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Problem Context —

* Performance Models
Provide reasonable approximation of job response time at significantly lower
cost than experimental evaluation of real setups.

Essential for optimizing and can be helpful in critical decision making in
workload management and resource capacity planning.

« Data Distribution
The current distributed data storage systems do not consider the imposed

workload during the data placement process in the cluster.

« Combining Data and Query Shipping
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— Thesis objectives —

O1: Build performance model to Hadoop 2.x.

02: Create performance model to Spark.

O3: Find an appropriate effective way for workload aware data placement
(data redistribution), which should increase the overall performance.

O4: Develop workload aware scheduling algorithms for scheduling jobs
inside the cluster.
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= ()1: MapReduce Performance Model for
Hadoop 2.x

The objective is to develop an efficient algorithm to estimate two
measures of interest:

* The mean response time of individual tasks;
 The mean response time for a job.

Estimate the response time for the whole workload.
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Background: Hadoop

Architecture
Hadoop 1.x Hadoop 2.x
Pig | Hive | Others MR | Pig | Hive | Others

MapReduce :: YARN

Dynamic resource allocation!
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Related Work: MapReduce
Performance Models

Two groups of approaches:

« Static
Do not take into account the queuing delay due to contention at

shared resources.
- Herodotou [1]; - ARIA [2]; - TETRIS [3]

 Dynamic
Do not consider the synchronization delays due to precedence
constraints among tasks that cooperate in the same job (map and

reduce phases).

Two techniques:
. Mean Value Analysis (MVA)

. Markov Chains
- Vianna et al.[4]

Common limitation: Use a fixed amount of slots per map and reduce tasks

within one node.
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- Solution: General Schema —

Main Challenge: How to adapt the existing model to Hadoop 2.x

Converged?

A6: A7:

A3:

A2: A5:

Estimate the Ad: " e .
Al: Construct g ; g Estimate the Apply Build TimeLine
Initialize Precedence mé[)e}sagvclelrrl];er rEesst'rgggz tt?r;ke average job Convergence for the whole
Start Tree J TS P P response time Test workload
[ & & [

A

No

Vianna et al.[4]
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s A1: Initialization —

a) Using sample techniques - taking the average of task response
time from job profile.

b) Obtain from existing cost models that can capture unit costs of
map and reduce tasks (e.g.,Herodotou’s cost model [1])
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A2: Building precedence tree

Timeline construction

a) without slow start

nl

n2

n3

nl

n2

n3

Resource request object

Number of

Locality

containers Priority | Size constraints Task type
2 20 X nl map
2 20 X n2 map
1 10 X * reduce

Ml | M2
|
M3 | M4
|
R1 | R2 | R3 | R4
| | |
phasel phase2
b) with slow start
Ml M2
M3 M4
R1 | R3 |R2 | R4 |RM
| | | |
phasel phase2

Map task is not divided into phases;
Reduce task:
(shuffle+sort) - shuffle subtask
(final sort+reduce function) —
merge subtask

&
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— A2:Building precedence tree

Captures the execution flow of the job using

two types of primitive operators:
— P (parallel)
— S (sequential)

M2

M1 | M2 N
nl
' /9
M3 | M4 N M1
n2
|
R1 R2 R3 R4 RM
N I B B
| R
phasel phase2
11
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A3: Estimation of the Intra- and Inter-
job overlaps factors

For a system with multiple classes of tasks the queuing delay of task i class
due to class j task is directly proportional to their overlaps.
Two types of overlap factors:

* Intra-job
* Inter-job
Job,; T2 |

I
I
@ @ | T | Tig
! ; ! T3 : : Intra-overlap
Gy (T @& & 5 = — — - Inter-overlap
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S First Approach (AMVA): A4: S
Estimation of task response time

To solve the queueing network models we apply Mean Value Analysis
(MVA) [7]. MVA s based on the relation between the mean waiting time and
the mean queue size of a system with one job less

Estimate the Average Estimate the Mean Calculate the Avarage Estimate the Average
Response Time Queueing Length in Queue Length in each Response Time in each Find the Total
in each service center each queueing center service center service center Response Time

Start
]l ]l ]l ]l
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There are 3 alternative approaches to estimate the job response time:

14

Tripathi-based

Assumption: task durations have Erlang or Hyperexponential

distributions.

A5 Average Job Response Time
Estimation

Knowing the distribution of tasks, we can determine the mean value for

the root node, going from leafs to the top

Task durations have normal distributions
(Pearson's Criterion, 95% significance level).

Fork/join-based

Execution time:

Ti Tj

JoRy SN

M1

M2

R1

R2

/@\ Rzk = Hk . ma,a:(Tz-,Tj),
where Hy, = )

s - is the number of child nodes
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A6: Applying convergence test

|Rcur L Rprev| < €

sec

-
27.5195
27.519

27.5185
27.518
27.5175
27.517
27.5165
27.516
27.5155

SO epsilon

S
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A7: Building final timeline —

Based on obtained estimations for task response time, apply the
algorithm for timeline construction.

1
1
] ]
] 1
IS i
1
! | | E Workload: J1,J2
i E E FIFO order
M31 1\/[41 | i
n2 | :
: i
| | |
ﬂ R R PR R R
n3 I
| | | | | !
: !
1
L I I L B
n4
| N I R ]
I 1
1 : :
nS M32 | M42 E i
| | ;
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— Experimental setup —

We performed a set of experiments analyzingthe job responsetimein terms
of the following parameters:

number of nodes: 4,6,8;
size of input data: 1GB, 5GB;

* numberofjobs(wordcount, sort) that are executed simultaneouslyin the
cluster: 1,2,3,4;

Tripathi-based, Fork/Join-based algorithms.
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E— Evaluation —

* Input: #5GB; Number of jobs #1

Input: #5GB; Number of jobs #4

t.sec

250 @=g=eHa doopSetup g

230 4 @O ork /Join

210 S Tripathi——

190 - apeNormat-Dist——

170 A

150

130

110

90

70

50 T T T 1
4 5 6 7 8

number of nodes

1250
e=(mm HadoopSetup
1050 @St 5k /Toin
@y Tripathi
850 -
e Normal Dist
650
450
250
50 T T T \
4 5 6 7 8

number of nodes

Error for:

Fork/Joined based: 11%-14%
Normal Distr.: 12-15%
Tripathi based: 20-23%
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02: Performance Model for
Spark

Ongoing work

We need to adapt for Spark the precedence
tree construction procedure taking into
consideration 3 levels of Scheduling:

e Job Scheduling (FIFO, FAIR)

e Stage Scheduling (DAG Scheduler)
* Task Scheduling (Delay Scheduling)
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01 completed
« 02 ongoing

2017

Timeplan

Oct |Nov Dec | Jan Feb Mar Apr May Jun | Jul Aug|Sep Oct|Nov Dec|Jan Feb Mar| Apr May

& Q @ =
1 O1: MapReduce Performance Model for Hadoop 2.x

02: Performance Model for Apache Spark

:l:‘ O1:MapReduce Performance Model for Hadoop 2.x (Extension)

&
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— Publication Plan —_—

Submitted:

Submission of the paper “Performance Model for Hadoop 2.x" —
DOLAP, 2017. Accepted.

Scheduled:
Submission of the paper about \Performance model for Hadoop 2.x"
(Extended version) - Information Systems, 14" July, 2017.

Planned:
“Performance model for Apache Spark” DOLAP, November 18th
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— Other Activities

Teaching activities

Web Services Course: labs + supervision of projects

Studying

Courses:

Self-service Business Intelligence

Foundations and recent trends on ontology engineering
Spanish language courses
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Thank you for your time!

Questions & Discussion

,4
1 /

? .
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