
Graph Database System Neo4j
Hannes Voigt



Some Bachground



3

Adjacency Matrix

 UNDIRECTED GRAPH WITHOUT LABELS  DIRECTED GRAPH WITH EDGE LABELS

2

43

5

6

1

2

43

5

6

1

1 2 3 4 5 6
1
2
3
4
5
6

1 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

symmetric

1 2 3 4 5 6
1
2
3
4
5
6

1 3 0 0 2 0
0 0 3 0 2 0
0 0 0 2 0 2
0 0 1 0 3 0
0 0 0 0 0 0
0 0 0 1 0 0

not symmetric

target

so
u

rc
e

target

so
u

rc
e



4

Adjacency Lists

 COMPRESSION OF ADJACENCY MATRIX

§ Compression scheme: Compressed Sparse Row Compressed Sparse Column Coordinate list

 ADJACENCY LIST

§ Source vertex together outgoing edges

Without edge labels With edge labels With edge properties

0 1 2 3
0
1
2
3

𝑎 	 𝑐 	
	 𝑏 	 𝑒
𝑑 𝑖 𝑓 	
	 ℎ 𝑔 	

0 2 4 7

a c b e d i f h g

0 2 1 3 0 1 2 1 2

0 2 5 8

a d b i h c f g e

0 2 1 2 3 0 2 3 1

(0,0,𝑎)
(0,2, 𝑐)
(1,1,𝑏)

⋮
(2,2,𝑓)
(3,1,ℎ)
(3,2,𝑔)

-> (0,2)
-> (1,3)
-> (0,1,2)
-> (1,2)

0
1
2
3

-> ([0,a],[2,c])
-> ([1,b],[3,e])
-> ([0,d],[1,i],[2,f])
-> ([1,h],[2,g])

0
1
2
3

-> ([0,a,(weight=4)],[2,c,(weight=3)])
-> ([1,b,(weight=3)],[3,e,(weight=2)])
-> ([0,d,(weight=5)],[1,i,(weight=2)],…)
-> ([1,h,(weight=9)],[2,g,(weight=7)])

0
1
2
3

The same!!!

source-oriented target-oriented

Almost the same!!!



5

Basic Terminology

 WALK

§ Sequence of edges connecting vertices

- 𝑤78,79 = 𝑣<𝑒<𝑣= …𝑣?@<𝑒?@<𝑣? with 
𝑒A = 𝑣A, 𝑣AB< ∈ 𝐸, 1 ≤ 𝑖 < 𝑛

- 𝑛 is the length of the walk

 PATH

§ Walk connecting distinct vertices
- 𝑝78,79 = 𝑣<𝑒<𝑣= …𝑣?@<𝑒?@<𝑣? with ∀𝑣A , 𝑣J: 𝑖 ≠ 𝑗 → 𝑣A ≠ 𝑣J

and 𝑒A = 𝑣A, 𝑣AB< ∈ 𝐸, 1 ≤ 𝑖 < 𝑛
- Length is number of edges 

or sum of edge weights

 CYCLE

§ Walk with 𝑣< = 𝑣? is a cycle

§ Graph is acyclic iff∄𝑣 ∈ 𝑉:𝑤7,7 ∈ 𝐺

 DEGREE (OR VALENCY)

§ In/out degree of a vertex: Number of 
incoming/outgoing edges of that vertex
- degUVW 𝑣 = 𝑣, 𝑢 ∈ 𝐸
- degA? 𝑣 = 𝑢, 𝑣 ∈ 𝐸
- deg 𝑣 = degUVW 𝑣 +degA? 𝑣

 DISTANCE

§ Distance between two vertices in a graph is number 
of edges in a shortest path connecting them

§ 𝑑 𝑣, 𝑢 = min]^,_∈` 𝑝7,V

 DIAMETER

§ Maximum eccentricity of any vertex in the graph

§ 𝑑 𝐺 = max7∈c𝜖 𝑣

degUVW = 3
degA? = 2

𝑑 𝐺 = 4



6

Finding Shortest Paths

 UNWEIGHTED SHORTEST PATHS

§ Length of path its number of 
edges

§ Restriction to simple paths (w/o 
cycles)

§ Two main ways of path search
- Depth-first search (DFS)

- Breadth-first search (BFS)

 BREADTH-FIRST SEARCH (BFS)

§ Search tree is broadened as 
much as possible on each 
depth before going to the next 
depth

§ Potential large space required

§ Find shortest path between two 
nodes first (before finding a 
longer one)

 DEPTH-FIRST SEARCH (DFS)

§ Search tree is deepened as 
much as possible on each child 
before going to the next sibling

§ Lower space complexity

§ Has to examine whole graph to 
find shortest path between two 
nodes 

length = 5

[https://commons.wikimedia.org/wiki/File:Sorted_binary_tree_preorder.svg] [https://commons.wikimedia.org/wiki/File:Sorted_binary_tree_breadth-first_traversal.svg]

Explored vertex

Frontier



7

Bidirectional BFS

 IDEA: SEARCH FROM START AND END VERTEX

§ Alternatingly explore vertices on both sides

- Optimization: explore vertices on the side with smaller frontier

§ Algorithm stops when both BFS meet
- When discovering a new vertex, each BFS check if that vertex is in frontier of other side 

Forward (598 vertices explored) Backward (860 vertices explored) Bidirectional (448 vertices explored)

[http://euler.slu.edu/~goldwasser/class/slu/csci462/2010_Spring/assignments/asgn03/]



8

Centrality Measures

 QUESTION: WHO ARE THE KEY PLAYERS IN A GRAPH

§ Most social contacts (vaccination schedules)

§ Most influential thinkers/papers (reading lists)

§ Most important website (web search)
§ Most important distributers (supply network)

§ etc.

§ Can we measure that?

 YES! WITH CENTRALITY MEASURES!

§ Centrality measures identify the most important 
vertices within a graph

[http://brendangriffen.com/blog/gow-influential-thinkers]



9

Centrality Measures

 VARIOUS CENTRALITY MEASURE HAVE BEEN DEFINED

§ Betweenness centrality (A)

- Number of shortest paths between all other vertices that pass through that vertex

§ Closeness centrality (B)
- Reciprocal of the sum of distances to all other vertices

- Harmonic centrality (E) uses the sum of reciprocal of distances instead

§ Eigenvector centrality/Eigencentrality (C)
- Score of a vertex contributes to score of neighboring vertices

- Page rank is variant of eigenvector centrality

§ Katz centrality (F)
- Number of all vertices that can be connected through a path

- Contributions of distant nodes are penalized

- Degree centrality (D) only considers direct neighbors

[https://commons.wikimedia.org/wiki/File:6_centrality_measures.png]



Neo4j



11

Database Systems Landscape



12

Neo4j Terminology

Node (vertex)

Label

Type

Relationship (edge)

Properties

[http://neo4j.com/docs/developer-manual/current/#graphdb-concepts]



13

Match

 MATCH-CLAUSE

§ Primary way of getting data from a Neo4j database

§ Allows you to specify the patterns
§ Named pattern element, e.g. (p:Person), will be bound 

to the match instance

§ Query can have multiple MATCH-clauses

 RETURN-CLAUSE

§ Projects to the result set

§ Allows projection to nodes, 
edges, and properties

: Person
name=Lucy
born=1982

sex=F

: Person
name=Peter
born=1985

sex=M

: Person
name=Jen
born=1987

sex=F

Likes
stars=5 Likes

stars=4

Likes
stars=3

Likes
stars=5

MATCH (p:Person)-[:Likes]->(:Person) -[:Likes]->(fof:Person)
RETURN p.name, fof.name

p.name fof.name

Lucy Jen

Peter Lucy

Peter Peter

Jen Peter

Lucy Lucy

MATCH (p:Person)-[:Likes]->(f:Person)
RETURN p.name, f.sex

p.name f.sex

Lucy M

Peter F

Jen F

Peter F

[http://neo4j.com/docs/developer-manual/current/#query-match]
[http://neo4j.com/docs/developer-manual/current/#query-return]



14

Pattern Syntax

 VERTEX PATTERN

§ () unidentified vertex

§ (matrix) vertex identified by variable matrix

§ (:Movie) unidentified vertex with label Movie

§ (matrix:Movie:Action) vertex with labels Movie and Action identified by variable matrix

§ (matrix:Movie {title: "The Matrix"}) + property title equal the string “The Matrix”

§ (matrix:Movie {title: "The Matrix", released: 1997}) + property released equal the integer 1997

 EDGE PATTERN

§ --> unidentified edge

§ -[role]-> edge identified by variable role

§ -[:ACTED_IN]-> unidentified edge with label ACTED_IN

§ -[role:ACTED_IN]-> edge with label ACTED_IN identified by variable role

§ -[role:ACTED_IN {roles: ["Neo"]}]-> + property roles contains the string “Neo”

[http://neo4j.com/docs/developer-manual/current/#cypher-intro-patterns]



15

Pattern Syntax

 PATH PATTERNS

§ String of alternating vertex pattern and edge pattern

§ Starting and ending with a vertex pattern 

§ (a)-->(b)<--(c)--(d)-->(a)-->(e)

§ (keanu:Person:Actor {name: "Keanu Reeves"}) -[role:ACTED_IN {roles: ["Neo"]}]-> (matrix:Movie {title: "The Matrix"})

 GRAPH PATTERNS

§ One or multiple path patterns

§ Path patterns should have at least one shared variable

§ Without shared variable graph pattern is disconnected
- Results in a cross-product of the results for connected sub patterns

- Quadrating blow up in result size and computational complexity

§ (a)-->(b)<--(c)--(d)-->(a)-->(e), (e)-->(b)-->(d), (a)-->(a)

[http://neo4j.com/docs/developer-manual/current/#cypher-intro-patterns]

ba c ed

ba c ed



16

Return

 RETURN-CLAUSE

§ Defines what to include in the query result set

§ Comparable with relational projection

§ Only once per query

§ Allows to return nodes, edges, properties, or any expressions

§ Column can be rename using AS <new name>

 EXAMPLE

§ MATCH (n)
RETURN n, "node " + id(n) +" is " + 

CASE WHEN n.title IS NOT NULL THEN "a Movie”
WHEN EXISTS(n.name) THEN "a Person”
ELSE "something unknown”

END AS about

[http://neo4j.com/docs/developer-manual/current/#query-return]
[http://neo4j.com/docs/developer-manual/current/#cypher-expressions]



17

Optional Match & Where

 OPTIONAL MATCH-CLAUSE

§ Matches patterns against your graph database, just like MATCH

§ Matches the complete pattern or not

§ If no matches are found, OPTIONAL MATCH will use NULLs as bindings

§ Like relational outer join 

§ Example: MATCH (a:Movie) 
OPTIONAL MATCH (a)<-[:WROTE]-(x)
RETURN a.title, x.name

 WHERE

§ After an (OPTIONAL) MATCH, it adds constraints to the (optional) match 

§ WHERE becomes part of the pattern

§ After a WITH, it just filters the result

§ Syntax: WHERE <expression>

§ Example: MATCH (n) 
WHERE n.name = 'Peter' XOR (n.age < 30 AND n.name = 'Tobias') 

OR NOT (n.name ~= 'Tob.*' OR n.name CONTAINS 'ete') 
RETURN n

[http://neo4j.com/docs/developer-manual/current/#query-optional-match]
[http://neo4j.com/docs/developer-manual/current/#query-where]



18

Matching Paths

 VARIABLE LENGTH PATH PATTERNS

§ Repetitive edge types can be expressed by specifying a length with lower and upper bounds

§ Example: (a)-[:x*2]->(b) is equal to (a)-[:x]->()-[:x]->(b)

§ More examples: (a)-[*3..5]->(b)
(a)-[*3..]->(b)
(a)-[*..5]->(b)
(a)-[*]->(b)

§ Complete example: MATCH (me)-[:KNOWS*1..2]-(remote_friend) 
WHERE me.name = "Filipa" RETURN remote_friend.name

§ Matches unique paths (relationship uniquness), not unique reachable nodes!!!

§ Particularly the unbounded [*] easily matches larger numbers of paths -> exponential blowup!!!

 PATH VARIABLES

§ Assign matched paths to variable or further processing

§ Example: p = ((a)-[*3..5]->(b))

[http://neo4j.com/docs/developer-manual/current/#_variable_length]
[http://neo4j.com/docs/developer-manual/current/#_assigning_to_path_variables]



19

Matching Shortest Paths

 SHORTEST PATHS

§ Path between two nodes with minimum number of edges

§ Apply the shortestPath/allShortestPath function to a path pattern to match single/all shortest paths

§ Additional filter predicates can be given with WHERE clause
- Universal (NONE/ALL) predicates can be evaluated during shortest path search

- Other predication can be evaluated only after shortest path has been discovered

§ Fast evaluation algorithm
- Bidirectional BFS

- Standard for paths without additional predicates and path with universal predicates

§ Slow evaluation algorithm
- DFS

- Fallback for paths with non-universal predicates

§ Example (fast evaluation): 
MATCH (m { name:"Martin Sheen" }),(o { name:"Oliver Stone" }), p = shortestPath((m)-[*..15]-(o))
WHERE NONE(r IN rels(p) WHERE type(r)= "FATHER") RETURN p

§ Example (fast evaluation): 
MATCH (m { name:"Martin Sheen" }),(o { name:"Oliver Stone" }), p = shortestPath((m)-[*..15]-(o))
WHERE length(p) > 1 RETURN p

[http://neo4j.com/docs/developer-manual/current/#query-shortest-path]
[http://neo4j.com/docs/developer-manual/current/#query-shortestpath-planning]

Max. 15 hops



20

Aggregation

 IN RETURN-CLAUSE

§ Implicit group by

- Expressions without an aggregation function will grouping keys
- Expressions with an aggregation function will produce aggregates

§ DISTINCT within the aggregation function removes duplicates in a group before the aggregation

§ Aggregation function: COUNT, SUM, AVG, MIN, MAX, STDEV, STDEVP, PERCENTILEDISC, PERCENTILECONT, and
COLLECT – collects all the values into a list

 IN WITH-CLAUSE

§ Like a process pipe

§ Chains query parts together, piping the results from one to be used as starting points in the next

§ Like RETURN, WITH defines – including aggregation – the output before it is passed on 

§ Allows to
- Filter on aggregates

- Aggregation of aggregates

- Limit search space based on order of properties or aggregates

[http://neo4j.com/docs/developer-manual/current/#query-aggregation]
[http://neo4j.com/docs/developer-manual/current/#_assigning_to_path_variables]



21

Aggregation

 IN RETURN-CLAUSE

§ Implicit group by

- Expressions without an aggregation function will be group keys
- Expressions with an aggregation function will produce aggregates

§ DISTINCT within the aggregation function removes duplicates in a group before the aggregation

§ Aggregation function: COUNT, SUM, AVG, MIN, MAX, STDEV, STDEVP, PERCENTILEDISC, PERCENTILECONT, and
COLLECT – collects all the values into a list

§ Example: MATCH (me:Person {name:’Ann'})-->(friend:Person)-->(friend_of_friend:Person)
RETURN me.name, count(DISTINCT friend_of_friend), count(friend_of_friend)

 IN WITH-CLAUSE

§ See next slide

[http://neo4j.com/docs/developer-manual/current/#query-aggregation]

group key aggregates

Ann

Bob

Tim

Jef

Lee

Cyn

me COUNT
DISTINCT

COUNT

Ann 3 4

Result



22

Query Composition

 WITH-CLAUSE

§ Like a process pipe

§ Chains query parts together, piping the results from one to be used as starting points in the next

§ Like RETURN, WITH defines – including aggregation – the output before it is passed on 

§ Filter on aggregates
Example: Soccer team on average younger than 25

MATCH (p)-[:PLAYS]->(t) WITH t, AVG(p.age) AS a WHERE a < 25 RETURN t

§ Aggregation of aggregates
Example: Average age of the youngest player in each team

MATCH (p)-[:PLAYS]->(t) WITH t, MIN(p.age) AS a RETURN AVG(a)

§ Limit search space based on order of properties or aggregates
Example: Friends of five best friends

MATCH (p)-[f:FRIENDS]->(p2) 
WITH f,p2 ORDER BY f.rating DESC LIMIT 5
MATCH (p2)-[f:FRIENDS]->(p3) RETURN DISTINCT p3

[http://neo4j.com/docs/developer-manual/current/#query-with]



Exercise



24

Exercise

 PREPARATION

§ Download and install neo4j community edition:

- For installation follow standard download procedure: http://neo4j.com/download/
- For portable usage without installation download archive (tar/zip): https://neo4j.com/download/other-releases/

and follow OS-specific installing instructions at download page

§ Import the movie database > :play movie graph > 2nd page > click on code > execute

§ Try out query: MATCH (n) WITH COUNT(n) AS numVertices
MATCH (a)-[e]->(b) 
RETURN numVertices, COUNT(e) AS numEdges

§ Try out query: MATCH (n) RETURN n

 ADD DATA

§ Add movie, actor (three main characters), director as vertices and ACTED_IN/DIRECTED edges for the movie The 
Bridges of Madison County http://www.imdb.com/title/tt0112579/

§ Do not insert vertices that already exist in the database!!!

Expected Result

numVertices numEdges

171 253



25

Exercise

 SIMPLE PATTERNS

§ Find all actors that directed a movie they also acted in and return actor and movie nodes

§ Find all reviewer pairs, one following the other and both reviewing the same movie, and return entire subgraphs

§ Find all reviewer pairs, one following the other, and return the two reviewers and a movie the may have reviewed both

§ Restrict previous query so that the name of the followed reviewer is not 12 characters long
- Try a different position for the where clause. Explain why this gives a different result.

§ Find all actors that acted in a movie together after 2010 and return the actor names and movie node

§ By extending the previous query, find all movies that the cast of the movies found before also acted in

 MATCHING SEMANTICS OF NEO4J

§ Which matching semantics does Neo4j implement? Homomorphism, Isomorphism, Induced subgraph isomorphism?

§ Remove duplicates for pattern (x)--(y)

§ Match pattern (a1)-[:REVIEWED]->(m)<-[:REVIEWED]-(a2) as induced subgraph

§ Find all actor pairs that acted in multiple movies together

§ Find all pairs of actor–movie subgraphs with equal roles (on ACTS_IN edges), return actors names, roles, and movie 
titles



26

Exercise

 PATHS

§ Match all reviewers and the one they are following directly or via another a third reviewer

§ Count the number of paths of at most length 4 starting from Clint Eastwood ignoring edge direction

§ Count the number of paths of at most length 10 starting from Clint Eastwood ignoring edge direction

§ Count the number of paths of at most length 11 starting from Clint Eastwood ignoring edge direction

§ Count the number of nodes reachable in at most 4 hops starting from Clint Eastwood ignoring edge direction

§ Count the number of nodes reachable in at most 10 hops starting from Clint Eastwood ignoring edge direction

§ Count the number of nodes reachable in at most 11 hops starting from Clint Eastwood ignoring edge direction



27

Exercise

 YOUNG AND OLD MOVIES

§ Determine the average age of the Apollo 13 cast at the time of the movie’s release

§ Find the movies with the top-10 oldest cast at the time of the movie’s release
- Return movie and average age rounded to two decimal ordered by descending age

§ Find average age of youngest actors in movie casts at time of release

§ Find ACTED_IN subgraph of the movie with the youngest cast at the time of the movie’s release

§ Determine the movie with youngest and movie with oldest cast and their age difference rounded to two decimal 
points

 ADJACENCY LIST AND DISTRIBUTIONS

§ Return the whole graph a simple adjacency list of vertex ids ordered by decreasing vertex degree

§ Return out degree distribution ordered by ascending degree

§ Return degree distribution ordered by ascending degree

§ Return edge types with number of instances order by decreasing instances number



28

Exercise

 SIX DEGREES OF KEVIN BACON [https://en.wikipedia.org/wiki/six_degrees_of_kevin_bacon]

§ Determine the Bacon number of Clint Eastwood

§ Count for each Bacon number the number of actor
- Return degree and number of actors ordered by ascending degree

 KATZ CENTRALITY [https://en.wikipedia.org/wiki/Katz_centrality]

§ Find actors with top 10 Katz centrality along ACTED_IN edges
- Distance penalty is reciprocal of path length (e.g. 3-hop neighbor gets a penalty of 1/3) 

- Return actor vertex and Katz centrality



29

Exercise

 HINTS

§ Use the neo4j browser (web frontend)
http://neo4j.com/docs/stable/tools-
webadmin.html

§ Use the Cypher documentation:
http://neo4j.com/docs/stable/cypher-
query-lang.html

§ Use your preferred search engine

§ Try out! Explorer! Have fun!!!


