

7th European Business Intelligence Summer School (eBISS 2017) — Brussels, Belgium Doctoral Colloquium

Information Profiling in the Data Lake –

Using Data Mining techniques

Presented by: Ayman El Serafi

Alberto Abelló , Oscar Romero (UPC)

Toon Calders (ULB, UAntwerpen)

Big Data Challenges

- Data Lakes (DL): data repositories that store huge amounts of heterogeneous data in their original raw format :
 - Structured data (Relational DBs)
 - Semi-structured data (XML, JSON , RDF, ...)
 - Unstructured text (free-text documents, e-mails, ...)

Data governance: The need for metadata management

- Metadata is simply defined as: data which describes data
- To collect metadata in the DL we use data profiling
 - Data distributions
 - Statistics about instances and attributes
 - Unique data values

- Schema matching + metadata (from data profiling) = Information profiling
 - "Finding common information between datasets"
 - Information: the meaning of data, interpreted raw data
- There is a need for automatic detection of patterns and relationships in the DL for <u>information retrieval and data analytics</u>.

Our Goal: <u>automatic techniques</u> to generate the <u>mapping of</u> <u>data content ingested</u> in the data lake using metadata and data content matching

Naumann, Felix. "Data profiling revisited." ACM SIGMOD Record 42.4 (2014): 40-49.

7th European Business Intelligence Summer School (eBISS 2017) – Brussels, Belgium

- Our goal is an organised DL where we are capable of:
 - Detecting similar schemas and relationships among data items from datasets
 - Detecting duplicate datasets
 - Detection "joinable" or "crossable" datasets

Schema Matching

- The goal of schema matching is to align two different schemata from two data sources to find their similar items (*instances* or *attributes*)
- It usually seeks to find correspondences between instances in the *2 schemata* (also commonly called mappings)
- A special type of schema matching is Ontology alignment:

Bernstein, P. a, Madhavan, J., & Rahm, E. (2011). Generic Schema Matching , Ten Years Later. Proceedings of the VLDB Endowment, 4(11), 695–701. http://doi.org/10.1007/s007780100057

Aligning values between two ontologies (source: COMA Community Tool)

Holistic Schema Matching

- Holistic schema matching seeks to match *multiple schemata* together (which focuses on attribute mappings), instead of pairwise 1-to-1 matching (which focuses on instancebased matching)
 Holistic Data Integration. In *ADBIS* (pp. 11-27).
- Goals of applying holistic schema matching in DLs:
 - Relationships: Detecting similar attributes from datasets stored in the DL
 - Duplication: Detecting duplicate schemata which can be grouped together
 - Singleton schema: detecting those schemata which have no strong linkages with any other dataset
- Holistic schema matching leads to the following **challenges**:
 - Heterogeneous data sources with different formats & representations requiring new schema matching techniques.
 - Large amounts of schemata, where schema matching techniques need to scale up with more efficient approaches.

ULI

Rahm, E. (2016). The Case for

Our Contribution: How Can Data Mining Help?

- **1.** Finding attribute-level relationships and datasets similarity using schema matching & ontology alignment techniques
- 2. Using supervised machine learning (Classification models) for deciding "relatedness" between pairs of datasets for early-pruning tasks of pair-wise comparisons
- 3. Using clustering techniques to segment the datasets into similar groups of data that are related to each other.
 - Using frequent pattern mining to summarise different structures of data inside datasets from the DL.

Our Proposed Approach

Erasmus Mundus

OpenML: an online DL repository

- Open Machine Learning datasets and collaborative data mining
- Datasets represented in flat tabular format
- Has more than 19500 datasets

Erasmus

Data represent a huge domain of knowledge

Domain	Datasets IDs	Datasets Names
Plants	24,42,61	mushroom, soybean, Iris
Vehicles	9,21,207	autos,car,autoPrice
Business	4,29,223	labor, credit-a, stock
Sports	214,495,966	baskball, baseball- pitcher, anal catdata hall offame
Health	35,37,51	Dermatology, diabetes, heart-h
Others	1,44,50	anneal, spambase, tic-tac-toe

Research Paper 1: Towards Information Profiling: Data Lake Content Metadata Management

- **Topic**: information profiling based on instance-based ontology alignment techniques
- Research question: How to extract RDF data summaries from textual datasets like CSV, in order to use ontology alignment and matching techniques to find relationships between the datasets?
 Alserafi, A., Abelló, A., R
- **Hypothesis**: Ontology alignment techniques can effectively extract
- Relationships and similarity between related/duplicate datasets.

Erasmus

- **Approach**: proposed an approach and an algorithm for efficiently and
- effectively handling the information profiling process in the DL.
- **Experiments**: test on an annotated gold-standard from OpenML. Measure computational performance based on execution time and effectiveness based on precision, recall, and F1 scores.

7th European Business Intelligence Summer School (eBISS 2017) – Brussels, Belgium

Alserafi, A., Abelló, A., Romero, O., & Calders, T. (2016, December). **Towards Information Profiling: Data Lake Content Metadata Management**. In IEEE International Conference on Data Mining Workshops (ICDMW), 2016 (pp. 178-185). IEEE.

ULB The Relationships Discovery Algorithm

OpenML: Applying instance-based approaches

ataset 1	Dataset 2	Similarity is Duplicat	e isRelated		
9 Autos	975 Autos	o.897958 Yes	Yes width and width = 0.933814 body-style and body-style = 0.933814 bore and bore = 0.933814 city-mpg and city-mpg = 0.933814	Singleton 48 tae	Maximum Pari Similarity 0.2
38 sick 1000 hypothyroid	0.55089 Yes	Yes TBG_measured and	50 tic-tac-toe		
			56 vote		
			"%27TBG%2omeasured%27" = 0.87481 TBG and TBG = 0.87481 hypopituitary and hypopituitary = 0.87481 etc.	40 sonar	0.3
51 heart-h	171 primary- tumor	0.514138 No	Yes bone-marrow (yes-no) and exang (yes-no) = 0.581642 gender (m-f) and gender (m-f) = 0.408021		

7th European Business Intelligence Summer School (eBISS 2017) – Brussels, Belgium

OpenML: Applying instance-based approaches **ULB**

RESULTS	Humans (average)	Prototype	For a sample of
Time Duration	2 hours	60s – 151s	15 annotated
Precision	57.5%	76.2-100%	datasets, and 5 human
Recall	61.1%	78.9 - 89.5%	annotators
F1-score	55.6%	82 - 91%	

7th European Business Intelligence Summer School (eBISS 2017) – Brussels, Belgium

OpenML: Applying instance-based approaches

Conclusions

- Automation of metadata collection and schema matching can lead to more efficient, easier, and accurate information profiling for the DL.
- Instance based techniques are not effective in detecting similar attributes with transformed values.
- Need to reduce processing time of ingested datasets to scale-up to hundreds, thousands, and millions of datasets.
- Naïve approach of filtration can incorrectly eliminate positive cases that should be matched

Research Paper 2: DS-Prox: Dataset Proximity Mining for Governing the Data Lake

- **Topic**: early-pruning techniques for our information profiling approach at the dataset level using meta-features collected by profiling techniques
- **Research question**: How to use discovered content metadata for mining approximate proximity between pairs of datasets in the DL?
- **Hypothesis**: supervised machine learning techniques can effectively predict
- Relationships and similarity between related/duplicate datasets.

Erasmus

Alserafi, A., Calders, T, Abelló, A. & Romero, O.. (2017). **DS-Prox: Dataset Proximity Mining for Governing the Data Lake**. In Similarity Search and Applications (submitted). Springer.

- **Approach**: proposed an approach based on supervised machine learning techniques in order to mine similarity between datasets for efficiently and effectively handling the first early-pruning step of information profiling process in the DL.
- **Experiments**: test on an annotated gold-standard from OpenML. Measure computational performance based on efficiency gain and effectiveness based on precision and recall.

OpenML: Applying metadata-based approach

- New goal: reducing the computational complexity by replacing pairwise instance matching with metadatabased matching
- We focus on a novel approach for early-pruning within holistic schema matching for DLs matching using *schema meta-features similarity mining*
- We use a **supervised machine learning** approach to compute the proximity between datasets in the DL, then we classify them into pairs of datasets which are possibly: related or duplicate datasets.
 - Experiment with multiple algorithms, like ensemble learners: AdaBoost, RandomForest, Bagging with Regression Trees, etc.

Advantages:

- Reduces similarity search processing, by early cheaper computations for filtration
- Intelligently reduce the search-space without losing true-matching pairs
- Disadvantages:
 - Requires manual annotations of some training examples for the machine learning algorithm

Complexity: [<u>d*(d-1) / 2]</u> where d is number of datasets in the data lake

7th European Business Intelligence Summer School (eBISS 2017) – Brussels, Belgium

Experiments

- We test our approach with 540 annotated datasets from OpenML which were annotated manually based on their descriptions as:
 - Related datasets: datasets describing the same subject-area like (Diseases, Population Census, Cars, Sports, Digital Handwriting Recognition, Robot Motion Sensing, etc.)
 - Duplicate datasets: datasets describing the same subject-area , and where all attributes store similar information
 - This means most attributes describe the same real-world object, e.g. weight.
 - To help the in manual annotation, we use TF-IDF cosine-similarity between descriptions of datasets to find duplicates
- Note: attributes can have standardized, transformed, or differently coded data stored in them, but they still describe the same real-world object.
 - E.g. 'weight' having a standardized value between o and 1 in one dataset and real values in kilograms [0,1000] in another.

We train a classifier for each of the above 2 goals using an independent training set of 130 datasets.

Experiments

When we apply the classifier on new pairs of datasets, we compute if they are related or not according to a *minimum cut-off threshold* for the score:

$$Rel(d_1, d_2) = \begin{cases} 1, & Sim(d_1, d_2) > c \\ 0, & \text{otherwise} \end{cases}$$

Assessment measures for our early-pruning approach

Precision =
$$\frac{TP}{TP + F}$$

Recall =
$$\frac{TP}{TP + FN}$$

Efficiency gain =
$$\frac{TP + FN}{N}$$

Rel(d1,d2)

 $Dup(d_1, d_2)$

- The approach can achieve a good optimization for the recall-efficiency trade-off
- Conclusion: our approach can only work for early-pruning to filter unnecessary comparisons, to be succeeded by more detailed matching techniques.

Research Paper 3: Keeping the Data Lake in Form: A Governance Framework using Information Profiling

• **Topic**: attribute-based schema matching, efficient similarity search algorithms and effective DL clustering techniques

Research questions:

- 1. How to use DM and schema matching techniques to effectively and efficiently profile the attributes in datasets to detect their relationships?
- 1. What are the overall performance effects of using the framework's techniques in the DL?
- Hypothesis: information profiling techniques can support efficient holistic schema matching in the DL

- **Approach**: applying the information profiling approach and the complete set of BPMN activities to flat tabular datasets
- **Experiments**: test on an annotated gold-standard from OpenML for effectiveness. Measure computational performance based on execution time and effectiveness based on precision & recall scores using huge amounts of datasets.

Preliminary Experimental Results

- Test on the annotated attributes from OpenML
 - Has 15 datasets
 - Has 62 related numeric attributes and 19 related nominal attributes
- Measure the recall and efficiency gains at different thresholds for the distance measures

Attribute-level meta-features matching

- Planned work
 - Improving numeric distance measure
 - Integrating the distance measure of all attributes for global similarity of datasets.
 - Efficiency improvement for large scale settings
 - Sampling for numeric values statistics computations
 - Indexing, ngram hashing, etc. for value comparisons
 - Possibly, construct learning model for weighting numeric and nominal distance measures

Research Status

1 Data Ingestion 2 Data Digestion 3 Metadata Exploitation

Y= completed P = partially completed X = still to implement

<u>Research Topic</u>	Ingestion	Digestion	Exploitation
(01) Schema extraction from semi- structured data	Y		
(02) Data Profiling		Y	
(o3) Proximity Mining		Y	
(04) Schema Matching		Р	
(05) Indexing & Hashing		Р	
(o6) Dataset similarity metrics			Р
(07) Clustering			Х
(o8) Metadata Visualization & Querying			Р

Information Profiling in the Data Lake – Using Data Mining techniques

THANKYOU VERY MUCH

 \bigcirc

Discussion ...