e) = f(τ – timestamp(e))

f non-increasing decay function – as 
the edge ages probability remains the 
same or drops
Every edge e 
 has a non-zero chance of being 

included in the analysis (continuity) 
 change becomes increasingly 

unimportant over time, so that 
newer edges are more likely to 
participate (recency)



TIDE: PED
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Gt: aggregate graph at t

Edge color – time instance

Create N independent sample 
graphs

Typically  reduces Monte Carlo
variability



Processing Models (summary) 
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2 Phase 
apply static algorithm at each snapshot

FVF
cluster similar snapshots
apply static algorithm on cluster representative
verify results
execute static algorithm on non verifiable snapshots

Iterative (or batch)
concurrently execute all instances of the algorithm

Incremental 
use results on snapshot at time t to compute result on snapshot at time t+1

Recency-based
create one (or more) sample static graphs by sampling the aggregate graph
apply static algorithm on the samples
combine the results



End of Part 1
break!

99
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Queries: navigation (longer part), 

pattern matching

Part 2



Evolving Graph (recap)

Time-evolving or historical graph is a sequence of 
graph snapshots Gt capturing the state of the graph at 
time point or instance t

1 2

4
3

5

1 2

4
3

5
6

1 2

4
3

6

1 7

4
3

5
6

G2
G1 Gn

..  .

G3

time

@eBISS17 Brussels, July 3, 2017 
101
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Processing (recap)

@eBISS17 Brussels, July 3, 2017 

historical

durable

evolution

Online (queries)Offline (analytics)

centrality triangle 
counting

communities
traversals patterns

.. . .. .

Queries on time-evolving graphs
 Historical: Apply query at past snapshots
 Durable: Return the results that hold for the longest time
 Evolution: Ad hoc exploration – eg find patterns with similar evolution 



Representation, storage (recap)
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On-Disk Historical Graph

All information in 
 Files
 DBMS (relational or graph 

database)

COPY: materialize all snapshots
LOG: maintain operations
HYBRID: materialize selected 
snapshots
VERSIONING

Selected snapshots
CSR format
Adjacency lists
+ versioning

In-Memory Historical Graph

v2v1 ...v2'v1' v2”v1”...

... ... (v1)→ v2 111 (v1)→ v3 111 ... ...

@eBISS17 Brussels, July 3, 2017 



Processing Models (recap) 
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2 Phase 
apply static algorithm at each snapshot

FVF
cluster similar snapshots
apply static algorithm on cluster representatives
verify results
execute static algorithm on non verifiable snapshots

Iterative (or batch)
concurrently execute all instances of the algorithm

Incremental 
use results on snapshot at time t to compute result on snapshot at time t+1

Recency-based
create one (or more) sample static graphs by sampling the aggregate graph
apply static algorithm on the samples
combine the results



Next
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Look into specific graph queries

Navigational 
reachability
shortest paths

Patterns (briefly) 

Conclusions
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Navigational Queries

Shortest path queries
Reachability queries
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Navigational queries

1

2

3

45

𝑎

𝑏

𝑏

 Allow navigating the topology of a graph
 Find the friends of  Maria
 Find all people connected to Maria

 Simplest form: path queries
P: x → 𝐶 y

 Source x
 Target y
 C specifies conditions on the paths 

(when labels or properties) 
 Regular Path Queries, when C 

is a regular expression 
 Reachability queries

 ask for the existence of the path
 Shortest path queries 

 Length: no weights (number of edges) 
 also defines the distance between two 

nodes

𝑎
𝑏
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G2

1

4
3

5
6

G5

1 2

4
3

6

1 2

4
3

5
6

G4

1 2

4
3

5
6

G3
G1

1 2

4
3

5
6

Find paths from 1 to 4?

{[1,1],[3,5}}

{[1,5]}VG

1
2

4
3

5
6

{[1,5]}

{[1,5]}

{[1,5]}

{[1,4]}

Paths in historical graphs

 Assume the 
versioning approach 
(without lack of 
generality)

 Assume that each 
edge (node) is 
augmented with its 
lifespan
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Paths in historical graphs

u1 u2 u3

{[2, 4], [7, 10]} {[2, 3], [9, 11]}

What is the lifespan of path u1u2u3?

Central operation in traversals

{[2, 4], [7, 10]} {[2, 3}, [9, 11]} =  {[2, 3], [9, 10]}

)}'()(|{'' ItIttIIII 

Time Join

{[2, 9], [13, 17]} {[3, 4], [6, 15]}
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Paths from 1 to 4?

{[1,1],[3,5}}

{[1,5]}VG

1
2

4
3

5
6

{[1,5]}

{[1,5]}

{[1,5]}

{[1,4]}

Paths in historical graphs

G2

1

4
3

5
6

G5

1 2

4
3

6

1 2

4
3

5
6

G4

1 2

4
3

5
6

G3
G1

1 2

4
3

5
6
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Comparison with Temporal Graphs

u1 u2

10, 3

Each edge (u, v) two values (t, λ)
 t starting (departure) time
 λ  traversal (duration) time
 t + λ ending (arrival) time

Applications
 Phone call or Short Message Service networks: start of the call and duration of 

the call 
 Flight graphs (and in general transportation): departing time and flight 

duration

Represented as (u, v, t, λ)

Multiple edges between two nodes (more than one interaction)
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Paths in Temporal Graphs [PVLDB14] 

Temporal path (must follow chronological order)
Each edge uiuj in the path

start(uj) ≥ end(ui) (start(uj) ≥ start(ui) + λ)

u1 u2 u3

10, 3 15, 4

11, 3

Let P be a path
 duration(P) = end(P) – start(P)
 distance(P) =  𝜆 𝑖

Example
a -> l
Showing starting times, 
assume all durations 1
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Minimum Temporal Paths [PVLDB14] 

Minimum Temporal Path from u to w in interval [t1, t2]
All temporal paths P’ from source u to target w in interval [t1, t2] 
with start(P’) ≥ t1 and end(P’) ≤ t2

Look for path P such that
 Earliest-arrival path: end(P) = min{end(P’)}
 Latest-departure path: start(P) = max{start(P’)}
 Fastest path: duration(P) =min{duration(P’)}
 Shortest path: dist(P) =min{dist(P’)}
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Temporal Paths vs Paths in Historical 
Graphs

 Temporal paths additional constraints to model a 
sequence of events or a journey 

 Combine

Historical temporal paths
 Most durable or historical communications



115@eBISS17 Brussels, July 3, 2017 

Representing Path lifespans

u1 u2 u3

{[2, 4], [7, 10]} {[2, 3], [9, 12]}

{[2, 4], [7, 10]} {[2, 3}, [9, 12]} =  {[2, 3], [9, 10]}

 Intervals as ordered list of time points,  I1 = {2, 3, 4, 7, 8, 9, 10} I2 = {2, 3, 9, 10, 11,12}
 Seldom connected, fast, few snapshots

 Intervals as a minimal ordered list of intervals: 
 non-overlapping, overlap [2, 7] [6, 9] 
 Non-continuous, continuous [2, 8] [9, 10]

 very few deletes, continuous connections   

I2I1
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Representing Path lifespans

u1 u2 u3

{[2, 4], [7, 10]} {[2, 3], [9, 12]}

{[2, 4], [7, 10]} {[2, 3}, [9, 12]} =  {[2, 3], [9, 10]}

 Using bit-arrays
I1 =   0111001111000000 
I2     =   0110000011110000

Very fast time join
0110000011000000

Predefined maximum size – but can use additional arrays as time evolves

I2I1



Version Graph
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G2

1
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5
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G5

1 2

4
3

6

1 2

4
3

5
6

G4
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4
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6

G3
G1

1 2

4
3

5
6

 Bit array representation 
 Example I = {[1, 3],[5, 10], [12, 13]}, T = 

16, 1110111111011000

 In-memory storage

{[1,1],[3,5}}

{[1,5]}VG

1
2

4
3

5
6

{[1,5]}

{[1,5]}

{[1,5]}

{[1,4]}
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Representing Path lifespans: comparison
 ordered list of time points (TL)
 minimal ordered list of intervals (TI)
 bit-arrays (BIT) In [1959, 2014]

Size of VG
Because most co-operations 
are transient

Construction time
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Reachability and Shortest Path  Queries

Two extreme approaches
1. Online traversal of the graph 
2. Pre-computation of the transitive closure (reachability) or full 

distance table
 In between: maintain indexes

Transitive closure DFS/BFS

O(nm)
Construction Time

O(1)

O(1)
Query Time

O(m)

O(n^2)
Index Size

O(1)

Trade off
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Navigational Queries

 Focus on
 Shortest path (mainly on reachability queries)

Outline

 Online traversal

 Indexing
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Graph Traversals (basics)

 A traversal is a procedure for visiting (going through) 
all the nodes in a graph

 Two basic traversals

 DFS

 BFS
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Depth First Search Traversal (basics)

 Depth-First Search (DFS) starts from a node i, 
selects one of its neighbors j and performs 
Depth-First Search on j before visiting other 
neighbors of i.

 The algorithm can be implemented using a stack 
structure

@eBISS17 Brussels, July 3, 2017 



Example DFS (basics)



Breadth First Search Traversal (BFS)
 Breadth-First-Search (BFS) starts from a node, visits 

all its immediate neighbors first, and then moves to 
the second level by traversing their neighbors.

 The algorithm can be implemented using a queue structure
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Example of BFS (basics)
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Breadth First Search Traversal (BFS)

 We can find all shortest paths from a node w using 
BFS

 Starting from w, visit all neighbors of w at distance 1, at 
distance 2, etc

 We visit each node once

 we do not have to revisit a node again, since we already 
have its shortest distance from the root of BFS

@eBISS17 Brussels, July 3, 2017 



Breadth First Search Traversal (BFS)

 Shortest paths on weighted graphs are harder to 
construct

 There are several well known algorithms for finding single-
source, or all-pairs shortest paths

 For example: Dijkstra’s Algorithm
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Historical Reachability: Online BFS Traversal 
[EDBT2015]

128

u1 u6

[0,3]

PC1 = [0,1]

PC2 = [2,3]


u1

u3

u6

u2

u5

u4

u7

[0,1]

[0, 8]

[0
,1

]

{[
0

,0
],

[2
,8

]}
[2,8]

{[0,1], [3, 8)}

[3
,  

6
]

[0, 8]

[0
,8

]

Traverse the graph once for the whole query interval IQ

 Follow only path P whose lifespan intersects IQ

 At each node, maintain the lifespan of paths computed so far (PC)
 Pruning: never traverse a node twice for the same interval

Stop traversing when the whole query interval is covered
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Connected components (basics)

 Connected graph: a graph where there every pair 
of nodes is connected

 Disconnected graph: a graph that is not connected

 Connected Components: subsets of vertices that 
are connected

2
1

3

45

 Strongly connected graph: there exists a 
path from every i to every j

 Weakly connected graph: If edges are 
made to be undirected the graph is 
connected

2

1

3

4
5
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TimeReach Index

 Many real-world graphs consist of large strongly connected 
components (SCC)
 Nodes in the same SCC are reachable

 It suffices to maintain node-SCC participation and inter-SCC 
reachability information in each snapshot

 For each snapshot Gi

 Identify SCCs

 Construct condensed graph GSti(VSti, ESti)

 Store node-SCC participation (node-SCC list)

130
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TimeReach Index: Construction
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t0 t1 t2 t3

scc1

u3u2 u7

scc2

scc3

scc4

scc5

scc6

scc7

u1

u3u2

u5

u4

u6 u7

u1

u3u2

u5

u4

u6

u7

u1

u3u2

u5

u4

u6

u7

u1

u3u2

u5

u4

u6

u7

Gt0 Gt1 Gt2 Gt3

GSt0 GSt1 GSt2 GSt3
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t0 t1 t2 t3

u1 s1 s3 s5 s7

u2 u2 s4 s5 s7

u3 u3 s4 s5 s7

u4 s1 s3 s5 s7

u5 s2 s4 s6 s7

u6 s2 s4 s5 s7

u7 u7 s4 s6 s7

t0 t1 t2 t3

s1

u3u2 u7

s2

s3

s4

s5

s6

s7

GSt0 GSt1 GSt2 GSt3

Node-SCC list

 Query for u,v and interval IQ

 For each t in IQ check if u and v belong to the 
same SCC

 Otherwise traverse the corresponding 
condensed graph(s)

u1 u6

[0,3]

   

TimeReach Index: Construction
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 Efficiency
 Fast incremental construction (using Tarjan’s algorithm [1])

 Identify and condense each snapshot

 Significantly smaller storage than Transitive Closure

 Faster query processing than Online Traversal

 From the list or traversal of small condensed snapshots

 Can we do better?

133

TimeReach Index: Construction
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 Speed-up traversals
 Construct condensed version graph
 Interval based traversal of the 

condensed graph

 Compress the node-SCC list
 Replace the list with per node SCC-

postings (SCC-id, time-interval) pairs
 Minimize the total number of postings

 How to minimize the number of 
postings?
 A new posting is created when a node 

is associated with a different SCC-id 
RE-ASSIGN IDs 

134

TimeReach Index: Compression
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Basic idea for reassigning IDs (mapping conponents)
 Model SCC evolution using a weighted graph 
 Each node corresponds to a SCC that existed at some time t
 An edge connects two nodes if the corresponding SCCs have at least a 

common node
 The weight of edge (U,V) equal to the number of nodes in both U, V

135

TimeReach Index: Compression
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We model SCC evolution using a weighted graph GC(VC, EC, WC)
 Each node corresponds to a SCC that existed at some time t

 An edge connects two nodes if the corresponding SCCs have at least a 
common node

 W assigns to edge (U,V) weight equal to the nodes in both U, V
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t0 t1 t2 t3

scc1

u3u2 u7

scc2

scc3

scc4

scc5

scc6

scc7

GSt0 GSt1 GSt2 GSt3

2 2

5

2

3

22

1
11

TimeReach Index: Compression
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GC(VC,EC,WC) is an |T|-partite graph
 Each subgraph GC[ti, ti+1] corresponding to two consecutive time 

instants is a bipartite graph

 The number of new postings for time t  the sum of weights from 
nodes Ui at level t-1 to Vj at level t with different ids
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t0 t1 t2 t3

scc1

u3u2 u7

scc2

scc3

scc4

scc5

scc6

scc7

2 2

5

2

3

22

1
11

7

TimeReach Index: Compression
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The optimal SCC-id assignment can be reduced to the problem of
finding the maximum weight bipartite matching of each GC[ti,ti+1]

138

The optimal SCC-id assignment can be reduced to the problem
of finding the maximum weight bipartite matching of each GC[ti,ti+1]

t0 t1 t2 t3

scc1

u3u2 u7

scc2

scc1

scc2

scc1

scc2

scc1

2 2

5

2

3

22

1
11

3

TimeReach Index: Compression
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Incremental algorithm
 Compute SCCs in current snapshot Gt

 Construct bipartite graph GC[t-1,t]

 Compute maximum weight bipartite matching of GC[t-1,t]

 Use the computed maximum weight bipartite matching to assign ids to 
SCCs

 Update the SCC postings created at time t-1
 Create new entry only for nodes that change SCC-id

139

TimeReach Index: Compression
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Two steps
 Retrieve the SCC postings of u and v: if they belong to the same SCC 

during IQ we are done

 Otherwise

 Split the query based on the postings

 Answer subqueries from the postings or by interval based traversal of the 
condensed version graph

 Combine the results

140

TimeReach Index: Processing
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scc1
u3u2 u7

scc2

scc1 scc2

scc1 scc2

scc1

2 21 1 1

2 3 2

5 2

u1 (s1,[0,inf)

u2 (u2,[0,0]),(s2,[1,1]), (s1,[2,inf))

u3 (u3,[0,0]),(s2,[1,1]), (s1,[2,inf))

u4 (s1,[0,inf))

u5 (s2,[0,2]),(s1,[3, inf))

u6 (s2,[0,2]),(s1,[3, inf))

u7 (u7,[0,0]),(s2,[1,1]), (s1,[2,inf))

u3u2 u7

scc1

scc2

[0,0]

[1
,2

]

Conjunctive query Q[0,3]u1u6

Split query
Q[0,2]S1S2 : traversal of VG  true

Q[3,3]S1S1  true
Locate postings

TimeReach Index: Processing
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Navigational Queries

Outline
 Online traversal
 Indexing
 reachability

 label the nodes, look at the labels to decide 

reachability
 we will look into one 2hop reachability index

 distance
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Reachability Index (static)

Compact form of the transitive closure

u1 u2 u3 un

u1 1 0 1 0

u2 0 1 0 0

u3 0 1 0 0

un 1 0 1 1

For each pair of nodes whether they are reachable or not
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2-Hop Labeling (static)
Labels – set of nodes
For each node u, maintain two sets of labels (nodes): 
Lout(u): a set of nodes reachable from u and 

w in Lout(u): there is a path u  w
Lin(u):  a set of nodes from which u is reachable

w in Lout(u) – there is a path w  u
To test whether a v is reachable from u (there is a path u  v), 
check Lout(u)  Lin(v)≠ (path u  w  v)

2-Hop cover is set of hops (x, y) so that every connected pair is 
covered by 2 hops [SODA2002]

u w v
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2-Hop Labeling (static)

a  f?
c  b?

Figure from SODA02 (dashed edges not graph edges)
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Indexing (historical)

146

Simple solution
 Compute 2hop cover for each instance
 Augment labels with lifespans
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Distance Index (static)

u1 u2 u3 un

u1 0 - 5 -

u2 - 0 0 -

u3 - 2 0 -

un 4 - 2 0
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Full distance matrix

Can we just augment the 2HOPs with distance information?



u w v

2 4

Distance Index (static)

For each pair of nodes v and w, at least one node in their 
shortest path must be included in Lout(u) and Lin(v) -
landmarks

We compute the distances (sum) for all landmarks and 
maintain the smallest one



Vary few papers on shortest 
paths
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Incrementally update 2hops
T. Akiba, Y. Iwata, Y. Yoshida, Dynamic and historical shortest-path distance queries on
large evolving networks by pruned landmark labeling, WWW 2014
T. Hayashi, T. Akiba, K. Kawarabayashi: Fully Dynamic Shortest-Path Distance Query
Acceleration on Massive Networks. CIKM 2016: 1533-1542

Dijkstra online traversal
W. Huo, V. Tsotras, Efficient temporal shortest path queries on evolving social graphs,
SSDBM 2014

FVF
C. Ren, E. Lo, B. Kao, X. Zhu, R. Cheng, DW Cheung Efficient Processing of Shortest Path
Queries in Evolving Graph Sequences, Information Systems, Available online 7 June
2017



Navigation (summary)
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 Many interesting problems
 Labels for historical graphs
 Durability
 Evolution
 Labeled or property paths

 Constraints on the labels/properties
 Time-varying properties
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Graph Pattern Queries



Pattern Matching
Labeled graphs
Input: Graph G(V, E, L), L: V → Σ*

Pattern P(VP, EP, LP)
Output: Subgraphs m = (Vm, Em, Lm) of G, such that, there exists a bijective function f : 
Vp → Vm :

o for all u in VP, Lp(u) 𝜖 Lm(f(u)) and 
o for each edge (u, v) 𝜖 Ep, (f(u), f(v)) 𝜖 Em

Graph m is called a match of P in G

2

3

1
9

4

5

7

6

8

10

12

11
11

13

14

15

Graph G
Pattern P
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Pattern Matching
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Labeled graph
Input: Graph G(V, E, L), L: V → Σ*

Pattern P(VP, EP, LP)
Output: Subgraphs m = (Vm, Em, Lm) of G, such that, there exists a bijective function f : 
Vp → Vm :

o for all u in VP, Lp(u) 𝜖 Lm(f(u)) and 
o for each edge (u, v) 𝜖 Ep, (f(u), f(v)) 𝜖 Em

Graph m is called a match of P in G

2

3

1
9

4

5
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6
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11

13

14

15

Graph G
Pattern P
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Pattern Matching
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Labeled graph
Input: Graph G(V, E, L), L: V → Σ*

Pattern P(VP, EP, LP)
Output: Subgraphs m = (Vm, Em, Lm) of G, such that, there exists a bijective function f : 
Vp → Vm :

o for all u in VP, Lp(u) 𝜖 Lm(f(u)) and 
o for each edge (u, v) 𝜖 Ep, (f(u), f(v)) 𝜖 Em

Graph m is called a match of P in G

2

3

1
9

4

5

7

6

8

10

12

11
11

13

14

15

Graph G
Pattern P
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Related Work

155

 (sub) graph isomorphism, NP complete 

Large body of work:
 Most work many small graphs: identify the ones with (at least) one match 

(aka graph containment, graph retrieval) – we consider a single large graph
 Various algorithms: 

 Most graph indexes (based on features such as paths, trees, neighbors, 
sub-graphs, etc)

 Often, a two phase approach
o filter-and-verify: in the first phase use graph index to generate 

candidate matches and then in the second phase verify them using 
some form of graph isomorphism search 

o decompose-and-(multi-way join): in the first phase decompose into 
subgraphs and use the index to find matches and then join the 
results  
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Durable Graph Patterns: definitions [ICDE16]

156

Given a sequence of graph snapshots G, a pattern P, 
and  a set of time intervals I, find the most durable 
matches: the matches that exist for the largest time 
period of time during I

(Durable Graph Pattern Matching): Two types: 
o collective-time durable graph pattern query 
o continuous-time durable graph pattern query

Two interpretation for the duration of a set of time intervals I
 collective duration: the number of time instants in  I
 continuous duration: the duration of the longest time interval in I

Example I = {[1, 3],[5, 10], [12, 13]} – Collective: 11, Continuous: 6
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Example

157

G5
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G1
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Example
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G5
G2

G1

1
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5
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1
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4
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G4
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Collective: 3
Continuous: 1
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Example
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Collective: 2
Continuous: 2
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Durable Graph Patterns: applications

160

 In collaboration or social networks: most persistent research 
collaborations, friendships, interactions

 In a protein network, the protein complex that is durable 
through the evolution

 In a large biological network, the durable chain of nucleotides of 
virus RNA for predicting which genes are prone to mutations.

 In marketing, identify for a product, an idea or a person, the 
durable patterns of supporters among specific demographic
groups labeled by their age, location or other characteristics.
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Baseline 2P algorithm

161

 expensive, since we have to retrieve all matches at each graph 
snapshot, even those matches that appear only in just one 
snapshot

 for frequent patterns and long intervals, the number of 
retrieved matches grows very fast (more than 24h for 1M 
nodes, 4M edges)

 Find the matches at each snapshot
 Return the matches with the most appearances (for 

efficiently identifying which matches are the same, 
represent subgraphs as strings and do string 
matching)
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Durable Graph Pattern

162

Filter-and-Verify algorithm based on:

1. Version Graph representation of the snapshot 
sequence

2. Graph Time Indexes
3. θ-duration threshold
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Durable Pattern Match (outline)

163

Input: Version graph VG, pattern P, set of intervals I
Output: Most durable matches M

1: θ ← 1; M ← {}
2: for each node p in  the pattern P do
3: C(p) ← FILTERCANDIDATES( ... )
4:   if C(p) = {} ; then return {}
5: C ← REFINECANDIDATES(…)
6: DURABLEGRAPHSEARCH(VG, θ, …)
7:  return M

FILTERCANDIDATES: 
o locate candidate matching nodes for each node in the pattern using time indexes.

REFINECANDIDATES: 
o refine candidate sets using the VG and time indexes.

DURABLEGRAPHSEARCH: 
o Search VG to verify for matches with duration at least θ (dual graph simulation)

performing also “time-joins”
o Each time a match is found, θ is increased
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Indexes

164

Time-label or TiLa index (basic index)
 Given  a label l and a time instant t: constant time retrieval 

of all nodes having label l at t

First level: Array of size T where each position i refers to a time instant i and links to a set of 
labels L. 
Second level: Each label l in this set links to the set of nodes that are labeled with l at i. 

Time-path-label or TiPLa index (parameter λ)
 As TiLa but for labeled paths:

Given a label path p and a time instant t: constant time 
retrieval of all starting nodes of path p at t

TiPLa enumerates all paths up to a maximum length (λ = 2)
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Indexes

165

Time-neighborhood-label or TiNLa(r) index 
 For each node u information about the labels of its neighbors 

at distance r, i.e., nodes r hops away from u

For each node u, a bit array of size L, where each position is a bit array of size T, where

Position(i) =  
1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Counter time-neighborhood-label or cTiNLa(r) index 
 Maintains the number of neighbors with the specific label

Position(i) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖
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Candidate Nodes

166

The indexes are used in FILTERCANDIDATES and DURABLEGRAPHSEARCH

selectivity(TiPLa) ≽ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(TiNLa)  ≽ selectivity(TiLa)
(≽ : better)

selectivity(cTiNLa(1)) ≽
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(TiPLa) (λ = 1)

Pattern P         Match 1         Match 2 Pattern P          Match 1                   Match 2 

selectivity(TiPLa) (λ = 2) ≽
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(cTiNLa(1) + cTiNLa(2))
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The θ-threshold

167

Simple threshold: Search with all matches with duration at least θ = 1

 In the first runs, the algorithm considers edges that have a short duration 
compared to the actual duration of a potential match (poor pruning)

Use the indexes to estimate the duration of the match

 For a node p in the pattern P, 

 Rankθ(p) = list of candidates matches with duration at least θ
 d(p) = maximum duration for which p has at least one match (i.e., 

Rankθ(p) is not empty)

 Define θmax = min
𝑝 𝜖 𝑃

{𝑑 𝑝 }

 This is the maximum possible duration of a match
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The θ-threshold

168

Search for matches with duration  θmax

If no match, search with a smaller θ

Next θ
 Binary search
 MinMax search: estimate the next possible 

maximum θ using the indexes as before



Evaluation (comparison with baseline)
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Collective (sec) Continuous (sec)

Dataset Label value Q. Size Baseline CTINLA(1) Baseline CTINLA(1)

DBLP BEGINNER 2 >5,400 22 >5,400 17.63

DBLP BEGINNER 3 >5,400 32.18 >5,400 25.96

DBLP BEGINNER 4 >5,400 42.70 >5,400 34.74

DBLP PROF 2 22 0.06 20.69 0.05

DBLP PROF 3 6.78 0.08 6.82 0.08

DBLP PROF 4 12 0.31 91.33 0.18

YT10 MOST 2 >5,400 7.89 >5,400 8.23

YT10 MOST 3 >5,400 11.87 >5,400 16

YT10 MOST 4 >5,400 28.9 >5,400 18.31

YT10 LEAST 2 91.80 0.96 91.81 1.03

YT10 LEAST 3 110.63 110.63 110.63 1.82

YT10 LEAST 4 157.68 2.12 157.68 2.33



Evaluation

170

 Overall, MINMAX outperforms BINARY
 BINARY ordering reduces the threshold at each step in half 

often producing values far below the actual duration thus 
creating large candidate sets in each step

 SIMPLE works only when candidate size is small and 
durable matches have short durations



Cliques Size 2 Size 3 Size 4 Size 5 Size 6

Conferences Duration Matches Duration Matches Duration Matches Duration Matches Duration Matches

SIGMOD 11 1 5 24 5 24 3 1000 3 1000

ICDE 8 1 5 6 3 72 2 1000 2 1000

VLDB 10 1 6 6 3 1000 3 1000 3 1000

EDBT 4 4 3 6 2 288 2 240

KDD 9 4 6 18 5 24 3 840 3 720

WWW 9 1 5 12 3 48 2 600

CIKM 6 4 5 6 2 1000 2 1000 2 1000

SIGIR 8 6 6 12 5 360 5 720 5 720

FOCS 8 1 3 6 2 24

STOC 8 2 9 6 2 120

SODA 6 5 3 18 2 240 2 120

ICALP 5 4 4 6 2 96

OSDI 4 2 2 132 2 144 2 120

SOSP 4 1 3 6 2 72

USENIX 5 1 3 48 3 24 2 1000 2 1000

SIGCOMM 6 1 3 36 3 24 2 1000 2 1000

SIGMETRICS 6 4 4 12 3 24 2 240

SIGOPS 3 6 2 42 2 24

SIGGRAPH 8 2 5 18 4 168 4 120 3 1000

Example results with conference labels

 “database” conferences – larger & most durable cliques SIGMOD, VLDB > ICDE > EDBT
 Large cliques SIGIR (durable) cliques KDD
 “theory” conference smaller cliques

collective Assign labels based on conferences  - looks for author cliques with the same conference 



Duration Matches Authors

SIGMOD 11 1 Beng Chin Ooi, Kian-Lee Tan

VLDB 10 1 Kian-Lee Tan, Beng Chin Ooi

WWW 9 1 Min Zhang, Yiqun Liu

KDD 9 4 Martin Ester, Hans-Peter Kriegel | Jiawei Han, Philip S. Yu | Jiawei 
Han, Xifeng Yan | Wei Fan, Philip S. Yu

STOC 8 2 Eyal Kushilevitz, Rafail Ostrovsky | Yossi Azar, Baruch Awerbuch

FOCS 8 1 Oded Goldreich, Shafi Goldwasser

ICDE 8 1 Divyakant Agrawal, Amr El Abbadi

SIGGRAPH 8 2 Takuji Narumi, Tomohiro Tanikaw | Andrew Jones, Paul E. Debevec

SIGCOMM 6 1 Albert G. Greenberg, David A. Maltz

SODA 6 5 Leonidas J. Guibas, John Hershberger | Constantinos Daskalakis, Ilias
Diakonikolas | Alexandr Andoni, Piotr Indyk | Esther M. Arkin, 

Joseph S. B. Mitchell | Fedor V. Fomin, Daniel Lokshtanov

USENIX 5 1 Christopher Kruegel, Engin Kirda

SOSP 4 1 M. Frans Kaashoek, Eddie Kohler

Example authors’ “cliques” (collective)



Combinations Duration Matches
WWW-SOSP
WWW-CIKM 5 1
WWW-STOCS 3 3

WWW-SIGGRAPH 3 2
WWW-EDBT 6 3
CIKM-USENIX 2 8
CIKM-SIGIR 6 1
VLDB-KDD 8 5
VLDB-ICDE 11 1
ICDE-EDBT 5 2
OSDI-SOSP
VLDB-EDBT 5 2

SIGMOD-KDD 7 2
SIGMOD-ICDE 7 3
SIGMOD-EDBT 4 2
KDD-SIGGRAPH 4 1
SIGMOD-VLDB 9 1

SODA-FOCS-STOC 3 3
OSDI-SOSP-USENIX
SIGMOD-SIGCOMM 4 1
ICDE-EDBT-SIGMOD 3 3
VLDB-EDBT-SIGMOD 3 6

FOCS-STOC-SODA-ICALP
SIGMOD-ICDE-VLDB-EDBT 2 224

SIGCOMM-SIGMETRICS-SIGOPS

“Combining” Conference



Duration Matches Authors

VLDB-ICDE 11 1 Jeffrey Xu Yu, Xuemin Lin

VLDB-SIGMOD 9 1 Beng Chin Ooi, Kian-Lee Tan

VLDB-KDD 8 5 Jiawei Han, Xifeng Yan | Charu C. Aggarwal, Philip S. Yu |
Charu C. Aggarwal, Philip S. Yu | Jiawei Han, Philip S. Yu | Jian Pei, 

Philip S. Yu

SIGMOD-KDD 7 2 Jiawei Han, Xifeng Yan | Jiawei Han, Philip S. Yu

SIGMOD-ICDE 7 3 Divesh Srivastava, Nick Koudas | Beng Chin Ooi, Kian-Lee Tan |
Nicolas Bruno, Surajit Chaudhuri

CIKM-SIGIR 6 1 Craig Macdonald, Iadh Ounis

WWW-CIKM 5 2 Yiqun Liu, Min Zhang

ICDE-EDBT 5 2 Haixun Wang, Xuemin Lin | Xuemin Lin, Jeffrey Xu Yu

SIGMOD-
SIGCOMM

4 1 Joseph M. Hellerstein, Scott Shenker

SODA-FOCS-STOC 3 3 Ilias Diakonikolas, Constantinos Daskalakis, Anindya De | Ilias
Diakonikolas, Rocco A. Servedio, Anindya De | Constantinos

Daskalakis, Rocco A. Servedio, Anindya De

WWW-STOC 3 3 Ravi Kumar, T. S. Jayram | S. Muthukrishnan, Vahab S. Mirrokni |
Arpita Ghosh, Aaron Roth

Example authors’ “cliques”



Pattern Queries

175

 First approach on durable patterns
 Many interesting problems, e.g.,
 using structural/snapshot partitions

 Other interesting variations of patterns
(approximate)

 Beyond durability, e.g., efficient
indexing/caching for historical queries



Introduction, problem definition
Taxonomy of historical queries 
Part 1 (general techniques)

Representation, Storage, Processing
Part 2 

Specific Types of Queries
Conclusions and Future Work

Outline
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Conclusions

177

Storage is cheap, store everything is possible
(black mirror, novels by Ken Liu, and more)

How to find information in past history and
explore it is key

This applies to graphs, generic model of
relationships

Current research: first steps
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Future Work

178

Consider historical versions of other types
of graph queries

 Keywords
 Skylines
 Etc
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Future Work

179

Extend existing systems with history such
as: given a query execute it

 as historical query at specific time
interval(s) in the past
 we need also a specification of the

semantics
 a most durable query
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Future Work
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Think of new ways of exploring history

Many more interesting problems in the
intersection of query management and
knowledge discovery
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