
Tools for a data scientist’s toolbox
Data Stream Processing and others

Toon Calders – Dept. of Mathematics and Computer Science

Introduction

Many applications generate huge amounts of data

• Need to be processed on the fly

• Data too abundant to store all

2

Introduction

Processing this data becomes a challenge
Requirements:

• Results generated on the fly

• Memory should scale sub-linear

• Constant-time processing of incoming data

Note: only distributed computing does not solve the
problem; 1000 computers can speed up a computation at
most 1000 times

3

Tools for your data scientist’s toolbox

4

What is hot?
Tracking heavy hitters

Anyone like me?
Similarity searchExtreme Counting

Heavy Hitters

5

Warming up problem: Heavy Hitters

“Given a stream S, identify all items (heavy hitters) that
occur more than N times”

Items arrive one by one; what we do not store will be
inaccessible later on.

How much space needed for an exact solution?

Heavy Hitters

Counting every item is impossible

▪ E.g., all pairs of people that phone to each other

We do not know on beforehand which combinations will be
frequent

Example:

30 items; :8, :6, :5

All others are 3

If frequency is 20%: and need to be output

Heavy Hitters – Worst Case

How much space needed for an exact solution?

Answer: worst case at least O(n log(N))

Proof:

Let  = 50%, and we have already seen N/2-1 symbols

Configuration: bag (no order) of symbols seen so far

For any two configurations the system needs to be in a
different state

Hence, we need at least log(#configurations) space

Heavy Hitters – Alternative Solution

“Given a stream, identify all items (heavy hitters) that occur
more than N times”

Algorithm by Karp et all:

▪ O(log(N)/) space

▪ Concession: may have false positives
(Can be made exact with 2 passes)

Karp, Richard M., Scott Shenker, and Christos H. Papadimitriou. "A simple algorithm
for finding frequent elements in streams and bags." ACM Transactions on Database
Systems (TODS) 28.1 (2003): 51-55.

Heavy Hitters – Set Solution

“Given a stream, identify all items that occur more than
20% of the time”

Remove 5 elements of a different color to get S’:

If was a heavy hitter, it still is!

Hence, removing 5 elements of different color gives us a
smaller set, but we keep all heavy hitters.

Heavy Hitters – Set Solution

“Given a stream, identify all items that occur more than
20% of the time”

Remove 5 elements of a different color to get S’:

If was a heavy hitter, it still is!

Hence, removing 5 elements of different color gives us a
smaller set, but we keep all heavy hitters.

▪ Can be done repeatedly

Heavy Hitters – Set Solution

“Given a stream, identify all items that occur more than
20% of the time”

Remove 5 elements of a different color to get S’:

If was a heavy hitter, it still is!

Hence, removing 5 elements of different color gives us a
smaller set, but we keep all heavy hitters.

▪ Can be done repeatedly

Heavy Hitters – Set Solution

“Given a stream, identify all items that occur more than
20% of the time”

Remove 5 elements of a different color to get S’:

If was a heavy hitter, it still is!

Hence, removing 5 elements of different color gives us a
smaller set, but we keep all heavy hitters.

▪ Can be done repeatedly

Heavy Hitters – Set Solution

“Given a stream, identify all items that occur more than
20% of the time”

Remove 5 elements of a different color to get S’:

If was a heavy hitter, it still is!

Hence, removing 5 elements of different color gives us a
smaller set, but we keep all heavy hitters.

▪ Can be done repeatedly

▪ Until no longer possible to remove 5

Answer is a subset of the remaining (at most 4) colors:

Heavy Hitters – Stream Implementation

“Given a stream, identify all items that occur more than N
times”

▪ Summary={}

▪ For each item that arrives:

▪ If (, count) is in Summary:
update count to count + 1

▪ Else:
add (, 1) to Summary

▪ If |Summary| ≥ 1/ :
decrease the count of all pairs in S
remove all pairs with count = 0

Heavy Hitters - Summary

Algorithm by Karp et all.

Problem:

▪ Find all items exceeding frequency N

Space:O(1 / ) counters

Time per update: O(1) *

Concession:

▪ False positives or 2-pass

* Karp et al. propose a datastructure that allows O(1) in worst case

Solution 2: Lossy Counting of Frequencies

What if:

▪ We want to have frequencies

▪ And bound on false positives

Lossy counting algorithm by Manku et el.

We start with a simplified version and gradually extend it.

Manku, Gurmeet Singh, and Rajeev Motwani. "Approximate frequency counts over data
streams." Proceedings of the 28th international conference on Very Large Data Bases.
VLDB Endowment, 2002.

Lossy Counting of Frequencies

Following algorithm: finds superset of -frequent items:

▪ Initialization: none of the items has a counter

▪ Item enters at time t:

▪ If has a counter: count() ++

▪ Else:

▪ count() = 1

▪ start() = t

▪ For all other items with a counter do:

▪ If count() / (t – start() + 1) <  :

▪ Delete Counter for

Query time: return all items that have a counter

Lossy Counting of Frequencies

Example: (20%)

start # (freq)

1 1 (100%)

Lossy Counting of Frequencies

Example: (20%)

start # (freq)

1 1 (50%)

2 1 (100%)

Lossy Counting of Frequencies

Example: (20%)

start # (freq)

1 1 (20%)

2 1 (25%)

3 2 (66%)

4 1 (50%)

Lossy Counting of Frequencies

Example: (20%)

start # (freq)

1 1 (17%)

2 1 (20%)

3 2 (50%)

4 1 (33%)

5 1 (100%)

Lossy Counting of Frequencies

Example: (20%)

start # (freq)

2 2 (25%)

3 2 (29%)

6 1 (25%)

8 2 (100%)

Lossy Counting of Frequencies

Example: (20%)

start # (freq)

2 1 (25%)

17 4 (29%)

27 1 (25%)

8 6 (26%)

19 3 (25%)

Lossy Counting - Correctness

Why does it work?

▪ If is not recorded, is not frequent in the stream

Imagine marking when was recorded:

▪ If occurs, recording starts

▪ Only stopped if becomes infrequent since start recording

Whole stream can be partitioned into parts in which is not
frequent  is not frequent in the whole stream

recorded recorded

infrequent infrequent

No No

Lossy Counting – Guarantee

Run the algorithm with  as threshold

Guaranteed: at any point in time, the true frequency of is
in the interval [count()/N , count()/N+]

Report all items with count()  ( - ) N

▪ All items in result have frequency at least  - 

▪ All items with frequency  are in the result

recorded recorded

No No

recorded

Less than N occurrences of

Heavy hitters - Summary

Karp’s algorithm:

• O(1/) space

• No false negatives, but may have false positives

Lossy Counting:

• 1/ log(N) space worst case (usually much better!)

• Maximum error of  on counts

• No false negatives, only false positives in the
range [ - , ]

There exist many other algorithms (e.g., CM-sketch)

27

Heavy Hitters - Applications

• Automatically block IP-traffic between pairs of addresses
taking up more than 1% of the bandwidth

• using lossy counting:

• 1000 log(N/1000) counters worst case

• 30Kb for 1,000,000,000 items

• Set threshold to 1.1%

• Constant time per item

• Can be implemented inside a router

• Give all words with a frequency of more than 0.01% in a
collection of books

• Karp: 2 scans maintaining 10,000 strings
28

Extreme Counting

29

Counting items

Problem; give the number of unique items in a stream.
Highly useful property:

▪ Number of unique visitors to a website

▪ Estimate cardinality of projecting a relation onto a subset
of its attributes

Heavy hitters are not suited for counting the number of
unique items in a stream

Extreme Counting

31

How many people
attend my presentation?

Extreme Counting: Attempt 1a

S={}

N=0

Whenever a person P enters the room:

if P not in S:

S = S  { P }

N+=1

Exact algorithm

Complexity:

Space O(N len(identifier of P))

Time log(N)

32

How many people
attend my presentation?

Extreme Counting: Attempt 1b

S={}

N=0

Whenever a person P enters the room:

if h(P) not in S:

S = S  { h(P) }

N+=1

h(P) denotes hash of identifier of P

Near exact algorithm if range(h) large enough

Complexity:

Space O(N log(N))

Time O(log(N))

33

How many people
attend my presentation?

Extreme Counting

This solution is not satisfactory at all

• Space N log(N) is completely unacceptable

• Time log(N) is barely acceptable

We will introduce an alternative: Hyperloglog sketch

• Space log(log(N))

• Constant update time

• But approximate

HLL is based on the idea of Flajolet-Martin sketches

34

Main idea behind Flajolet-Martin sketches

Pick, at random, a hash function that assigns to every
person on earth a number between 0 and 1.

35

0.035...

0.85... 0.87... 0.76... 0.65...

How many people
attend my presentation?

Main idea behind Flajolet-Martin sketches

Compute the number for everyone entering the room

Maintain the maximum over all numbers seen

36

0.035...

0.85... 0.87... 0.76... 0.65...

How many people
attend my presentation?

Main idea behind Flajolet-Martin sketches

What do we know about this largest number S?

• It only depends on the number of elements, not on how
many times they entered:

max{h(P1),h(P1),h(P1),h(P2)} = max{h(P1), h(P2)}

• The higher the number of elements N, the higher S will
be in expectation

𝑃 𝑆 ≤ 𝑥 = 𝑥𝑁

𝐸 𝑆 = න
0

1

𝑥𝑁 𝑥 𝑁−1 𝑑𝑥 =
𝑁

𝑁 + 1

• We can reverse-engineer:

𝑁 =
𝐸 𝑆

1−𝐸[𝑆]

37

Main idea behind Flajolet-Martin sketches

There are still a number of issues, though:

First issue: S can be far away from E[S]

• Accidentally having one person with a
high hash number may lead to huge
overestimations

• Use multiple hash functions instead

• k independent hash functions
h1, …, hk give L1, …, Lk

𝑉𝑎𝑟
σ𝑖=1
𝑘 𝑆𝑖

𝑘
=

𝑉𝑎𝑟 𝑆

𝑘

38

Main idea behind Flajolet-Martin sketches

Second issue: for large N, the quantity S will quickly
become indistinguishable from 1

• Flajolet-Martin use the following solution:

• Take the binary representation of h(x) 110101000

• Look at the number of 0’s in the tail 3

• Keep the maximum of the number of 0s in the tail

Probability of finding a tail of r zeros:

▪ Goes to 1 if 𝐍 ≫ 𝟐𝒓

▪ Goes to 0 if 𝐍 ≪ 𝟐𝒓

Thus, 2R will almost always be around m!

39

FM-Sketches are easy to parallelise

No problem; easily parallelizable

▪ max (max(A), max(B)) = max(AB)

stream substream

max h1, … max hk

Local computation

Global maximum

max h1, … max hk

max h1, … max hk

max h1, … max hk

max h1, … max hk

Variant: HyperLogLog Sketch

Workhorse when it comes to cardinality counting

Avoids the need for many hash-functions to reduce error

▪ Use first bits of hash-function to split stream

▪ Use last bits to maintain FM-sketch of substream

Standard error
𝟏.𝟎𝟒

𝒎
(m is size of summary)

▪ Independent of stream size

▪ Hence, log(log(N)) dependence on stream length

Great demo at:
http://content.research.neustar.biz/blog/hll.html

http://content.research.neustar.biz/blog/hll.html

Application: Neighborhood Function

Count the number of pairs of nodes at
distance 1, 2, 3, …

Important statistics; allows to compute average degree,
diameter, effective diameter.

1: 6
2: 3
3: 1

Boldi, Paolo, Marco Rosa, and Sebastiano Vigna. "HyperANF: Approximating the
neighbourhood function of very large graphs on a budget." Proceedings of the 20th
international conference on World wide web. ACM, 2011.

Application: Neighborhood Function

Straightforward algorithm

Set N0(v) = {v}

For i = 1 to r:
For all v in V:

Ni(v)=Ni-1(v)
For {v,w} in E:

Ni(v)  Ni(v)  Ni-1(w)
Ni(w)  Ni(w)  Ni-1(v)

Return avg(|N1(v)|), avg(|N2(v)|-|N1(v)|), …

Time: O(r |V| |E|)

Space: O(|V|2)

Application: Neighborhood Function

Observation: we can replace every set by a summary

▪ Take union, cardinality, add an element

Size of set: V versus size of summary: k <<< |V|

▪ |V| versus log(log(|V|))

With the summary we achieve:

• Time O(r k |E|)

• Space O(k |V|)

Speedup is enormous

Anyone like me?
Similarity search

45

Similarity Search

A very common operation

• Find similar customers

• Find similar documents (e.g. Plagiarism checker)

Locality Sensitive Hashing is a well-known technique to
quickly find near-duplicates

• We will illustrate the principle for the Jaccard-Index
which measures the distance between sets

𝐽 𝐴, 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵

46

Jaccard Coefficient

J(A,B) = |AB|

|AB|

Indicates how similar the sets A and B are.

Example:

J({a,b,c},{c,d}) = 1/4

J({a,b,c},{b,c,d}) = 2/4

Used, e.g., to detect near duplicates (Altavista)

A set of n-grams in document 1

B set of n-grams in document 2

Similarity Search – Jaccard Index

Example:
Recommendation needs to be made for a user U

• We characterise users by the set of items they bought

• Find users who bought similar items

• Recommend items that were bought by these users

48

{a,b,c,d}
{a,b,d}
{e,f,g}
{a,d,f}

…

U bought {a,b,c}

Similarity Search – Jaccard Index

Example:
Recommendation needs to be made for a user U

• We characterise users by the set of items they bought

• Find users who bought similar items

• Recommend items that were bought by these users

49

{a,b,c,d}
{a,b,d}
{e,f,g}
{a,d,f}

…

U bought {a,b,c}

Recommend d

Similarity Search: Naïve Algorithm

For each user U’ in DB:

compute Idx := J(items(U),items(U’))

if Idx ≥ threshold:

return items(U’)

Complexity: |DB|

For high-dimensional queries indexing methods such as
inverted indices are no longer efficient

We need another indexing mechanism

50

Jaccard Coefficient

Let A, B be subsets of U

h is a function mapping elements of U to {1,2,…,|U|}

Example: d  1, c 2, a  3, b  4

Let minh(A) := minaA h(a)

Pr[minh(A) = minh(B)]

= |AB| / |AB|

= J(A,B)

54
132

154
37

75

146

198
76

* We implicitly assume
range(h)>>|A|, |B|

Locality-Sensitive

We call such a function minh locality-sensitive for Jaccard

Independent locality-sensitive functions can be combined

Independent functions h1, …, hm

“signature” of set A:

|A| and vector (minh1(A), minh2(A), …, minhm(A))

Estimating J(A,B)

▪ (a1, …, am) vector for A (b1, …, bm) vector for B

Let e = # { i | ai=bi }

e / m is an estimator for J(A,B)

52

Jaccard Coefficient

Example: U = { a, b, c, d, e }

A = { a, b }

B = { b, c, d }

C = { a, b, c, e }

J(A,B) = 1/4 ; estimate: 0

J(A,C) = 1/2 ; estimate: 1/2

J(B,C) = 2/5 ; estimate: 1/4

h1 h2 h3 h4

a 1 2 5 2

b 2 5 2 4

c 3 1 4 5

d 4 4 1 3

e 5 3 3 1
A 1 2 2 2

B 2 1 1 3

C 1 1 2 1

Locality-Sensitive Hashing

We will first illustrate the principle for Jaccard Index

MinHashing to create signatures of sets

▪ A  [123, 235, 576, 67, 56]

▪ B  [123, 3456, 56, 67, 867]

J(A,B) estimated by
number of entries on
which their signature
corresponds

Signature matrix

54

Signature
of set i

Partition M into b Bands

Signature matrix M

r rows
per band

b bands

One
signature

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Partition M into Bands

Divide matrix M into b bands of r rows

For each band, hash its portion of each column to a hash
table with k buckets

▪ Make k as large as possible

Candidate column pairs are those that hash to the same
bucket for ≥ 1 band

Tune b and r to catch most similar pairs,
but few non-similar pairs

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Matrix M

r rows b bands

Buckets

Columns 2 and 6
are probably identical

(candidate pair)

Columns 6 and 7 are
surely different.

Hashing Bands

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Example: Bands

Sets Signatures

A = { a, b } (1,2,2,2,3,1)

B = { b, c, d } (2,1,1,3,1,1)

C = { a, b, c, e } (1,1,2,1,1,1)

58

1 2 1

2 1 1

2 1 2

2 3 1

3 1 1

1 1 1

1 2

2 1

1 1

A

B

C

2 2

1 3

1 1

A

B

C

1 1

2 1

B C

A

Partitions

Matrix M

Example: Bands

59

1 2

2 1

1 1

A

B

C

2 2

1 3

1 1

A

B

C

1 1

2 1

B C

A

Partitions

New item D = { b, c, e } arrives; to which element do I need to compare?

1. Compute signature of D: (2,2,1,1,1,1)
2. Split signature into bands: (2,2,1,1,1,1)

Example: Bands

60

1 2

2 1

1 1

A

B

C

2 2

1 3

1 1

A

B

C

1 1

2 1

B C

A

Partitions

New item D = { b, c, e } arrives; to which element do I need to compare?

1. Compute signature of D: (2,2,1,1,1,1)
2. Split signature into bands: (2,2,1,1,1,1)
3. For each band, lookup candidates with that key
4. B and C match; do an in-depth comparison with these elements only

No Match

Simplifying Assumption

There are enough buckets that columns are unlikely to hash
to the same bucket unless they are identical in a particular
band

Hereafter, we assume that “same bucket” means “identical
in that band”

Assumption needed only to simplify analysis, not for
correctness of algorithm

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Example of Bands

Assume the following case:

Suppose 100,000 columns of M (100k items)

Signatures of 100 integers (rows)

Choose b = 20 bands of r = 5 integers/band

Goal: Find pairs of documents that
are at least s = 0.8 similar to a query Q

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

C, Q are 80% Similar

Find pairs of  s=0.8 similarity, set b=20, r=5

Assume: sim(C, Q) = 0.8

▪ Since sim(C, Q)  s, we want C to be a candidate

Probability sig(C) and sig(Q) identical in one particular band:
(0.8)5 = 0.328

Probability sig(C) and sig(Q) not identical in any band:

(1-0.328)20 = 0.00035

▪ i.e., about 1/3000th of the 80%-similar items in DB are false
negatives (we miss them)

▪ We would find 99.965% pairs of truly similar items

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

C, Q are 30% Similar

Find pairs of  s=0.8 similarity, set b=20, r=5

Assume: sim(C, Q) = 0.3

▪ Since sim(C, Q) < s, we do NOT want C to be a candidate

Probability sig(C) and sig(Q) identical in one particular band:
(0.3)5 = 0.00243

Probability sig(C) and sig(Q) identical in at least one band:

1 - (1 - 0.00243)20 = 0.0474

▪ In other words, approximately 4.74% items in the DB with
similarity 30% end up becoming candidate

▪ They are false positives since we will have to examine them
(they are candidates) but then it will turn out their similarity is
below threshold s

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

LSH Involves a Tradeoff

Pick:

▪ The number of Min-Hashes (rows of M)

▪ The number of bands b, and

▪ The number of rows r per band

to balance false positives/negatives

Example: If we had only 15 bands of 5 rows, the number
of false positives would go down, but the number of false
negatives would go up

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1
if t > s

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

What 1 Band of 1 Row Gives You

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

b bands, r rows/band

Columns C1 and C2 have similarity t

Pick any band (r rows)

▪ Prob. that all rows in band equal = tr

▪ Prob. that some row in band unequal = 1 - tr

Prob. that no band identical = (1 - tr)b

Prob. that at least 1 band identical = 1 - (1 - tr)b

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

What b Bands of r Rows Gives You

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Example: b = 20; r = 5

Similarity threshold s

Prob. that at least 1 band is identical:

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996
Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Picking r and b: The S-curve

 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red area: False Negative rate
Blue area: False Positive rate

Similarity

P
ro

b
. s

h
ar

in
g

a
b

u
ck

et

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

LSH Summary

Tune M, b, r to get almost all pairs with similar signatures,
but eliminate most pairs that do not have similar
signatures

Check in main memory that candidate pairs really do have
similar signatures

Locality-sensitive hashing reflects the fact that we want
hash-functions that take locality into account

▪ The more alike two points are, the more likely they hash
into the same bucket

Based on a slide provided for the book Mining Massive Datasets http://www.mmds.org

Case Study : Detecting Wiki-plagiarism

Make a near-duplicate detection system for Wikipedia
articles

▪ Divide articles into chapters: 22,901,574 documents

73

Case Study : Detecting Wiki-plagiarism

Create shingles and use MinHash to represent documents

▪ Shingles of up to 4 consecutive words; hashed to 32 bits

74

Case Study : Detecting Wiki-plagiarism

Create shingles and use MinHash to represent documents

▪ Shingles of up to 4 consecutive words; hashed to 32 bits

▪ Comparing two shingles takes about 0.91 miliseconds

▪ Hence, finding a near duplicate by comparing all
documents in the collection with the query document
takes almost 6 hours.

75

Case Study : Detecting Wiki-plagiarism

Hence, LSH was used

▪ Very few hashes were used: 20 to 50 hashes per sketch
(different experiments)

76

Case Study : Detecting Wiki-plagiarism

Hence, LSH was used

▪ Very few hashes were used: 20 to 50 hashes per sketch
(different experiments)

Some math:
5 bands, 4 rows per band:

P[h(x)=h(y) | J(x,y) = 90%] = 1-(1-(90%)4)5

= 0,995...

P[h(x)=h(y) | J(x,y) = 70%] = 1-(1-(70%)4)5

= 0,75 ...

77

Case Study : Detecting Wiki-plagiarism

Hence, LSH was used

▪ Very few hashes were used: 20 to 50 hashes per sketch
(different experiments)

Some math:
7 bands, 7 rows per band:

P[h(x)=h(y) | J(x,y) = 90%] = 1-(1-(90%)7)7

= 0,989...

P[h(x)=h(y) | J(x,y) = 70%] = 1-(1-(70%)7)7

= 0,45 ...

78

Case Study : Detecting Wiki-plagiarism

79Super-imposed: P(h(x)=h(y) | s(x,y)=similarity)

0

Case Study : Detecting Wiki-plagiarism

Index creation time:

80

Case Study : Detecting Wiki-plagiarism

Query time (recall: without index about 6 hours)

81

Summary: Similarity Search

LSH is an indexing technique for
similarity search

• Particularly useful for high-dimensional data

• Can be extended to other similarity/distance measures

• Key ingredient: there must exist a hash-functions h
such that P[h(x)=h(y)] increases with sim(x,y)

• These hash-functions can be combined to reach the
needed sensitivity

82

Summary: Some new tools …

83

What is hot?
Tracking heavy hitters

Anyone like me?
Similarity searchExtreme Counting

If we are willing to rely on approximate results, many costly
operations on big datasets can be executed very efficiently

