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DB Research @ IDSE – Temporal Databases

Interval-timestamped data in RDBMSs
More on this shortly

Temporal aggregation algorithms
M. Böhlen, J. Gamper, C.S. Jensen: Multi-dimensional aggregation
for temporal data, EDBT 2006
J. Gordevicius, J. Gamper, M.H. Böhlen: Parsimonious temporal
aggregation, The VLDB Journal 2012

Time series (imputation of missing values)
K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, H Mitterer:
Continuous imputation of missing values in streams of
pattern-determining time series, EDBT 2017
M. Khayati, M.H. Böhlen, and J. Gamper: Memory-efficient centroid
decomposition for long time series, ICDE 2014

Complex event pattern matching
B. Cadonna, J. Gamper, M.H. Böhlen: Sequenced event set pattern
matching, EDBT 2011
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DB Research @ IDSE – Spatial Databases

Isochrones and reachability analysis
J. Gamper, M.H. Böhlen, and M.
Innerebner: Scalable computation
of isochrones with network
expiration, SSDBM 2012

Itinerary and shortest path planning
T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser: Exact and
approximate algorithms for finding k-shortest paths with limited
overlap. EDBT 2017
P. Bolzoni, S. Helmer, K. Wellenzohn, J. Gamper, P. Andritsos:
Efficient itinerary planning with category constraints, SIGSPATIAL
2014
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DB Research @ IDSE – Graphs and Histograms

D. Blumenthal, J. Gamper: Correcting and speeding-up bounds for
non-uniform graph edit distance, ICDE 2017

M. Shekelyan, A. Dignös, J. Gamper: DigitHist: a histogram-based
data summary with tight error bounds, PVLDB 2017
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Motivation

From Big Data to Long Data

Samuel Arbesman: Stop Hyping Big Data and Start Paying
Attention to ’Long Data’ (Wired 2013)

Sure, big data is a powerful lens for
looking at our world. Despite its
limitations and requirements, crunching
big numbers can help us learn a lot
about ourselves.
But no matter how big that data is or
what insights we glean from it, it is still
just a snapshot.
We need to stop getting stuck only on
big data and start thinking about long
data – datasets that have a massive
historical sweep.

Increasing interest in temporal/historical data from big DB vendors

J. Gamper eBISS 2017 – July 3, 2017 8



Motivation

Long Data

According to Benjamin Bruce from Pitney Bowes, businesses can enhance
their customer relationships by embracing many of Arbesman’s long data
ideas [Jeff Bertolucci, InformationWeek 2013]:

Big data is more about taking a slice in time across many different
channels. But long data involves looking at information on a much
longer timescale.
Many companies have data that goes back 10, 20, 30 years. A
longer-term view can provide information that businesses might miss
if they examine data that only goes back five years or less.
There’s no international standards definition of big data. But the
most popular description – Gartner’s 3V of high volume, high
velocity, and high variety – doesn’t explicitly include historical
information as a key component of big data.
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Motivation

Temporal Data is Ubiquitous

Almost all information is qualified with
time (period or point)

Web, RDF stores (triples should really be
quintuples)
Data warehousing
Medical records, loans, ...
Sensor data and time series
Transport information
. . .

Temporal data provide additional and more
precise information for

Analysis
Prediction
Strategy planning
Accountability
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Motivation

The Need for Temporal Support in Databases

Limited support for temporal data management in DBMSs
Conventional (non-temporal) DBs represent a static snapshot
Management of temporal aspects is implemented by the application

Adds additional complexity to application programs
Some time data types and functions are available in SQL, e.g., DATE,
TIME, DATEADD(), DATEDIFF()

SQL:2011 added support for temporal tables
Still very limited query support

A temporal database provides built-in support for the management of
temporal data/time

Representation of various temporal aspects, e.g., valid time,
transaction time
Support for multiple calendars and granularities
Easy formulation of complex queries over time
Queries over and modification of previous states
Temporal indeterminacy, including qualitative temporal relations
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Motivation

Example: Temporal Aggregation Query

Input: External project funding
N D B T

r1 Tom CS 200K [Feb,Jul]
r2 Tim CS 180K [May,Jul]
r3 Joe M 150K [Apr,Aug]

Query: Amount of external
funding per department?

Output: Temporal (at each
point in time) aggregation

D B T
z1 CS 100K [Feb,Apr]
z2 CS 280K [May,Jul]
z3 M 150K [Apr,Aug]

Jan Feb Mar Apr May Jun Jul Aug t

Tom,CS, 200K

Tim,CS, 180K

Joe,M, 150K

Tom,CS, 200K

Tim,CS, 180K

Joe,M, 150K

CS, 100K CS, 280K

M, 150K
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Background in Temporal Databases

Time Domain/1

Time domain/ontology
Specifies the basic building blocks of time
Time is generally modeled as an arbitrary set of instants/points with
an imposed partial order, e.g., (N, <)
Additional axioms introduce more refined models of time

Structure of time
Linear time

Time advances from past to future in a step-by-step fashion
Branching time (possible future or hypothetical model)

Time is linear from the past to now, where it divides into several time
lines
Along any future path, additional branches may exist
Structure is a tree rooted at now
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Background in Temporal Databases

Time Domain/2

Density of time
Discrete time

Time instants are non-decomposable units of time with a positive
duration, called chronons
Chronon is the smallest duration of time that can be represented
Isomorphic to natural numbers

Dense time
Between any two instants of time another instant exists
Isomorphic to rational numbers

Continuous time
Dense and no “gaps” between consecutive instants
Time instants are durationless
Isomorphic to the real numbers

Boundness of time
Time can be bounded in the past and/or in the future, i.e., first
and/or last time instant exists

Relative (unanchored) versus absolute (anchored) time
“9 AM, January 1, 1996” is an absolute time
“9 hours” is a relative time
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Background in Temporal Databases

Time Domain/3

Humans perceive time as continuous
A discrete linear time model is generally used in temporal databases
for several practical reasons:

Measures of time are generally reported in terms of chronons
Natural language references are compatible with chronons,
e.g., 4:30 pm means over some period/chronon around this time
Chronons allow easily to model durative events
Any implementation needs a discrete encoding of time

Problem to represent continuous movement in discrete model
An object is continuously moving from point A to point B
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Background in Temporal Databases

Time Granularity

A time granularity is a partitioning of the timeline (chronons) into a
finite set of segments, called granules.
Provides a discrete image of a (possibly continuous) time
Supports a user-friendly representation of time, e.g.,

birthdates are typically measured at granularity of days
business appointments to granularity of hours
train schedules to granularity of minutes

Mixed granularities are of basic importance to modeling “real-world”
temporal data

Converter functions between different granularities are needed
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Background in Temporal Databases

Temporal Data Models

Data model: M = (DS ,QL)
DS is a set of data structures
QL is a language for querying the data structures

e.g., the relational data model is composed of relations and SQL
Many extensions of the relational data model to support time have
been proposed in past research

TSQL2, IXSQL, SQL/TP, ATSQL
Several aspects have to be considered

Different time dimensions
Different timestamp types
Attribute versus tuple timestamping
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Background in Temporal Databases

Dimensions of Time/1

Time is multi-dimensional
Valid time
Transaction time
Publication time
Efficacy time
etc.
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Background in Temporal Databases

Valid Time

Valid time is the time a fact was/is/will be true in the modeled
reality/mini-world

e.g., John has been hired on October 1, 2004

Valid time captures the time-varying states of the modeled reality
All facts have a valid time by definition, however, it might not be
recorded in the database
Valid time is independent of the recording of the fact in a database
Can be bounded or unbounded
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Background in Temporal Databases

Transaction Time

Transaction time is the time when a fact is current/present in the
database as stored data

e.g., the fact “John was hired on October 1, 2004” was stored in the
DB on October 5, 2004, and has been deleted on March 31, 2005

Transaction time captures the time-varying states of the database
Transaction time has a duration: from insertion to deletion, with
multiple insertions and deletions being possible for the same fact
Deletions of facts are purely logical

the fact remains in the database, but ceases to be part of the
database’s current state.

Always bounded on both ends
Starts when the database is created (nothing was stored before)
Does not extend past now (no facts are known to have been stored in
the future)

Basis for supporting accountability and “traceability” requirements,
e.g., in financial, medical, legal applications.
Supplied automatically by the DBMS
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Background in Temporal Databases

Dimensions of Time/2

A data model can support none, one, two, or more time dimensions
Snapshot data model: None of the time dimensions is supported

Represents a single snapshot of the reality and the database

Valid-time data model: Supports only valid time
Transaction-time data model: Supports only transaction time
Bitemporal data model: Supports valid time and transaction time
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Background in Temporal Databases

Timestamps/1

Timestamp: A time value that is associated with an attribute value
or a tuple in a database

Captures some temporal aspect, e.g., valid time, transaction time
Represented as one or more attributes/columns of a relation

Three different types of timestamps are widley used
Time points
Time intervals
Temporal elements

Two different ways of timestamping
Tuple timestamping
Attribute timestamping
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Background in Temporal Databases

Timestamps/2

Example: Video store where customers, identified by a CustID, rent
video tapes, identified by a TapeNum. Consider the following rentals
during May 1997:

On 3rd of May, customer C101 rents tape T1234 for three days
On 5th of May, customer C102 rents tape T1245 for 3 days
From 9th to 12th of May, customer C102 rents tape T1234
From 19th to 20th of May, and again from 21st to 22nd of May,
customer C102 rents tape T1245

These rentals are stored in a relation Checkout which is graphically
illustrated below

3 76 8 9 10 11 12 13 14 15 16 17 18 19 20 214 5 22

(1,C101,T1234)

(2,C102,T1245) (3,C102,T1234) (4,C102,T1245)

(5,C102,T1245)
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Background in Temporal Databases

Point-Based Data Models
Point-based data model: each tuple is
timestamped with a time point/instant
Most basic and simple data model
Timestamps are atomic values and can be
easily compared with =, 6=, <,>,≥,≤
Syntactically different relations store
different information
Multiple tuples are used if a fact is valid
at several time points
Additional attributes required to restore
original relation (SeqNo for 2-day rentals)
Abstract view of a database and not
meant for physical implementation
Simplicity and computational complexity
make it popular for theoretical studies

CheckOut
SeqNo CustID TapeNum T

1 C101 T1234 3
1 C101 T1234 4
1 C101 T1234 5
2 C102 T1245 5
2 C102 T1245 6
2 C102 T1245 7
3 C102 T1234 9
3 C102 T1234 10
3 C102 T1234 11
3 C102 T1234 12
4 C102 T1245 19
4 C102 T1245 20
5 C102 T1245 21
5 C102 T1245 22
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Background in Temporal Databases

Interval-Based Data Models

Each tuple is timestamped with a time interval (time period)
CheckOut
SeqNo CustID TapeNum T

1 C101 T1234 [3,5]
2 C102 T1245 [5,7]
3 C102 T1234 [9,12]
4 C102 T1245 [19,20]
5 C102 T1245 [21,22]

Timestamps are atomic values that can be compared using Allen’s 13
basic relationships between intervals (before, meets, during, etc.)

more convenient than comparing the endpoints of the intervals
Multiple tuples are used if a fact is valid over disjoint time intervals
SeqNo attribute is not needed to distinguish between different tuples
The most popular model from an implementation perspective
Time intervals are not closed under all set operations

e.g., subtracting [5, 7] from [1, 9] gives a set of intervals {[1, 4], [8, 9]}
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Background in Temporal Databases

Weak Interval-Based Data Models

Intervals are only used as a convenient representation of (contiguous)
sets of time points
The following two relations are considered equivalent

CheckOut
CustID TapeNum T
C101 T1234 [3,5]
C102 T1245 [5,7]
C102 T1234 [9,12]
C102 T1245 [19,20]
C102 T1245 [21,22]

CheckOut
CustID TapeNum T
C101 T1234 [3,5]
C102 T1245 [5,7]
C102 T1234 [9,12]
C102 T1245 [19,22]

The relations are (syntactically) different, but snapshot equivalent,
i.e., they contain the same snapshots
Semantically, a point-based view is adopted
Coalescing of relations makes sense

Syntactically different relations are also semantically different
Impossible to distinguish two consecutive 2-day checkouts without an
additional attribute
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Background in Temporal Databases

Strong Interval-Based Data Models

Intervals are atomic units (and not just sets of time points) and carry
meaning/semantics
The following relations are considered to contain different information
CheckOut
CustID TapeNum T
C101 T1234 [3,5]
C102 T1245 [5,7]
C102 T1234 [9,12]
C102 T1245 [19,20]
C102 T1245 [21,22]

CheckOut
CustID TapeNum T
C101 T1234 [3,5]
C102 T1245 [5,7]
C102 T1234 [9,12]
C102 T1245 [19,22]

There is a difference between one 4-day checkout and two
consecutive 2-day checkouts (e.g., different fees)
Inherently interval-based models do not enforce
More expressive: Can distinguish between a 4-day checkout and two
consecutive 2-day checkouts without an additional attribute
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Background in Temporal Databases

Data Models with Temporal Elements

Each tuple is timestamped with a temporal element, i.e., a finite
union of intervals

CheckOut
CustID TapeNum T
C101 T1234 [3,5]
C102 T1245 [5,7] ∪ [19,20] ∪ [21,22]
C102 T1234 [9,12]

CheckOut
CustID TapeNum T
C101 T1234 [3,5]
C102 T1245 [5,7] ∪ [19,22]
C102 T1234 [9,12]

The full history of a fact is stored in one tuple
Point-based and interval-based semantics are possible (as for the
interval-based data model)

Under the point-based view, both relations are equivalent
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Background in Temporal Databases

Attribute Value Timestamping/1

Each attribute value is timestamped with a set of points/intervals
Captures all information about a real-world object in a single tuple

e.g., all information about a customer in the relation below
Information about other objects is spread across several tuples, e.g.,
information about tapes.
CheckOut

SeqNo CustID TapeNum
[3,5] 1 [3,5] C101 [3,5] T1234
[5,7] 2 [5,7] ∪ [9,12] ∪ [19,22] C102 [5,7] ∪ [19,22] T1245
[9,12] 3 [9,12] T1234
[19,20] 4
[21,22] 5

A single tuple may record multiple facts
second tuple records the facts: rental information for customer C102
for the tapes T1245 and T1234, and four different checkouts

Non-first-normal-form data model
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Background in Temporal Databases

Attribute Value Timestamping/2

Different groupings of the information into tuples are possible for
attribute-value timestamping

e.g., grouping on tape number in the example below

CheckOut
SeqNo CustID TapeNum

[3,5] 1 [3,5] C101 [3,5] ∪ [9,12] T1234
[9,12] 3 [9,12] C102
[5,7] 2 [5,7] ∪ [19,22] C102 [5,7] ∪ [19,22] T1245
[19,20] 4
[21,22] 5

This relation is snapshot-equivalent to the previous one (grouped on
customers).

J. Gamper eBISS 2017 – July 3, 2017 31



History and State-of-the-Art

Outline

1 Motivation

2 Background in Temporal Databases

3 History and State-of-the-Art

4 ANSI/ISO SQL:2011 Standard

5 SQL:2011 Standard in Commercial DBMSs

6 Native Support for Sequenced Temporal Data

7 Summary and Outlook

J. Gamper eBISS 2017 – July 3, 2017 32



History and State-of-the-Art

Temporal Database Research History

Four overlapping phases
1956–1985: Concept development, considering the multiple kinds of
time and conceptual modeling
1978–1994: Design of query languages

1978-1990: Relational temporal query languages
1990–1994: Object-oriented temporal query langauges

1988–present: Implementation aspects, including storage structures,
operator algorithms, and temporal indexes.
1993–present: Consolidation phase

Consensus glossary of temporal database concepts
http://www.cs.aau.dk/˜csj/Glossary/index.html
Query language test suite
TSQL2

Still an active research area today
New application domains with the need for new operations

Spatio-temporal and moving-object databases, e.g., mobile-phone
tracking to monitor employees, company cars, and equipment
Data streams
Data warehousing
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History and State-of-the-Art

State-of-the-Art – Indexing

Martin Kaufmann, Peter M. Fischer, Norman May, Chang Ge, Anil
K. Goel, Donald Kossmann: Bi-temporal Timeline Index: A data
structure for Processing Queries on bi-temporal data. ICDE 2015:
471-482
Martin Kaufmann: Storing and Processing Temporal Data in a Main
Memory Column Store. PVLDB 6(12): 1444-1449 (2013)
Martin Kaufmann, Panagiotis Vagenas, Peter M. Fischer, Donald
Kossmann, Franz Färber: Comprehensive and Interactive Temporal
Query Processing with SAP HANA. PVLDB 6(12): 1210-1213 (2013)
Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M.
Fischer, Donald Kossmann, Franz Färber, Norman May: Timeline
index: a unified data structure for processing queries on temporal
data in SAP HANA. SIGMOD Conference 2013: 1173-1184

J. Gamper eBISS 2017 – July 3, 2017 34



History and State-of-the-Art

State-of-the-Art – Joins

D. Gao, C.S. Jensen, R.T. Snodgrass, M.D. Soo: Join operations in
temporal databases. VLDB Journal, vol. 14, 2005.
Francesco Cafagna, Michael H. Böhlen: Disjoint interval partitioning.
VLDB Journal, vol. 26, 2017.
Danila Piatov, Sven Helmer, Anton Dignös: An interval join
optimized for modern hardware. Proc. of ICDE, 2016.
Anton Dignös, Michael H. Böhlen, Johann Gamper: Overlap interval
partition join. Proc. of SIGMOD, 2014.
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History and State-of-the-Art

State-of-the-Art – Aggregation

N. Klein, R.T. Snodgrass: Computing temporal aggregates. Proc. of
ICDE 1995.
B. Moon, I.F. Vega Lopez, V. Immanuel: Efficient algorithms for
large-scale temporal aggregation. TKDE, vol. 15, 2004.
Esteban Zimányi: Temporal aggregates and temporal universal
quantification in standard SQL. SIGMOD Record, vol. 35, 2006.
M. Böhlen, J. Gamper, C.S. Jensen: Multi-dimensional aggregation
for temporal data. Proc. of EDBT, 2006.
J. Gordevicius, J. Gamper, M. Böhlen: Parsimonious temporal
aggregation. Proc. of EDBT, 2009.
J. Gordevicius, J. Gamper, M.H. Böhlen. Parsimonious temporal
aggregation. VLDB Journal, 2012.
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History and State-of-the-Art

State-of-the-Art – Relational Databases

Anton Dignös, Michael H. Böhlen, Johann Gamper, Christian S.
Jensen: Extending the Kernel of a Relational DBMS with
Comprehensive Support for Sequenced Temporal Queries. TODS,
vol. 41, 2016.
Andreas Behrend, Philip Schmiegelt, Jingquan Xie, Ronny Fehling,
Adel Ghoneimy, Zhen Hua Liu, Eric S. Chan, Dieter Gawlick:
Temporal state management for supporting the real-time analysis of
clinical data. Proc. of ADBIS, 2014.
Anton Dignös, Michael H. Böhlen, Johann Gamper: Query time
scaling of attribute values in interval timestamped databases. Proc.
of ICDE, 2013.
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History and State-of-the-Art

State-of-the-Art – Query Languages

M. Böhlen, C.S. Jensen: Temporal data model and query language
concepts. Encyclopedia of Information Systems, vol. 4, 2003.
R. T. Snodgrass, editor. The TSQL2 Temporal Query Language.
Kluwer, 1995.
R. T. Snodgrass. Developing Time-Oriented Database Applications
in SQL. Morgan Kaufmann Publishers, Inc., San Francisco, CA, July
1999.
M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass, Temporal
Statement Modifiers, TODS 2000.
D. Toman, Point-Based Temporal Extensions of SQL and Their
Efficient Implementation, Temporal Databases: Research and
Practice, Springer Verlag. 1998.
N. A. Lorentzos and Y. G. Mitsopoulos, SQL Extension for Interval
Data, TKDE 1997.
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History and State-of-the-Art

State-of-the-Art – Misc

Temporal probabilistic databases
Katerina Papaioannou, Michael H. Böhlen: TemProRA: Top-k
temporal-probabilistic results analysis. Proc. of ICDE, 2016.

Temporally evolving graphs
Vera Zaychik Moffitt, Julia Stoyanovich: Towards sequenced
semantics for evolving graphs. Proc. of EDBT, 2017.
Vera Zaychik Moffitt, Julia Stoyanovich: Portal: A Query Language
for Evolving Graphs. CoRR abs/1602.00773 (2016)

Semantics
Curtis E. Dyreson, Ventkata A. Rani, Amani Shatnawi: Unifying
Sequenced and Non-sequenced Semantics. TIME 2015: 38-46
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ANSI/ISO SQL:2011 Standard
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ANSI/ISO SQL:2011 Standard

Running Example

Employees assigned to departments

Emp
EName EStart EEnd EDept
Anton 2010 2015 ifi
Anton 2015 2017 idse

Departments with a description

Dept
DName DStart DEnd DDesc
ifi 2009 9999 DBTG @ uzh
idse 2010 2016 DB @ unibz
idse 2015 9999 DBS @ unibz

In SQL, the start/end points are of type DATE, e.g., 2010-01-01
To simplify illustration, most examples use only the year
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ANSI/ISO SQL:2011 Standard

ANSI/ISO SQL:2011 Standard – Support for
Temporal Data

Most important new functionality of SQL:2011 is the ability to
create and manipulate temporal tables
Key features

Period specification
Application-time/System-time period tables
Temporal UPDATE/DELETE behavior
Temporal key constraints
Predicates and functions for periods

Krishna Kulkarni and Jan-Eike Michels. Temporal features in
SQL:2011. SIGMOD Rec. 41, 3 (October 2012), pp 34-43, 2012.

A previous attempt to include temporal support (i.e., TSQL2) in
SQL was not successful
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ANSI/ISO SQL:2011 Standard

SQL:2011: Period Specification

SQL:2011 adds period definitions as metadata to tables
(and not as a new data type!)
A period is a conceptual grouping of a physical start time and end
time attribute/column

For instance, a period EPeriod built from existing attributes
EStart and EEnd

... PERIOD FOR EPeriod (EStart, EEnd) ...

A period is by default a half-closed interval [Estart, EEnd)

Distinction between
application time (= valid time)
system time (= transaction time)

By designing periods as metadata, backward compatibility is
achieved: old schemas, queries and tools still work
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ANSI/ISO SQL:2011 Standard

Application-time Period Tables

Create an application-time period table

CREATE TABLE Emp (
EName VARCHAR,
EStart DATE,
EEnd DATE,
EDept VARCHAR,
PERIOD FOR EPeriod (EStart, EEnd)

);

The user specifies the application time of the tuples

INSERT INTO Emp VALUES (Anton, 2010, 2015, ifi);

Emp
EName EStart EEnd EDept
Anton 2010 2015 ifi
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ANSI/ISO SQL:2011 Standard

Application-time UPDATE/DELETE Behavior

Conventional UPDATE/DELETE works
Enhanced support to modify tuples over parts of period

Overlapping tuples are automatically split/cut

Emp
EName EStart EEnd EDept
Anton 2010 2015 ifi

DELETE Emp
FOR PORTION OF EPeriod
FROM DATE '2011' TO DATE '2013'

WHERE EName = 'Anton'

Emp
EName EStart EEnd EDept
Anton 2010 2011 ifi
Anton 2013 2015 ifi
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ANSI/ISO SQL:2011 Standard

Application-time Primary Keys

Primary keys typically require to include the application-time period
Only one value at a time is allowed for non-temporal key attributes
In other words, application-time period has to be disjoint for different
values of the non-temporal key attributes
e.g., an employee is never in two different depts at the same time

ALTER TABLE Emp
ADD PRIMARY KEY (EName, EPeriod WITHOUT OVERLAPS)

The following table would not be allowed

Emp
EName EStart EEnd EDept
Anton 2010 2015 ifi
Anton 2014 9999 idse

Without OVERLAPS, it would be a conventional primary key
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ANSI/ISO SQL:2011 Standard

Application-time Foreign Keys

Foreign keys guarantee that at each time point a corresponding row
exists in the referenced table

e.g., each employee works at any time in an existing department

ALTER TABLE Emp
ADD FOREIGN KEY (EDept, PERIOD EPeriod)

REFERENCES (DName, PERIOD DPeriod)

Emp
EName EStart EEnd EDept
Anton 2010 2015 ifi
Anton 2014 9999 idse

Dept
DName DStart DEnd DDesc
ifi 2009 9999 DBTG @ uzh
idse 2010 2016 DB @ unibz
idse 2016 9999 DBS @ unibz
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ANSI/ISO SQL:2011 Standard

System-time Period Tables/1

System-time periods record when a tuple is known to the database
End points of type DATE or TIMESTAMP

Periods are generated by the DBMS upon INSERT/UPDATE, using
the current timestamp (e.g., 2015)
CREATE TABLE Dept (

DName VARCHAR,
DStart DATE GENERATED ALWAYS AS ROW START,
DEnd DATE GENERATED ALWAYS AS ROW END,
DDesc TEXT,
PERIOD FOR SYSTEM_TIME (DStart, DEnd)

) WITH SYSTEM VERSIONING;

INSERT INTO DEPT (DName, DDesc)
VALUES ('idse', 'DBS @ unibz')

Dept
DName DStart DEnd DDesc
idse 2015 9999 DBS @ unibz
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ANSI/ISO SQL:2011 Standard

System-time Period Tables/2

User is not allowed to change the system-time period; this is done by
the DBMS
Inserting a tuple sets the start time to the current transaction time
System-time period is automatically modified when non-temporal
attributes are modified
A tuple is considered as current system tuple if the timestamp
contains the current time (aka now)
All other tuples are called historical tuples
Historical tuples are never modified; they form immutable snapshots
of the past
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ANSI/ISO SQL:2011 Standard

System-time UPDATE/DELETE Behavior

UPDATE operates only on current tuples and automatically
inserts a historical tuple with end time = current time
inserts a current tuple with start time = current time

DELETE creates only a historical tuple with end time = current time
Dept
DName DStart DEnd DDesc
idse 2010 9999 DB @ unibz

UPDATE Dept
SET DDesc = 'DBS @ unibz'
WHERE DName = 'idse'

Dept
DName DStart DEnd DDesc
idse 2010 2015 DB @ unibz
idse 2015 9999 DBS @ unibz
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System-time Key Constraints

Enforcement of primary key and foreign key contraints is much
simpler as only current tuples need to be considered

Historical data continue to satisfy the constraints

System-time period need not to be included in the definition of keys
Primary key that ensures that there exists at most one current tuple
with a given DName

ADD PRIMARY KEY (DName)

Hence, never two tuples with the same name at the same time
Foreign key that enforces that a dept with DName = EDept needs
to exist NOW

ADD FOREIGN KEY (EDept) REFERENCES (DName)
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ANSI/ISO SQL:2011 Standard

Bitemporal Tables

Tables can be both system-versioned and having an appilcation-time
period
Aka bitemporal tables that record when a fact is true in the modeled
reality and when the fact was recorded in the database
At most one system-time period and one application-time period per
table
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ANSI/ISO SQL:2011 Standard

Application-time Queries

Using the usual SQL syntax with constraints on the period end points
Period predicates to facilitate query formulation, e.g., OVERLAPS,
BEFORE, AFTER, etc.

Do not exactly correspond to Allen’s interval relations

Retrieve employees who worked as of January 2, 2011

SELECT *
FROM Emp
WHERE EPeriod CONTAINS DATE '2011-01-02'

Temporal join of Emp and Dept relations

SELECT *
FROM Emp JOIN Dept

ON EDept = DName
AND EPeriod OVERLAPS DPeriod
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ANSI/ISO SQL:2011 Standard

System-time Queries

Three SQL extensions to retrieve data
Retrieve tuples as of a given time point (i.e., tuples with start time
less or equal and end time greater)
SELECT *
FROM Emp FOR SYSTEM_TIME AS OF DATE '2010-01-02'

Retrieve tuples between any two points in time
End time is not included

SELECT *
FROM Dept FOR SYSTEM_TIME

FROM DATE '2011-01-01' TO DATE '2012-01-01'

End time is included

SELECT *
FROM Dept FOR SYSTEM_TIME

BETWEEN DATE '2011-01-01' AND DATE '2011-12-31'

If nothing is specified, only current tuples are considered
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ANSI/ISO SQL:2011 Standard

Summary of SQL:2011

Periods are closed-open intervals [X ,Y )

Periods are not explicit attributes, but specified as additional schema
information

Backward compatible to two columns!

Tables can have at most one sytem-time period and one
appilcation-time period
No concept of “NOW”, “UC”, “infinity”, “empty”

Only 0001-01-01 and 9999-12-31 are “special” dates

Many differences between application and system time period tables
Limited support for query formulation
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Outline
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SQL:2011 Standard in Commercial DBMSs IBM DB2

IBM DB2/1

Key features: fully supports SQL:2011
Period specification
Application-time/System-time period tables
Temporal UPDATE/DELETE behavior
Temporal key constraints
Predicates and functions for periods

A matter of time: Temporal data management in DB2 10
http://www.ibm.com/developerworks/data/library/
techarticle/dm-1204db2temporaldata/
dm-1204db2temporaldata-pdf.pdf
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SQL:2011 Standard in Commercial DBMSs IBM DB2

IBM DB2/2

Implementation of system-time with current and history table

Current Dept
DName DStart DEnd DDesc
ifi 2009 9999 DBTG @ uzh
idse 2015 9999 DBS @ unibz

History Dept
DName DStart DEnd DDesc
idse 2010 2015 DB @ unibz

Operations on system-time tables only affect the current state/table
Temporal UPDATE/DELETE behavior
Temporal key constraints
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SQL:2011 Standard in Commercial DBMSs Oracle Database

Oracle Database

Key features
Periods (stored in a single column)
Valid-time/transaction-time tables
Temporal UPDATE/DELETE behavior
Temporal key constraints
Predicates and functions for periods

Implemented in Workspace Database Manager

C. Murray. Oracle database workspace manager developer’s guide.
http://download.oracle.com/docs/cd/B28359_01/
appdev.111/b28396.pdf
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SQL:2011 Standard in Commercial DBMSs Oracle Database

Valid-time Tables

CREATE TABLE Dept (
DName VARCHAR
DDesc TEXT

);
EXECUTE DBMS_WM.EnableVersioning ('Dept');
EXECUTE DBMS_WM.AlterVersionedTable('Dept', 'ADD_VALID_TIME');

INSERT INTO Dept VALUES
('idse', 'DB @ unibz',

WMSYS.WM_PERIOD(TO_DATE('2010-01-01', 'YYYY-MM-DD'),
TO_DATE('9999-01-01', 'YYYY-MM-DD')));

Dept
DName DDesc WM_VALID(VALIDFROM, VALIDTILL)
idse DB @ unibz WM_PERIOD(’2010-01-01’, ’9999-01-01’)
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SQL:2011 Standard in Commercial DBMSs Oracle Database

Valid-time UPDATE/DELETE Behavior

UPDATE/DELETE are executed with the current session’s valid time
DBMS_WM.SetValidTime sets the valid time

If not specified, current time is the default

EXECUTE DBMS_WM.SetValidTime(
TO_DATE('2015-02-05', 'YYYY-MM-DD'),
TO_DATE('9999-01-01', 'YYYY-MM-DD'));

UPDATE Dept
SET DDesc = 'DBS @ unibz'
WHERE DName = 'idse';

Dept
DName DDesc WM_VALID(VALIDFROM, VALIDTILL)
idse DB @ unibz WM_PERIOD(’2010-01-01’, ’2015-02-05’)
idse DBS @ unibz WM_PERIOD(’2015-02-05’, ’9999-01-01’)
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SQL:2011 Standard in Commercial DBMSs Oracle Database

Queries

Similar to UPDATE/DELETE, queries are issued against the current
session’s valid time
Period needs to be explicitly specified in SELECT to be visible

SELECT * FROM Dept;

Dept
DName DDesc
idse DBS @ unibz

SELECT DName, DDesc,
TO_CHAR(valid_time_start,'YYYY-MM-DD') "DStart",
TO_CHAR(valid_time_end,'YYYY-MM-DD') "DEnd" FROM Dept;

Dept
DName DDesc DStart DEnd
idse DBS @ unibz ’2015-02-05’ ’9999-01-01’
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SQL:2011 Standard in Commercial DBMSs Oracle Database

Summary of Oracle Database

UPDATE/DELETE/SELECT are on current data/valid time
Period columns are implicit
“Versioning” can be enabled and disabled (default)
Two time dimensions possible (valid and transaction time)
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SQL:2011 Standard in Commercial DBMSs Teradata Database

Teradata Database

Key features
Periods
Temporal UPDATE/DELETE behavior
Temporal key constraints
Predicates and functions for periods
Queries with temporal statement modifiers

Currently DBMS with most temporal features!

Teradata database temporal table support. http://www.info.
teradata.com/edownload.cfm?itemid=102320064
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SQL:2011 Standard in Commercial DBMSs Teradata Database

Create Temporal Tables

CREATE MULTISET TABLE Dept (
DName VARCHAR
DPeriod PERIOD(DATE) AS VALIDTIME
DDesc TEXT,

);

Statement modifiers are used to manipulate temporal tables
Specifiy the semantics of the SQL statement

SEQUENCED VALIDTIME
INSERT INTO Dept VALUES

('idse', 'DB @ unibz',
PERIOD (DATE '2010', DATE '9999'));

Dept
DName EPeriod DDesc
idse PERIOD(’2010’, ’9999’) DB @ unibz
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SQL:2011 Standard in Commercial DBMSs Teradata Database

Temporal UPDATE/DELETE

Dept
DName EPeriod DDesc
idse PERIOD(’2010’, ’9999’) DB @ unibz

SEQUENCED VALIDTIME PERIOD '(2015, 9999)'
UPDATE Dept
SET DDesc = 'DBS @ unibz'
WHERE DName = 'idse'

Dept
DName EPeriod DDesc
idse PERIOD(’2010’, ’2015’) DB @ unibz
idse PERIOD(’2015’, ’9999’) DBS @ unibz

J. Gamper eBISS 2017 – July 3, 2017 66



SQL:2011 Standard in Commercial DBMSs Teradata Database

Temporal Key Constraints

CREATE TABLE Emp (
EName VARCHAR SEQUENCED VALIDTIME PRIMARY KEY
EPeriod PERIOD(DATE) AS VALIDTIME
EDept TEXT,
FOREIGN KEY (EDept) REFERENCES (DName)

);

Primary key constraints are checked by the database
But referential constraints are not enforced by the database∗

Must be checked by the user
If specified, the database can use them to improve query performance
Helpful for a good design

*Teradata database temporal table support.
http://www.info.teradata.com/edownload.cfm?itemid=102320064, pp. 215
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SQL:2011 Standard in Commercial DBMSs Teradata Database

Teradata Statement Modifiers

Teradata has many statement modifiers with different behaviors (we
have only seen SEQUENCED VALIDTIME)
CURRENT VALIDTIME

VALIDTIME AS OF

SEQUENCED VALIDTIME

NONSEQUENCED VALIDTIME

The same modifiers for TRANSACTIONTIME

Example: Change the description of department from now on

CURRENT VALIDTIME
UPDATE Dept
SET DDesc = 'DBS @ unibz'
WHERE DName = 'idse'
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SQL:2011 Standard in Commercial DBMSs Teradata Database

Sequenced Valid-time Queries

The sequenced form of a temporal query is limited to a simple
SELECT from a single valid-time table or a simple SELECT with
inner joins from multiple tables.
A non-correlated scalar subquery can be used in the temporal query.
The following operations are not supported for sequenced queries:

Outer joins
Set operations
Ordered analytic functions
Subqueries other than non-correlated scalar subqueries
WITH, WITH RECURSIVE, TOP n, GROUP BY or DISTINCT
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SQL:2011 Standard in Commercial DBMSs PostgreSQL

PostgreSQL

Key features:
Range types (Periods)
Indexes on range types
Temporal constraints using indexes
Predicates and functions for range types

http://www.postgresql.org/docs/devel/static/
rangetypes.html
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SQL:2011 Standard in Commercial DBMSs PostgreSQL

Tables with Range Types

A new data type DATARANGE to represent (time) intervals

CREATE TABLE Emp (
EName VARCHAR
EPeriod DATERANGE,
EDept VARCHAR,

);

INSERT INTO Emp VALUES ('Anton', '[2010, 2014)', ifi);

Emp
EName EPeriod EDept
Anton ’[2010, 2014)’ ifi
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SQL:2011 Standard in Commercial DBMSs PostgreSQL

Key Constraints

Primary keys are achieved through a GiST index
Enforces that an attibute has to have the same value (=) over
overlapping time periods (&&)

CREATE TABLE Emp (
EName VARCHAR
EPeriod DATERANGE,
EDept VARCHAR,

)

EXCLUDE USING GIST (EName WITH =, EPeriod WITH &&)

Foreign keys are not directly supported (e.g., by using the GiST
index as for primary keys)
Triggers could be used
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SQL:2011 Standard in Commercial DBMSs PostgreSQL

Indexes on Range Types

Provides a powerful index: General inverted search tree (GiST)
On periods and combinations of period and other attributes

CREATE INDEX Emp_idx ON Emp
USING GIST (EPeriod)

CREATE INDEX Emp_idx ON Emp
USING GIST (EName, EPeriod)

Improves range indexing for many predicates
e.g., EQUAL, OVERLAP, LESS THAN, CONTAINS, . . .
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Queries

SQL with predicates, e.g., OVERLAPS (&&), BEFORE, AFTER

SELECT *
FROM Emp JOIN Dept

ON EPeriod && DPeriod

SELECT *
FROM Dept
WHERE upper_inf(DPeriod) = TRUE

Some additional functions on ranges: UNION (+), INTERSECTION
(*), DIFFERENCE (-)

SELECT '[2010, 2013)' + '[2012, 2015)'
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Summary of PostgreSQL

Flexible range types
Many predicates and functions
A range boundary is not a datatype
A range type value may be any kind of interval: [], (), [)
What does SELECT upper(EPeriod) FROM Emp return?
Additional functions (+, *, -) are of little use since they may return
two ranges and thus throw an error
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SQL:2011 Standard in Commercial DBMSs

Summary Temporal Support in DBMSs/1

DBS Period Keys Update Predicates Queries
SQL:2011
IBM DB2
MySQL
MS SQL Server
PostgreSQL
Oracle
Teradata
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SQL:2011 Standard in Commercial DBMSs

Summary Temporal Support in DBMSs/2

Many DBSs have temporal features, following SQL:2011 in some way
or another

different syntax
different number of features

Infrastructure is well settled
Period datatype
Key constraints
Simply SQL with predicates and functions

Temporal querying by and large is not supported
Temporal predicates (CONTAIN, BEFORE, ...) and functions
(DURATION, ...) are limited and not sufficient
Aggregation, scaling, etc. is not supported

More support for queries and query processing is required!
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Native Support for Sequenced Temporal Data

Key Question

What core functionality should a DBMS offer to support the management
and querying of data qualified with a time period?

or: what would be our wish from
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Native Support for Sequenced Temporal Data Application Requirements and Goal

Temporal Aggregation Example

Input: Relation with external project funding
p

N D B T
r1 Tom CS 200K [Feb,Jul]
r2 Tim CS 180K [May,Jul]
r3 Joe M 150K [Apr,Aug]

Query: What is the amount of external funding per department?

Result: Temporal Aggregation Dϑ
T
SUM(scale(B))(p)

D SUM T
z1 CS 100K [Feb,Apr]
z2 CS 280K [May,Jul]
z3 M 150K [Apr,Aug]

Timestamps must be adjusted for the result
Some values must be scaled to the adjusted timestamps
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Native Support for Sequenced Temporal Data Application Requirements and Goal

Property P1

Property P1
A period can be decomposed into a set of points (or subperiods).

aka snapshot reducibility: τt(ψT (r)) ≡ ψ(τt(r))

Query: What are the top-2 time periods with most projects?
p
P D B T
P1 M 10K [Jan,Sep]
P2 CS 7K [Feb,Mar]
P3 CS 5K [Apr,Jul]

result
Cnt T
1 [Jan,Jan]
2 [Feb,Jul]
1 [Aug,Sep]

Jan Feb Mar Apr May Jun Jul Aug Sep t

P1,M, 10K

P2,CS, 7K
P3,CS, 5K

1
2

1

Counting procedure: count at each point in time (+ coalescing)

. . .
p @Jan

P D B
P1 M 10k

p @Feb
P D B
P1 M 10k
P2 CS 7k

p @Mar
P D B
P1 M 10k
P2 CS 7k

. . .
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Native Support for Sequenced Temporal Data Application Requirements and Goal

Property P2

Property P2
An period carries more information than a set of points.

The following two relations are semantically different:

President T
Reagan [1981/1/20,1985/1/20]
Reagan [1985/1/20,1989/1/20]

6= President T
Reagan [1981/1/20,1989/1/20]

The first relation records the terms Reagan was elected for.
The second relation records the period during which Reagan was
president.

Decomposition/coalescing should be done conservatively
Only when requested by the application
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Native Support for Sequenced Temporal Data Application Requirements and Goal

Property P3

Property P3
Sometimes information must change if the associated period changes.

Query: What is the available project funding from 2011 to 2012?

Proj Budget T
P1 300K [2011,2014] ⇒ Proj Budget T

P1 150K [2011,2012]

We need a mechanism that allows applications to change values if
the associated period is changed.
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Native Support for Sequenced Temporal Data Application Requirements and Goal

Goal

We want a full-fledged relational algebra + database system that
support properties P1 + P2 + P3

P1: period can be decomposed into points
P2: period carries more information than points
P3: sometimes values must change along with associated periods

It is easy to get some of these properties, but difficult to get all of
them together.

Research has focused on P1
SQL gives P2
P3 is not supported at all
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

The Limitation of Relational Algebra and SQL

SQL treats periods as atomic units, which causes problems.

What we get from a database system:

(CS, [May,Jul]) ?
= (CS, [May,Jul])→ true OK

(CS, [Feb,Apr]) ?
= (CS, [May,Jul])→ false OK

(CS, [Feb,Jul]) ?
= (CS, [May,Jul])→ false NOT OK

Our approach: adjust periods such that they can be treated as
atomic units for which equality works again as expected.
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

Solution Overview

Reduction of a temporal operator ψT to the corresponding
nontemporal operator ψ

ψT Interval adjustment
(normalizer N or aligner φ)

Timestamp
propagation ε

Scaling
function

Non-temporal
operator ψ

z
2)

1) 3)

4)

Snapshot reducibility and change preservation

Extended snapshot reducibility Attribute value scaling

Requires minimal changes to DBMS
Two new adjustment primitives are added to the kernel
Timestamp propagation is a projection
Attribute value scaling as user-defined functions

Existing query optimization and indexing of DBMS can be used
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

Temporal Primitives

Break timestamps into pieces that are aligned

Then, equality on aligned timestamps can be used

Two primitives are required:
Temporal Normalizer: for operators where one input tuple contributes
to at most one result tuple at each point in time, e.g., aggregation
Temporal Aligner: for operators where one input tuple might
contribute to more than one result tuple at each point in time, e.g.,
joins
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

Temporal Normalizer

Number of projects per department: Dϑ
T
COUNT (P)(p)

p
N D P T

r1 Tom CS PrjX [Feb, Jul]
r2 Tim CS PrjY [May, Jul]
r3 Joe M PrjZ [Apr, Sep]

N D P T
Tom CS PrjX [Feb, Apr]
Tom CS PrjX [May, Jul]
Tim CS PrjY [May, Jul]
Joe M PrjZ [Apr, Sep]

D CNT T
CS 1 [Feb, Apr]
CS 2 [May, Jul]
M 1 [Apr, Sep]

adjustment (disjoint)

nontemporal aggregation
(grouped by D and T)

Jan Feb Mar Apr May Jun Jul Aug Sep t

Tom,CS ,PrjX

Tim,CS ,PrjY

Joe,M,PrjZ

Tom,CS ,PrjX Tom,CS ,PrjX

Tim,CS ,PrjY

Joe,M,PrjZ

CS , 1 CS , 2

M, 2

One input tuple contributes to at most one result tuple per month.
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

Temporal Aligner

Managers’ project budgets: m d|><|
T
m.D=p.D p

m
M D T

m1 Ann CS [Feb, Nov]

p
N D P T

r1 Tom CS PrjX [Feb, Jul]
r2 Tim CS PrjY [May, Jul]
r3 Joe M PrjZ [Apr, Sep]

M D T
Ann CS [Feb, Jul]
Ann CS [May, Jul]
Ann CS [Aug, Nov]

N D P T
Tom CS PrjX [Feb, Jul]
Tim CS PrjY [May, Jul]

M D N P T
Ann CS Tom PrjX [Feb, Jul]
Ann CS Tim PrjY [May, Jul]
Ann CS ω ω [Aug, Nov]

adjustment (overlapping) adjustment (overlapping)

nontemporal LO
join (on D and T)

One input tuple contributes to more than one result tuple per month,
e.g., m1 contributes twice to month May.
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

Temporal Normalizer vs. Temporal Aligner

Temporal Normalizer

Jan Feb Mar Apr May Jun Jul Aug t

r

g1

g2

r1

{r , g1} r2

{r , g1, g2}

r3

{r , g2} r4

{r}

Tuples are broken into
disjoint pieces.
Groups of matching tuples
define change points.

Temporal Aligner

Jan Feb Mar Apr May Jun Jul Aug t

r

g1

g2

r1
(r , g1) r2

(r , g2)

r3

(r , ω)

Tuples are broken into
overlapping pieces.
Pairs of matching tuples
define change points.
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

Reduction Rules: ψT −→ {N ,φ} + ψ

Operator Reduction
Selection σT

θ (r) = σθ(r)

Projection πT
B(r) = πB,T (NB(r, r))

Aggregation Bϑ
T
F (r) = B,TϑF (NB(r, r))

Difference r−T s = NA(r, s)−NA(s, r)
Union r∪T s = NA(r, s)∪NA(s, r)
Intersection r∩T s = NA(r, s)∩NA(s, r)

Cart. Prod. r ×T s = α(φ>(r, s)1r.T=s.Tφ>(s, r))
Inner Join r1T

θ s = α(φθ(r, s)1θ∧r.T=s.Tφθ(s, r))
Left O. Join r d|><|

T
θ s = α(φθ(r, s) d|><| θ∧r.T=s.Tφθ(s, r))

Right O. Join r |><|d
T
θ s = α(φθ(r, s) |><|d θ∧r.T=s.Tφθ(s, r))

Full O. Join r d|><|d
T
θ s = α(φθ(r, s) d|><|d θ∧r.T=s.Tφθ(s, r))

Anti Join r�T
θ s = φθ(r, s)�θ∧r.T=s.Tφθ(s, r)

Temporal Op. = Primitive + Traditional Op.
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Native Support for Sequenced Temporal Data Solution: Temporal Primitives

Constructing Temporal Algebra Expressions

Query: Temporal aggregation

Dϑ
T
SUM(scale(B))(p)

1 Timestamp propagation:
Dϑ

T
SUM(scale(B))(εU(p))

2 Temporal adjustment:
p′ ← ND(εU(p), εU(p))

3 Attribute value scaling:
p′′ ← Dϑ

T
SUM(scale(B,T ,U))(p′)

4 Nontemporal aggregation:
D,TϑSUM(scale(B,T ,U))(p′′)

Dϑ
T
SUM(scale(B))

p

D,TϑSUM(scale(B,T ,U))

ND

εU

p

εU

p

Bϑ
T
F (r) =B,T ϑF (NB(r, r))
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Native Support for Sequenced Temporal Data Mapping to SQL

Mapping to SQL

Our implementation provides direct access to primitive operators:

εU(r) : SELECT Ts Us, Te Ue, * FROM r

NB(r, s) : FROM (r NORMALIZE s USING(B) WITH (Ts, Te, Ts, Te)) r

φθ(r, s) : FROM (r ALIGN s ON θ WITH (Ts, Te, Ts, Te)) r

α(r) : SELECT ABSORB * FROM r

The source code of PostgreSQL with the complete temporal
functionality integrated into the kernel of PostgreSQL at
http://tpg.inf.unibz.it
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Native Support for Sequenced Temporal Data Mapping to SQL

Query Q1 Bϑ
T
F (r) = B,TϑF (NB(r, r))

Query: What is the largest X?

Input:
r
X
5
7

Answer: ϑMAX (X )(r)

SELECT MAX(X)
FROM r ;
GROUP BY Ts, Te

X
7

Input:
r
X T
5 [Feb,Jul]
7 [May,Jul]

Answer: ϑT
MAX (X )(r) = TϑMAX (X )(N (r, r))

SELECT MAX(X), Ts, Te
FROM (r NORMALIZE r USING()) r
GROUP BY Ts, Te;

X T
5 [Feb,Apr]
7 [May,Jul]

J. Gamper eBISS 2017 – July 3, 2017 94



Native Support for Sequenced Temporal Data Mapping to SQL

Query Q2 Bϑ
T
F (r) = B,TϑF (NB(r, r))

Query: What is the largest X per Y?

Input:
r
X Y
5 A
7 A
3 B

Answer: YϑMAX (X )(r)

SELECT MAX(X), Y
FROM r
GROUP BY Y;

X Y
7 A
3 B

Input:
r
X Y T
5 A [Feb,Jul]
7 A [May,Jul]
3 B [Apr,Aug]

Answer: Yϑ
T
MAX (X )(r) = Y ,TϑMAX (X )(NY (r, r))

SELECT MAX(X), Y, Ts, Te
FROM (r NORMALIZE r USING(Y)) r
GROUP BY Y, Ts, Te;

X Y T
5 A [Feb,Apr]
7 A [May,Jul]
3 B [Apr,Aug]
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Native Support for Sequenced Temporal Data Mapping to SQL

Query Q3 r�T
θ s = φθ(r, s)�θ∧r.T=s.Tφθ(s, r)

Query: What is the tuple with the largest X?

Input: r
X Y
5 A
7 A
3 B

Answer: r�s.X>r .X r/s

SELECT *
FROM r
WHERE NOT EXISTS
( SELECT *

FROM r s
WHERE s.X > r.X );

AND r.Ts=s.Ts AND r.Te=s.Te)

X Y
7 A

Input: r
X Y T
5 A [Feb,Jul]
7 A [May,Jul]
3 B [Apr,Aug]

r�T
s.X>r .X r/s = φ...(r, s) �...∧r.T=s.T φ...(s, r)

SELECT *
FROM (r ALIGN r s ON s.X > r.X) r
WHERE NOT EXISTS

( SELECT *
FROM (r s ALIGN r ON s.X > r.X) s
WHERE s.X > r.X
AND r.Ts=s.Ts AND r.Te=s.Te );

X Y T
5 A [Feb,Apr]
7 A [May,Jul]
3 B [Aug,Aug]
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Native Support for Sequenced Temporal Data Mapping to SQL

Query Q4 Bϑ
T
F (r) = B,TϑF (NB(r, r))

Query: What is the project budget per department?

Input:
p
N B D
Tom 181K CS
Tim 184K CS
Joe 153K M

Answer: DϑSUM(B)(r)

SELECT D, SUM(B)
FROM p
GROUP BY D;

D SUM
CS 365K
M 153K

Input:
p
N B D T
Tom 181K CS [Feb,Jul]
Tim 184K CS [May,Jul]
Joe 153K M [Apr,Aug]

Dϑ
T
SUM(scale(B))(p)

WITH p2 AS (SELECT Ts Us, Te Ue, * FROM p)
SELECT D, SUM(scale(B,Ts,Te,Us,Ue)), Ts, Te
FROM (p2 NORMALIZE p2 USING(D)) p3
GROUP BY D, Ts, Te;

D SUM T
CS 89K [Feb,Apr]
CS 276K [May,Jul]
M 153K [Apr,Aug]
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Native Support for Sequenced Temporal Data PostgreSQL Implementation

PostgreSQL Implementation/1

DBMS kernel integration of temporal primitives.

SQL

DBMS

Parser60kloc
150

Analyzer/Rewriter20kloc
450

Optimizer50kloc
150

Executor40kloc
400

Files and Access Methods

Buffer Manager

Disk Manager

Recovery
Manager

Recovery
Manager

Lock
Manager

Data and Index Files
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Native Support for Sequenced Temporal Data PostgreSQL Implementation

PostgreSQL Implementation/2

1. Modify Query Flow Trees
SQL query

parser−→ parse tree
analyzer−→ query tree

optimizer−→ plan tree
executor−→ execution tree

2. Create Executor Functions
ExecInit〈Operator〉
Exec〈Operator〉
ExecEnd〈Operator〉
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Native Support for Sequenced Temporal Data PostgreSQL Implementation

PostgreSQL Implementation/3

Implementation Approach
Temporal primitives are new nodes in query/plan/executor trees
Primitives themselves reuse traditional database operations
e.g., temporal alignment:

1. Join matching tuples by DBMS internal left outer join
2. Sort
3. Apply plane-sweep algorithm to perform alignment

Only one new Executor function

Advantages
Temporal primitives are optimized in the plan tree

Cost estimation
(Join) order
Selection push-down
Propagate orderings

Traditional database operations are optimized out of the box
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Native Support for Sequenced Temporal Data Empirical Evaluation

Empirical Evaluation

Datasets
Real world dataset Incumben University of Arizona
Synthetic datasets

Comparison for temporal outer joins
Align Temporal Alignment and Reduction Rules
SQL Plain SQL solution1

SQL+ SQL Join + N for the negative part
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Native Support for Sequenced Temporal Data Empirical Evaluation

Outer Joins

Real world and random datasets
Equi-Full and Theta-Left Outer Joins

R
un

tim
e
[s
ec
]

2000

1000

0

Input tuples [k]
0 100 200

SQL

Align

SQL+

SQL is inefficient and not robust for timestamp adjustment
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Native Support for Sequenced Temporal Data Empirical Evaluation

Outer Joins SQL

Left Outer Join (θ = true)

All timestamps equal

 1

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8  9  10

R
un

tim
e 

[s
ec

]

Input tuples [k]

Align
SQL

All timestamps disjoint

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100

R
un

tim
e 

[s
ec

]

Input tuples [k]

SQL
Align

SQL adjustment is based on NOT EXISTS
SQL efficient when all timestamps are equal

Every tuple stops NOT EXISTS

SQL inefficient when all timestamps are disjoint
All tuples need to be analyzed to stop NOT EXISTS
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Native Support for Sequenced Temporal Data Empirical Evaluation

Lessons Learned

1 Integration into DBMS kernel adds a lot of precision and depth

2 Integration into DBMS kernel makes you understand DBMSs at a
different level

3 “Going all the way” is really important for research
implement all examples
public source code
complete system
yes, the 80/20 rules applies :-)
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Summary and Outlook

Outline
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Summary and Outlook

Summary

Full-fledged temporal algebra/RDBMS for sequenced temporal
queries (properties P1 + P2 + P3)

Two primitives are required to adjust input relations
Temporal Normalizer
Temporal Aligner

Systematic reduction rules from temporal RA to nontemporal RA.

Timestamp propagation for accessing original timestamps.

User-defined functions for scaling.

Fully integrated into DBMS kernel of PostgreSQL.
Leverage existing optimization and execution techniques.
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Summary and Outlook

Outlook

SQL extension to express temporal queries
New keywords, statement level vs. operator level, . . .

Physical query optimization
At the logical level two primitives are required to adjust periods.
Additional primitives can be used to boost performance

e.g., add a new primitive for full outer joins.

Time series
Integrate time series data as first-class citizen into RDBMs
New operations: missing values, similarity search, ...

Temporal relationships across different time points
Support for non-sequenced temporal semantics
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Summary and Outlook
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Thank You!
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