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Bio

 CURRENT POSITION

§ Postdoc at Database System Group, Technische Universität Dresden

 EDUCATION

§ Ph.D. in 2014

§ Master in 2008

 EXPERIENCE

§ Visiting scholar at SAP Labs, Palo Alto for one year in 2010
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§ Graph Data Management and Data Science

§ LDBC Graph Query Language Standardization Task Force

§ Collaboration with SAP Hana Graph Team 
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Dresden Database Systems Group

 VISIT: HTTPS://WWWDB.INF.TU-DRESDEN.DE/



Trends in Data Management
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Everything is Data

[http://blog.acronis.com/posts/data-everything-8-noble-truths]
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The Zettabyte Age

 CISCO VISUAL NETWORKING INDEX

THE INTERNET IN 2020
§ 26.3 billion networked devices

- Up from 16.3 billion in 2015
- 44% of all networked devices will be

mobile-connected
§ 25.1 GB average traffic per capita per month

- Up from 9.9 GB in 2015
§ 2.3 Zettabytes annual IP-Traffic

- up from 870.3 Exabytes annual IP-Traffic in 
2015

- One zettabyte = stack of books from Earth to 
Pluto 20 times

6



7

The End of Science

 NEW REALITIES

§ Everything is digital data
§ Rise of data-driven culture
§ High-performant data analytics
§ Exploit sophisticated statistical methods

 HOW DO WE STRUCTURE/IMPLEMENT/LIVE WITH THIS TREND?

7

The quest for knowledge used 
to begin with grand theories.
Now it begins with massive 

amounts of data. 
Zetta

Welcome to the Petabyte Age.
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]
0. Transactional Data Management (OLTP)
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Focus of Interest

 PROPERTIES OF ENTITIES

§ Captured/measured values

§ What are the sales figures/temperatures/etc.?

§ Multidimensional data/time series/matrixes

 CONNECTIONS BETWEEN ENTITIES

§ Network structure

§ What do the friends of your customers buy?

§ Graph data
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Example: Centrality Measures

 QUESTION: WHO ARE THE KEY PLAYERS IN A GRAPH

§ Most social contacts (vaccination schedules)

§ Most influential thinkers/papers (reading lists)

§ Most important website (web search)
§ Most important distributers (supply network)

§ etc.

§ Can we measure that?

 YES! WITH CENTRALITY MEASURES!

§ Centrality measures identify the most important 
vertices within a graph

[http://brendangriffen.com/blog/gow-influential-thinkers]



11

Example: Supply Chain Management

Backward Tracability (Level 3 Analytics)
• Find the parts causing the problem
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Example: Supply Chain Management

Forward Tracability (Level 4 Analytics)
• Alert other customer potentially 

affected by the problem
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 SED

Example: Supply Chain Management

Supply Chain Optimization (Level 8 Analytics)
• Customer A: 10-30% reduction in inventory
• Customer B: 8% reduction in transportation costs

[http://www.logicblox.com/solutions/supply-chain-optimization/]

When to send?
How much to send?
From where to where?

Inventory
Response

Times
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Business Processes

 BUSINESS PROCESSES ARE ESSENTIALLY GRAPHS

§ Who does what in relationship with whom …

 THE WHOLE ANALYTICS STACK DESIRED

§ From tracking the state of processes (level 0)

§ To optimizing the processes (level 8)

[http://integrella.com/services/solutions/business-optimization-bpm/]

[https://xkcd.com/399/]
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

Graph Data 
Management 
Applications



Graph Data Model
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Graph Building Blocks

 NODES (DOTS)

§ Like an entity in ER

§ Exist on their own

§ Have object identity

 EDGES (LINES)

§ Like a relationship in ER

§ Exist only between nodes

§ Identity depends on the nodes 
they connect
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Graph Building Blocks

 VERTICES & EDGES

§ 𝐺 = 𝑉,𝐸 with 
𝐸 ⊆ 𝑒 𝑒 ∈ 𝒫 𝑉 ∧ 𝑒 = 2

§ Vertices have identity

§ Edge depend on vertices

 DIRECTIONALITY

§ 𝐸 ⊆ 𝑉×𝑉

 VERTEX PROPERTIES

§ Vertices have set of key-value 
pairs  

 EDGE PROPERTIES

§ Edges have set of key-value 
pairs

 VERTEX LABELS

§ 𝐺 = 𝑉,𝐸, 𝐿., 𝑓. with
𝑓.: 𝑉 → 𝐿. (or 𝑓.: 𝑉 → 𝒫 𝐿. )

§ Label are not unique1

 EDGE LABELS (OR WEIGHTS)

§ 𝐺 = 𝑉,𝐸, 𝐿2, 𝑓2 with
𝑓2: 𝑉 → 𝐿2

Film

Film
Actor

Actor

act in

friends

act in

act in

name = Stolen 3
screen = 2015

name = Sequle 4
oscars = 2

name = Brain Pit
eye color = brown

name = Roy Winslet
born = 1975

year = 2004

year = 2005
salary = 2.5 m

character = Oncle Bob since = 1985

1 Labels that are required to be unique are not labels but vertex identity
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Resource Description Framework (RDF)

§ Data descripted in triples subject-predicate-object

§ Subjects and objects are vertices (URIs 𝑈 or value literals 𝐿 (objects only))

§ Predicates are edge labels (URIs 𝑈)

§ RDF dataset ⊆ 𝑈×𝑈×{𝑈∪ 𝐿}
§ Edges are directed

§ No vertex labels
(note, every literal is per se unique) 

§ No properties

§ RDF Schema (RDFS)

§ Set of predefined predicates and classes to describe data schema in RDF

@prefix eric: <http://www.w3.org/People/EM/contact#> . 
@prefix contact: <http://www.w3.org/2000/10/swap/pim/contact#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

eric:me contact:fullName "Eric Miller" . 
eric:me contact:mailbox <mailto:e.miller123(at)example> . 
eric:me contact:personalTitle "Dr." . 
eric:me rdf:type contact:Person .

[http://commons.wikimedia.org/wiki/File:Rdf_graph_for_Eric_Miller.png]

Lin
ked

 O
p

en
 D

ata

[http://lod-cloud.net/]
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Property Graph Model

§ Directed Graph

§ Vertices are proper entities with
- Label (often as type Property)

- Properties

§ Edges are “rich” relationships with
- Label

- Properties

§ No standard

§ Various different implementations
- TinkerPop/Gremlin

- Neo4j (allows multiple vertex labels)

- Green-Marl (no labels)
- …

[https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model]

[http://neo4j.com/docs/stable/graphdb-neo4j.html]

TinkerPop
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Possible Graph Data Models

Structure Plain Data Structured 
Data
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Pure Structure
Graph Models

Basic ¡ ¡ ¡ ¡ ¡ ¡ ¡

DAG ü ¡ ¡ ¡ ¡ ¡ ¡

⋮

Plain Data Graph 
Models

RDF ü ü ü ¡ ü ¡ ¡

Pregel Graph Model,
Graph-Oriented Object Data model (GOOD)

ü ü ü ü ü ¡ ¡

Structured Data 
Graph Models

Green-Marl Graph Model ü ü ü ¡ ¡ ü ü

OrientDB ü ü ü ¡ ü ü ü

Property Graph, Neo4j, TinkerPop ü ü ü ü ü ü ü
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Relational Representation

 RDF

§ Triples fits in three-column relational table

 PROPERTY GRAPH

§ Two universal tables: one for the vertices, one for the edges

§ Alternative: One universal tables per vertex and edge label (type) 

Subject Predicate Object

<http://www.w3.org/People/EM/contact#me> <http://www.w3.org/2000/10/swap/pim/contact#fullName> "Eric Miller"

<http://www.w3.org/People/EM/contact#me> <http://www.w3.org/2000/10/swap/pim/contact#mailbox> <mailto:e.miller123(at)example>

<http://www.w3.org/People/EM/contact#me> <http://www.w3.org/2000/10/swap/pim/contact#personalTitle> "Dr."

<http://www.w3.org/People/EM/contact#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2000/10/swap/pim/contact#Person>
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Relational Representation

 GRAPH DATA WITH FIXED SCHEMA

§ One table for every vertex type
and every edge type

§ Think of: Two-universal-tables 
schema partitioned by type

§ Edge types representing 
1:N relationship can be presented with 
a simple foreign key

[http://ldbcouncil.org/]

Social Network Benchmark 



24

Graph-structure data

 OFTEN HIDDEN IN NON-GRAPH DATA

§ E.g. TPC-H scenario

§ Customer that also is a supplier
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Graph Models vs. Relational Model

 IDENTITY OF ENTITIES

§ Relational: Value-based identity

- One or more attributes serves as identity and are declared as such per type by 
primary key constraint

- Values of identity attributes are user-given

§ Graph: Object identity
- Fixed (visible or hidden) attribute serves as identity

- Values of identity attribute are either system-generated (e.g. object id) or user-
given (e.g. URI)

§ Distinction is blurred by bag-semantics of SQL

 REFERENCING MECHANISMS

§ Relational: Value-based reference 
- References are expressed by value equality 

- Necessity of referential integrity can be declared by a foreign key constraint

§ Graph: Explicit association

- References are expressed with a dedicated association element -> edges
- Dedicated association element has referential integrity built in

 LIBERTY OF REFERENCING

§ Relational

§ Graph

Schema

Data



Graph Querying
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Querying Graphs

QUESTION

ANSWER

“How is friend of John Doe?“
“Couples where both like ‘House of Cards’?“

“Shortest connection between 
John Doe and Joe Dohn?”

…

[http://www.bordalierinstitute.com/images/yeastProteinInteractionNetwork.jpg]
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

 ONLINE GRAPH

QUERYING

 OFFLINE GRAPH

ANALYTICS
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Graph Workloads

 ONLINE GRAPH QUERYING

§ OLTP-Style

§ Short, read and write, high selectivity

§ Interest in proximity of one or more start nodes

§ E.g., Loading and updating of you Facebook page, 
Facebook Graph Search

 OFFLINE GRAPH ANALYTICS

§ OLAP style

§ Long, expensive, mainly read, low selectivity

§ Topological analysis of whole graph

§ E.g. Page rank (centrality), shortest path, connected 
components, …

[http://commons.wikimedia.org/wiki/File:PageRank-hi-res.png][http://blackfin360.com/2013/01/15/facebook-graph-search/]
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Graph Query Concepts

 ONLINE GRAPH QUERYING

 DECLARATIVE

§ DataLog, SPARQL, RQL, 
Cypher, …

§ Focuses on the What

§ Abstracts from the How

§ Limited compared to normal 
programming languages

§ Allows optimization: 
Optimizer takes care of the How

§ Hides technical, low-level concerns, 
e.g. selectivities, parallelization, etc.

 OFFLINE GRAPH ANALYTICS

 IMPERATIVE

§ Gremlin, GreenMarl, Travel, 
Pregel, GraphLab, …

§ DSLs or APIs

§ Focuses on the How

§ Sets of commands
- Graph traversal and access

- General-propose programming language constructs

§ (Almost) no restriction in expression power 
compared to normal programming languages

§ Comfortable graph navigation and access

*[declarative sentence spoken by Don Corleone in The Godfather; http://grammar.about.com/od/d/g/declsenterm.htm]

* **

**[Imperative sentences spoken by Clemenza in The Godfather; http://grammar.about.com/od/il/g/impersent09.htm]
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

 DECLARATIVE

GRAPH

QUERYING

 IMPERATIVE

GRAPH

ANALYTICS



Online Graph Querying – Pattern Matching
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Graph Pattern Matching

PATTERN 𝑝

Graph with place holders (A,B)

𝑥 𝑦

MATCHING 𝑝 ON 𝐺
Finds all subgraphs in 𝐺 that fit to 𝑝

5 4

7
8

6

1 32

9 0
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Similarity of two Graphs

 ARE GRAPHS 𝐺 AND 𝐻 EQUAL/SIMILAR?

 MANY SIMILARITY CRITERIA

§ Isomorphism

§ Homomorphism

§ Simulation

§ Bisimilarity

§ …

a

f

e

b5

87

𝐺 𝐻
?
=

4

1

6

3

2

c

h

g

d
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§ Given two graphs 𝐺 𝑉<, 𝐸< and 𝐻 𝑉=, 𝐸=
§ 𝐺 and 𝐻 are homomorph, if there is a surjective function 𝜎:𝑉< → 𝑉= (left-total, right-total, right-unique)

such that 𝑣@, 𝑣A ∈ 𝐸< → 𝜎 𝑣@ ,𝜎 𝑣A ∈ 𝐸= (𝐺 preserves adjacency of 𝐻, i.e. an edge in 𝐺 has to exist in 𝐻 as well)

§ Note, there may be multiple functions 𝜎, i.e., multiple homomorphism between two graphs

𝐺
3

2

3

2

EF 34

Graphs Homomorphism

𝜎

𝐺
A

E

B

F

D

C

𝜎
A

E

B

F

C

D

𝐻
1

3

2

4

𝐻
1 2

34
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Graph Isomorphism

 GRAPH HOMOMORPHISM

§ Given two graphs 𝐺 𝑉<, 𝐸< and 𝐻 𝑉=, 𝐸=
§ 𝐺 and 𝐻 are homomorph, 

§ if there is a surjective function 𝜎:𝑉< → 𝑉= (left-total, 
right-total, right-unique)
such that 𝑣@, 𝑣A ∈ 𝐸< → 𝜎 𝑣@ ,𝜎 𝑣A ∈ 𝐸=
(𝐺 preserves adjacency of 𝐻)

 GRAPH ISOMORPHISM

§ Given two graphs 𝐺 𝑉<, 𝐸< and 𝐻 𝑉=, 𝐸=
§ 𝐺 and 𝐻 are isomorph, 

§ if there is a bijective function 𝜎:𝑉< → 𝑉= (left-total, 
left-unique, right-total, and right-unique)
such that 𝑣@, 𝑣A ∈ 𝐸< ↔ 𝜎 𝑣@ ,𝜎 𝑣A ∈ 𝐸=
(𝐺 preserves adjacency and non-adjacency of 𝐻
and vice versa)

𝐺
A

E

B

F

D

C

𝜎

𝐻 𝐺
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C

𝜎

𝐻
1

5

2

6 4

3

[s
ee

 a
ls

o
 v

id
eo

 t
u

to
ria

l o
n

 g
ra

p
h

 g
so

m
o

rp
hi

sm
b

y 
Sa

ra
d

a
H

er
ke

: 
h

tt
p

s:
//

w
w

w
.y

o
u

tu
b

e.
co

m
/w

at
ch

?v
=

yF
p

R
p

xO
ry

-A
]2

4

1

3



37

§ Given a query graphs 𝑄 𝑉<,𝐸< and data graph 𝐺 𝑉=,𝐸=
§ Graph 𝑅 𝑉E,𝐸E is a result for 𝑄 if

- 𝑉E ⊆ 𝑉< and 𝐸E ⊆ 𝐸< (𝑅 is a subgraph of 𝐺) and

- there is a surjective function 𝜎: 𝑉< → 𝑉= (𝑄 and 𝑅 are homomorph) such that 
𝑣@, 𝑣A ∈ 𝐸F ↔ 𝜎 𝑣@ , 𝜎 𝑣A ∈ 𝐸E (𝑄 preserves adjacency of 𝑅 with no extra edges in 𝑅) and 

∀ 𝑣F, 𝑣E ∈ 𝜎, 𝑣F~𝑣E (vertex properties match) and ∀ 𝑣@, 𝑣A ∈ 𝐸F , 𝑣@, 𝑣A ~ 𝜎 𝑣@ ,𝜎 𝑣A (edge properties match)

§ 𝑄 can have more vertices and edges than 𝑅, i.e., 𝑉F ≥ 𝑉E and 𝐸F ≥ 𝐸E holds. 

§ Note: 𝑅 is not given, 𝑅 has to be determined by the query mechanism -> search problem

𝑄

Subgraph Homomorphism Query

𝜎
A

E

B

F

D

C

𝑅

𝐺

1 2

34
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§ Given a query graphs 𝑄 𝑉<,𝐸< and data graph 𝐺 𝑉=,𝐸=
§ Graph 𝑅 𝑉E,𝐸E is a result for 𝑄 if

- 𝑉E ⊆ 𝑉< and 𝐸E ⊆ 𝐸< (𝑅 is a subgraph of 𝐺) and

- there is a bijective function 𝜎: 𝑉< → 𝑉= (𝑄 and 𝑅 are isomorph) such that 
𝑣@, 𝑣A ∈ 𝐸F ↔ 𝜎 𝑣@ , 𝜎 𝑣A ∈ 𝐸E (𝑄 preserves adjacency of 𝑅 with no extra edges in 𝑅) and 

∀ 𝑣F, 𝑣E ∈ 𝜎, 𝑣F~𝑣E (vertex properties match) and ∀ 𝑣@, 𝑣A ∈ 𝐸F , 𝑣@, 𝑣A ~ 𝜎 𝑣@ ,𝜎 𝑣A (edge properties match)

§ 𝑄 and 𝑅 will have the same number of vertices and edges, i.e., 𝑉F = 𝑉E and 𝐸F = 𝐸E holds. 

Subgraph Isomorphism Query

𝑄

𝜎

𝑅

𝐺

A

E

B

F

D

C

2

5

3

5

1

6

Single vertex in 𝑽𝑮 can be matched 
multiple times in a homomorphic subgraph but only once in an isomorphic subgraph.
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Why Homomorphism is useful…

 EXAMPLE: LOOK FOR ALL PAIRS OF FRIENDS AND THE CITY EACH FRIEND LIVES IN

 QUERY DATA

 ISOMORPHISM FINDS ONLY FRIENDS LIVING IN DIFFERENT CITIES

§ (Leipzig, Chris, Anne, Berlin), (Leipzig, Chris, Mary, Berlin) … and permutation of these

 HOMOMORPHISM ADDITIONALLY FINDS FRIENDS LIVING IN THE SAME CITY

§ (Berlin, Mary, Anne, Berlin) … and permutation of these

f1

c2

f2

c1
Mary

Berlin
Leipzig

Anne

Chris



40

Induced Subgraph Isomorphism

 EXAMPLE

§ Data graph: Query graph:

§ Does it have a match? How many?

§ One solution:

§ What about the other edges? Could we forbid them?

§ With induced subgraph isomorphism semantics, 
example query has no match!

 INDUCED SUBGRAPH

§ Vertex-induced

§ Is a subset of the vertices of a graph together with 
any edges whose endpoints are both in this subset.

 INDUCED SUBGRAPH ISOMORPHISM

§ Stricter isomorphism

§ Given query graph 𝑄 𝑉F,𝐸F and data graph 𝐺 𝑉<,𝐸<
§ Graph 𝑅 𝑉E,𝐸E is a result for 𝑄 if

- 𝑉E ⊆ 𝑉< and 𝑬𝑹 = (𝒗𝒊,𝒗𝒋) 𝒗𝒊, 𝒗𝒋 ∈ 𝑬𝑮 ∧ 𝒗𝒊, 𝒗𝒋 ∈ 𝑽𝑹
(𝑹 is a vertex-induced subgraph of 𝑮) and

- there is a bijective function 𝜎: 𝑉F → 𝑉E (𝑄 and 𝑅 are 
isomorph) such that …

§ In graph query languages, typically explicit negation 
use instead

§ Induced subgraph homomorphism also possible

𝑋 𝑍

𝑌

2 3

1

2 3

1
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Duplicate Results 

 EXAMPLE: FIND TRIANGLES

§ Data graph:

§ Query: All triangles

§ Result:

 DUPLICATE RESULTS

§ Given two results 𝑅 𝑉E, 𝐸E and 𝑆 𝑉Y,𝐸Y
§ 𝑅 and 𝑆 are equivalent iff 𝑉E = 𝑉Y and 𝐸E = 𝐸Y

(both denote the same subgraph)

 SUBGRAPH ISOMORPHISM W/O DUPLICATES

§ Given query graph 𝑄 𝑉F,𝐸F and data graph 𝐺 𝑉<,𝐸<
§ Graph 𝑅 𝑉E,𝐸E is a result for 𝑄 if

- 𝑉E ⊆ 𝑉< and 𝐸E ⊆ 𝐸< (𝑅 is a subgraph of 𝐺) and

- there is a bijective function 𝜎: 𝑉F → 𝑉E
(𝑄 and 𝑅 are isomorph) such that 
𝑣@, 𝑣A ∈ 𝐸F ↔ 𝜎 𝑣@ , 𝜎 𝑣A ∈ 𝐸E

(𝑅 preserves adjacency of 𝑄 with no extra data) and 
properties match and
∀𝑣@, 𝑣Z ∈ 𝑉F: 𝑣@ <.\ 𝑣A ↔ 𝜎 𝑣@ <.] 𝜎 𝑣A assuming a 
total order <. on a vertex set 𝑉 (allows only one 𝜎 per 
subgraph)

𝑋 𝑍

𝑌

1

3

2

4

𝑥 𝑦 𝑧
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
2 3 4
2 4 3
3 2 4
3 4 2
4 2 3
4 3 2

q(X,Y,Z) <- e(X,Y),e(Y,Z),e(Z,X).
 

Duplicate results, same 
subgraph but different 

isomorphism 𝜎
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Comparison of Semantics

⊆ ⊆
𝑋 𝑍

𝑌

q(X,Y,Z) <-
INDUCED-SUBGRAPH

ISOMORPHISM

SUBGRAPH

ISOMORPHISM

SUBGRAPH

HOMOMORPHISM

w/ duplicates e(X,Y),e(X,Z),
!e(Y,X),!e(Y,Z),
!e(Z,Y),!e(Z,X),
X!=Y,Y!=Z,Z!=X.

e(X,Y),e(X,Z),
X!=Y,Y!=Z,Z!=X.

e(X,Y),e(X,Z).

w/o duplicates e(X,Y),e(X,Z),
!e(Y,X),!e(Y,Z),
!e(Z,Y),!e(Z,X),

X<Y,Y<Z.

e(X,Y),e(X,Z),
X<Y,Y<Z.

e(X,Y),e(X,Z),
X<=Y,Y<=Z.
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SPARQL

 QUERY LANGUAGE FOR RDF DATA

§ Selection of subgraph with a triple patterns

§ Triple pattern is a set of triples containing variables

§ One variable binding of a pattern forms a tuple

§ All unique variable binding form a table

§ Projection to variable of interest yields query result

S P O

Lucy born 1982

Peter born 1985

Jen born 1987

Lucy sex F

Peter sex M

Jen sex F

Lucy likes Peter

Peter likes Lucy

Jen likes Lucy

Peter likes Jen

Lucy

Peter

Jen

likes
likes

likes

likes

F

1987

M1985

F1982

born

born

born

sex

sex

sex

Person

Person

Person

SELECT ?p, ?s
WHERE ?p type Person

?p likes ?f
?f type Person
?f sex ?s

?p ?s
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SPARQL

 QUERY LANGUAGE FOR RDF DATA

§ Selection of subgraph with a triple patterns

§ Triple pattern is a set of triples containing variables

§ One variable binding of a pattern forms a tuple

§ All unique variable binding form a table

§ Projection to variable of interest yields query result

S P O

Lucy born 1982

Peter born 1985

Jen born 1987

Lucy sex F

Peter sex M

Jen sex F

Lucy likes Peter

Peter likes Lucy

Jen likes Lucy

Peter likes Jen

Lucy

Peter

Jen

likes
likes

likes

likes

F

1987

M1985

F1982

born

born

born

sex

sex

sex

Person

Person

Person

SELECT ?p, ?s
WHERE ?p type Person

?p likes ?f
?f type Person
?f sex ?s

?p ?s

Lucy M

Peter F

Jen F

Peter F

SELECT ?p, ?fof
WHERE ?p type Person

?p likes ?f
?f type Person
?f like ?fof

?p ?fof
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SPARQL

 QUERY LANGUAGE FOR RDF DATA

§ Selection of subgraph with a triple patterns

§ Triple pattern is a set of triples containing variables

§ One variable binding of a pattern forms a tuple

§ All unique variable binding form a table

§ Projection to variable of interest yields query result

S P O

Lucy born 1982

Peter born 1985

Jen born 1987

Lucy sex F

Peter sex M

Jen sex F

Lucy likes Peter

Peter likes Lucy

Jen likes Lucy

Peter likes Jen

Lucy

Peter

Jen

likes
likes

likes

likes

F

1987

M1985

F1982

born

born

born

sex

sex

sex

Person

Person

Person

SELECT ?p, ?s
WHERE ?p type Person

?p likes ?f
?f type Person
?f sex ?s

?p ?s

Lucy M

Peter F

Jen F

Peter F

SELECT ?p, ?fof
WHERE ?p type Person

?p likes ?f
?f type Person
?f like ?fof

?p ?fof

Lucy Jen

Peter Lucy

Peter Peter

Jen Peter

Lucy Lucy
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Cypher

 MATCH-CLAUSE

§ Primary way of getting data from a Neo4j database

§ Allows you to specify the patterns

§ Named pattern element, e.g. (p:Person), will be bound 
to the match instance

§ Query can have multiple MATCH-clauses

 WHERE-CLAUSE (OPTIONAL)

§ Allows additional complex predicates in the pattern

§ Allows joining two matches

 RETURN-CLAUSE

§ Projects to the result set
§ Allows projection to nodes, 

edges, and properties

 ORDER BY-CLAUSE (LIKE IN SQL)

: Person
name=Lucy
born=1982

sex=F

: Person
name=Peter
born=1985

sex=M

: Person
name=Jen
born=1987

sex=F

Likes
stars=5 Likes

stars=4

Likes
stars=3

Likes
stars=5

MATCH (p:Person)-[:Likes]->(f:Person)
RETURN p.name, f.sex

p.name f.sex

[http://neo4j.com/docs/2.1.6/cypher-query-lang.html]
[http://neo4j.com/docs/stable/cypher-refcard/]
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Cypher

 MATCH-CLAUSE

§ Primary way of getting data from a Neo4j database

§ Allows you to specify the patterns

§ Named pattern element, e.g. (p:Person), will be bound 
to the match instance

§ Query can have multiple MATCH-clauses

 WHERE-CLAUSE (OPTIONAL)

§ Allows additional complex predicates in the pattern

§ Allows joining two matches

 RETURN-CLAUSE

§ Projects to the result set
§ Allows projection to nodes, 

edges, and properties

 ORDER BY-CLAUSE (LIKE IN SQL)

: Person
name=Lucy
born=1982

sex=F

: Person
name=Peter
born=1985

sex=M

: Person
name=Jen
born=1987

sex=F

Likes
stars=5 Likes

stars=4

Likes
stars=3

Likes
stars=5

MATCH (p:Person)-[:Likes]->(:Person) -[:Likes]->(fof:Person)
RETURN p.name, fof.name

p.name fof.name

MATCH (p:Person)-[:Likes]->(f:Person)
RETURN p.name, f.sex

p.name f.sex

Lucy M

Peter F

Jen F

Peter F

[http://neo4j.com/docs/2.1.6/cypher-query-lang.html]
[http://neo4j.com/docs/stable/cypher-refcard/]
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Cypher

 MATCH-CLAUSE

§ Primary way of getting data from a Neo4j database

§ Allows you to specify the patterns

§ Named pattern element, e.g. (p:Person), will be bound 
to the match instance

§ Query can have multiple MATCH-clauses

 WHERE-CLAUSE (OPTIONAL)

§ Allows additional complex predicates in the pattern

§ Allows joining two matches

 RETURN-CLAUSE

§ Projects to the result set
§ Allows projection to nodes, 

edges, and properties

 ORDER BY-CLAUSE (LIKE IN SQL)

: Person
name=Lucy
born=1982

sex=F

: Person
name=Peter
born=1985

sex=M

: Person
name=Jen
born=1987

sex=F

Likes
stars=5 Likes

stars=4

Likes
stars=3

Likes
stars=5

MATCH (p:Person)-[:Likes]->(:Person) -[:Likes]->(fof:Person)
RETURN p.name, fof.name

p.name fof.name

Lucy Jen

Peter Lucy

Peter Peter

Jen Peter

Lucy Lucy

MATCH (p:Person)-[:Likes]->(f:Person)
RETURN p.name, f.sex

p.name f.sex

Lucy M

Peter F

Jen F

Peter F

[http://neo4j.com/docs/2.1.6/cypher-query-lang.html]
[http://neo4j.com/docs/stable/cypher-refcard/]
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Types of Graph Pattern Queries

 OVERVIEW

§ Conjunctive queries (standard subgraph matching)

§ Regular path queries (reachability)

§ Conjunctive regular path query

§ …

 GRAPH DATA MODEL FOR FOLLOWING

§ RDF-like data

§ Graph 𝐺(𝑉, 𝐸,Σ) with 
- V being the set of vertices, 

- 𝐸 ⊆ 𝑉×Σ×𝑉 being the set of labeled edges, 
- and Σ being the set (or alphabet) of labels

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]

Nobel

Coetzee

Chile

Neruda

South 
Africa

Booker

Australia

Gordimer Carey

Bacchus 
Marsh

Victoria

b

b

b
w

w w
w

w

li lo

lo

b

South 
America

lo Edge labels
locatedIn

livesIn
bornIn
won

w
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Conjunctive Queries (Std. Matching)

 IDEA

§ Query is given as a set of edge predicates 

§ Each edge predicate consists of a pair vertex variables and an edge label

§ A set of variable bindings is a valid answer iff all predicates hold on the data graph

 DEFINITION

§ Query 𝑄 is an expression 

𝑎𝑛𝑠 𝑧c,… ,𝑧e ← g 𝑥@, 𝑎@, 𝑦@

�

ci@ij
§ Each 𝑥@ ∈ 𝑋 and 𝑦@ ∈ 𝑌 is a vertex variable or a constant from 𝑉
§ Each 𝑎@ ∈ Σ is an edge label

§ Each 𝑧@ is some 𝑥@ or 𝑦@

 SEMANTICS

§ Let 𝜎: 𝑋 ∪ 𝑌 → 𝑉 be a specific selection of variable bindings, i.e., a mapping to vertices of 𝐺
§ Say relation 𝐺,𝜎 ⊨ 𝑄 holds iff 𝜎 𝑥@ ,𝑎@,𝜎 𝑦@ ∈ 𝐸 for 1 ≤ 𝑖 ≤ 𝑚, i.e., 𝜎 maps the query pattern to valid subgraphs of 𝐺
§ Then the query result 𝑄 𝐺 is the set of tuples 𝜎 𝑧c ,… , 𝜎 𝑧e such that 𝐺, 𝜎 ⊨ 𝑄

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]
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Conjunctive Queries (Std. Matching)

 EXAMPLE

§ All authors born in South Africa who have 
won both the Nobel and Booker prizes

§ Visually:

§ Result?

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]

𝑎𝑛𝑠 𝑥 ←
𝑥, hasWon,Nobel ,
𝑥, hasWon, Booker ,
𝑥, bornIn,South	Africa

Coetzee Gordimer

Nobel

Coetzee

Chile

Neruda

South 
Africa

Booker

Australia

Gordimer Carey

Bacchus 
Marsh

Victoria

b

b

b
w

w w
w

w

li lo

lo

b

South 
America

lo Edge labels
locatedIn

livesIn
bornIn
won

w

Nobel

𝑥

Booker

𝑦
b

w
w
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Conjunctive Queries (Std. Matching)

 EXAMPLE

§ All authors born in South Africa who have 
won both the Nobel and Booker prizes

§ Visually:

§ Result?

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]

𝑎𝑛𝑠 𝑥 ←
𝑥, hasWon,Nobel ,
𝑥, hasWon, Booker ,
𝑥, bornIn,South	Africa

Coetzee Gordimer

Nobel

Coetzee

Chile

Neruda

South 
Africa

Booker

Australia

Gordimer Carey

Bacchus 
Marsh

Victoria

b

b

b
w

w w
w

w

li lo

lo

b

South 
America

lo Edge labels
locatedIn

livesIn
bornIn
won

w

Nobel

𝑥

Booker

𝑦
b

w
w
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Conjunctive Queries (Std. Matching)

 EXTENSION TO PROPERTY GRAPHS

§ Add predicates on properties

§ For vertex properties
- All authors born in South Africa before 1930

who have won Nobel and Booker prizes

- Extra syntax required for non-equi predicates 

§ For edge properties

- Extra syntax required on existing edge predicates
- All authors born in South Africa who have won 

Nobel once and Booker twice

𝑎𝑛𝑠 𝑥 ←

𝑥, hasWon,Nobel ,
𝑥,hasWon, Booker ,

𝑥, bornIn, South	Africa ,
𝑥, year, < 1930

Nobel

Coetzee
(y=1940)

Chile

Neruda
(y=1904)

South 
Africa

Booker

Australia

Gordimer
(y=1923)

Carey
(y=1943)

Bacchus 
Marsh

Victoria

b

b

b w (x=2)

li lo

lo

b

South 
America

lo Edge labels
locatedIn

livesIn
bornIn
won

w (x=1) w (x=2)

w (x=1)

w (x=1)

w (x=1)

𝑎𝑛𝑠 𝑥 ←
𝑥,hasWon: x = 1 ,Nobel ,
𝑥, hasWon: x = 2 ,Booker ,
𝑥, bornIn, South	Africa ,
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Regular Path Query (Reachability)

 IDEA

§ Query is given as a path predicate consisting of a pair vertex variables and a path expression

§ Path expression is a regular expression of edge labels

§ A pair of variable bindings is a valid answer iff the respective vertices are connect in hold on the data graph by a path 
conforming to the path expression

 DEFINITION

§ Query 𝑄 is an expression 𝑎𝑛𝑠 𝑥,𝑦 ← 𝑥,𝑟, 𝑦
§ 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑉 are vertex variables 

§ 𝑟 ∈ Σ∗is a regular expression over alphabet of edge labels Σ

 SEMANTICS

§ A path 𝑝 between 𝑣� and 𝑣j in 𝐺 is a sequence 𝑣�𝑎�𝑣c𝑎c𝑣�…𝑣j�c𝑎j�c𝑣j, with 𝑣@ ∈ 𝑉, 𝑎@ ∈ Σ, and 𝑣@, 𝑎@, 𝑣@�c ∈ 𝐸
§ Let 𝜆 𝑝 ∈ Σ∗be the label of the path 𝑝, with 𝜆 𝑝 = 𝑎�𝑎c…𝑎j�c
§ Let 𝐿 𝑟 be the language denoted by the regular expression 𝑟, i.e. set all of all possible path labels denoted by 𝑟
§ Path 𝑝 satisfies 𝑟 if 𝜆 𝑝 ∈ 𝐿 𝑟 , i.e. the path’s label satisfies the regular expression

§ Then the query result 𝑄 𝐺 is the set of all pairs of nodes 𝑥,𝑦 in 𝐺 such there is a path from 𝑥 to 𝑦 which satisfies 𝑟

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]
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Regular Path Query (Reachability)

 EXAMPLE

§ All authors and where they live in or are born

§ Visually:

§ Result?

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]

𝑎𝑛𝑠 𝑥, 𝑦 ← (𝑥, b li ⋅ lo∗, 𝑦)

Neruda South America

Coetzee Australia

Coetzee South Africa

Gordimer South Africa

Carey Australia

Nobel

Coetzee

Chile

Neruda

South 
Africa

Booker

Australia

Gordimer Carey

Bacchus 
Marsh

Victoria

b

b

b
w

w w
w

w

li lo

lo

b

South 
America

lo Edge labels
locatedIn

livesIn
bornIn
won

w

𝑥 𝑦
(b|li) ⋅ lo∗
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Regular Path Query (Reachability)

 EXAMPLE

§ All authors and where they live in or are born

§ Visually:

§ Result?

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]

𝑎𝑛𝑠 𝑥, 𝑦 ← (𝑥, b li ⋅ lo∗, 𝑦)

Neruda South America

Coetzee Australia

Coetzee South Africa

Gordimer South Africa

Carey Australia

Nobel

Coetzee

Chile

Neruda

South 
Africa

Booker

Australia

Gordimer Carey

Bacchus 
Marsh

Victoria

b

b

b
w

w w
w

w

li lo

lo

b

South 
America

lo Edge labels
locatedIn

livesIn
bornIn
won

w

𝑥 𝑦
(b|li) ⋅ lo∗
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Regular Path Query (Reachability)

 EXTENSION TO VERTEX LABEL

§ Path expressions include vertex labels, e.g., bornIn livesIn ⋅ City ⋅ locatedIn∗ ⋅ Continent
§ Let 𝐿. and 𝐿2 be the set of vertex and edge labels and 𝜆 the labeling function

§ A regular expression 𝑟 is over alphabet of edge and vertex labels pairs 𝐿2×𝐿. ∗

§ Let the label of a path be 𝜆 𝑝 = 𝑎�𝜆 𝑣c 𝑎c…𝑎j�c𝜆(𝑣j) with 𝑎@ ∈ 𝐿2 and 𝜆 𝑣@ ∈ 𝐿. and 𝜆 𝑝 ∈ 𝐿2×𝐿. ∗

§ As before: Path 𝑝 satisfies 𝑟 if 𝜆 𝑝 ∈ 𝐿 𝑟 , i.e. the path’s label satisfies the regular expression

 EXTENSION TO PROPERTIES

§ Path expression include property predicates, 
e.g., livesIn: since < 1990 ⋅ City: [population > 10Mio] ⋅ locatedIn� ⋅ Continent

§ Path expressions quickly become hard to read, cf. XPath and XQuery

§ In Datalog rules:

𝑎𝑛𝑠 𝑥, 𝑦 ← 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑥, 𝑧 , 𝑒𝑆𝑖𝑛𝑐𝑒 𝑥, 𝑧, 𝑠 , 𝑠 < 1990,	
𝑎𝑛𝑠 𝑥, 𝑦 ← 𝑐𝑖𝑡𝑦 𝑧 , 𝑣𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑧, 𝑝 , 𝑝 > 10Mio, 𝑙𝑜𝑆𝑡𝑎𝑟 𝑧, 𝑦 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡(𝑦)
𝑙𝑜𝑆𝑡𝑎𝑟 𝑥, 𝑦 ← 𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛(𝑥, 𝑦)
𝑙𝑜𝑆𝑡𝑎𝑟 𝑥, 𝑦 ← 𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛 𝑥, 𝑧 , 𝑙𝑜𝑆𝑡𝑎𝑟(𝑧, 𝑦)



59

Conjunctive Regular Path Queries (CRPQs)

 IDEA

§ Query is given as a set of path predicates 

§ Each path predicate consists of a pair vertex variables and a regular expression of edge labels

§ A set of variable bindings is a valid answer iff all path predicates hold on the data graph

 DEFINITION

§ Query 𝑄 is an expression 

𝑎𝑛𝑠 𝑧c,… , 𝑧e ← g 𝑥@, 𝑟@, 𝑦@

�

ci@ij
§ Each 𝑥@ ∈ 𝑋 and 𝑦@ ∈ 𝑌 is a vertex variable or a constant from 𝑉
§ Each 𝑟@ ∈ Σ∗ is a regular expression over alphabet of edge labels Σ
§ Each 𝑧@ is some 𝑥@ or 𝑦@

 SEMANTICS

§ Let 𝜎: 𝑋 ∪ 𝑌 → 𝑉 be a specific selection of variable bindings, i.e., a mapping to vertices of 𝐺
§ Say relation 𝐺,𝜎 ⊨ 𝑄 holds iff, for 1 ≤ 𝑖 ≤ 𝑚 there exists a path 𝑝@ in 𝐺 from 𝜎 𝑥@ to 𝜎 𝑦@ such that 𝜆 𝑝 ∈ 𝐿 𝑟
§ Then the query result 𝑄 𝐺 is the set of tuples 𝜎 𝑧c ,… , 𝜎 𝑧e such that 𝐺, 𝜎 ⊨ 𝑄

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]
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Conjunctive Regular Path Queries (CRPQs)

 EXAMPLE

§ All winners of Nobel and Booker and where they live

§ Visually:

§ Result?

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]

𝑎𝑛𝑠 𝑥, 𝑦 ←
𝑥, hasWon,Nobel ,
𝑥, hasWon, Booker ,

(𝑥, li ⋅ lo∗, 𝑦)
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Conjunctive Regular Path Queries (CRPQs)

 EXAMPLE

§ All winners of Nobel and Booker and where they live

§ Visually:

§ Result?

[Peter T. Wood. Query Languages for Graph Database. SIGMOD Record 41(1), 50–60, March 2012]

𝑎𝑛𝑠 𝑥, 𝑦 ←
𝑥, hasWon,Nobel ,
𝑥, hasWon, Booker ,

(𝑥, li ⋅ lo∗, 𝑦)
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Further Query Types

 UNION CONJUNCTIVE QUERIES (UQS)

§ Adds disjunction

§ Example: 𝑎𝑛𝑠 𝑥 ← 𝑥,hasWon, Booker ∨ 𝑥,hasWon, Nobel which give all price winners

§ Multiple conjunctive queries with intersecting variable sets

§ Result is the union of the result each conjunctive query projected to the intersection of all variable sets

 TWO-WAY REGULAR PATH QUERIES (2RPQS)

§ Allows to express backward traversal of edge types

§ Example: 𝑎𝑛𝑠 𝑥,𝑦 ← 𝑥, hasWon ⋅ −hasWon,𝑦 which gives all author pairs where both have won the same price

 COMBINATION OF ALL: UNION CONJUNCTIVE TWO-WAY REGULAR PATH QUERIES (UC2RPQS)

§ Class of Queries that can be expressed with SPARQL 1.1 and Neo4j Cypher (differences in the exact semantics)

§ Can also be expressed in the relational world with Datalog or SQL incl. recursive common table expressions
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

Graph 
Matching

Aggregations & 
composability 
needed



Break
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

Graph 
Matching

Aggregations & 
composability 
needed
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Example: Air Traffic Surveillance 

 CAPTURED OF SURVEILLANCE DATA

§ Fine granularity data

§ Low abstraction 

§ Geo position, timestamp, plane id

 INFORMATION OF INTEREST

§ Stepwise abstraction from base data to aggregated information

Surveillance data

LandingEn route

Airports Flight plan

Dangerous approach

Delays

Critical landing

D
e

ri
ve

d
 d

at
a

B
as

e
 d

at
a

Flight routes

Dangerous routes ...

[http://science.howstuffworks.com/transport/flight/modern/air-traffic-control2.htm]



Composability
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Graph Transformation Rules

 MATCH -> VARIABLE BINDINGS -> PRODUCTION

 DIFFERENT TYPES OF VARIABLES

§ Value variable

§ Vertex variable

§ (Edge variables)

§ (Path variables)

§ ((Sub)Graph variables)

 PRODUCTION

§ Existing vertices from bound vertex variables

§ New vertices with new unbound vertex variables

§ Edges either implicit (via vertex variable) or explicit 
(with edge variables)

§ Existing values from bound value variable

Match Pattern Production Pattern

𝒙𝟏 … 𝒙𝒏
Variable Bindings
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Graph Transformation Rule

 EXAMPLE

ℎ: Person sex = m ,
𝑤: Person sex = f ,

ℎ −𝑤:married since = 𝑑
				→ 			

ℎ, 𝑤,
𝑚:Marriage date = 𝑑 ,

𝑚 → ℎ: husband,𝑚 → 𝑤:wife

Production Pattern

sex=fsex=m
since=𝑑

Match Pattern

Person Person

𝑤ℎ

Vertex variables

Value variables
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Graph Transformation Rule

 EXAMPLE

ℎ: Person sex = m ,
𝑤: Person sex = f ,

ℎ −𝑤:married since = 𝑑
				→ 			

ℎ, 𝑤,
𝑚:Marriage date = 𝑑 ,

𝑚 → ℎ: husband,𝑚 → 𝑤:wife

Production Pattern

sex=fsex=m
since=𝑑

date=𝑑

𝑤ℎ

Match Pattern

Unbound vertex 
variable 𝑚

produces a new 
vertex for every 

match

Person Person

𝑤ℎ
Marriage

𝑚

Unbound vertex 
pairs 𝑚 → ℎ and  
𝑚 → 𝑤 produce 
new edges for 
every match

Vertex variables

Value variables
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Result Presentation

 RULE (WITHOUT TRANSFORMATION)

§ e.g., Pairs of friends:

 ISOLATED MATCHES

§ Each match separately independently of vertex identity

§ Vertices taking part in multiple matches have to duplicated

§ Good for querying paths, further combining individual matches and result iteration

 MERGED MATCHES

§ All matches form a (partitioned) graph based

§ No vertex duplication necessary

§ Keeps topology of source graph
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 EXAMPLE

§ Rule

§ Data

Dog

Buddies

BuddiesBuddiesDog

Person

Merged Transformation Results

𝑝: Person, 𝑑c:Dog, 𝑑�:Dog,𝑝 → 𝑑c, 𝑝 → 𝑑� → 𝑑c, 𝑑�, 𝑑c −𝑑�: Buddies

Person Dog
Buddies

𝑑c𝑝 𝑑� 𝑞�

Dog
Dog

Horse

a c

b

DogDog

a c

d d

Dog

𝑑c
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Side Note on Syntax

 YOU DO NOT LIKE THE SYNTAX?

§ How about

§ Or

§ Or

§ Or

§ There is some syntactical freedom as along as you stick with the language principles

SELECT NODE d1, NODE d2, UNDIRECTED EDGE d1 TO d2(Buddies)
FROM NODE p(Person), NODE d1(Dog), NODE d2(Dog), EDGE p TO d1, EDGE p TO d2

SELECT d1, d2, d1--d2:Buddies FROM p:Person, d1:Dog, d2:Dog, p->d1, p->d2

(V(p,Person),V(d1,Dog),V(d2,Dog),E(p,>,d1),E(p,>,d2)) -> (V(d1),V(d2),E(d1,-,d2)).

SELECT (d1)-[:Buddies]-(d2) FROM (d1:Dog)<--(:Person)-->(d2:Dog)
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Composability

§ Queries with a name (aka views) can be refer to in other queries

U ∷ 𝑎: Person,𝑏: Person, 𝑎 − 𝑏: partner → 𝑎,𝑏,𝑎 − 𝑏

Query named 𝑈
„persons in a partnership“V ∷ 𝑥: Person, 𝑐: Chocolate, 𝑥 → 𝑐: like → 𝑥, 𝑐, 𝑥 − 𝑐

∷ V ∷ 𝑠: Person ,U ∷ NOT	𝑠:Person , NOT	𝑠 → 𝑡: likes, 𝑡: TV → 𝑠

Query named 𝑉
„persons liking chocolate“

Unnamed Query using 𝑈 and 𝑉
„singles liking chocolate but no TV“
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

Composable
Graph

Matching

Aggregations 
needed
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Aggregating Graphs

 PROPERTIES OF ENTITIES

§ Captured/measured values

§ What are the sales figures/temperatures/etc.?

§ Multidimensional data/time series/matrixes

 CONNECTIONS BETWEEN ENTITIES

§ Network structure

§ What do the friends of your customers buy?

§ Graph data

Aggregating graph data
(vertex and edge properties)

Aggregating graph 
structure



Aggregating Graph Data
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Aggregation in Graph Transformation

 GERNALE

§ Per (vertex) production predicate

§ Edges inherit grouping if they connect one or two grouping vertices

§ Edges can have own grouping attributes, that are added to the inherit grouping attributes

§ Based on match variables

§ All match variables not used in grouping can be used in the same predicate only in an aggregation function

 SYNTAX

§ <productionGroupPredicate> ::= <productionGroupVertexVariable> “@” {<variable> “,”} <labels>? <attributes>?

§ <variable> ::= <matchVertexVariable> | <valueVariable> 

 EXAMPLE

§
𝑝: Person age = 𝑎	 ,

𝑏: Profession, 𝑝 → 𝑏:works−in →
𝑔¶@𝑎 name= 𝑎 ,

𝑔¸@𝑏 name = 𝑏. name ,
𝑔¶ − 𝑔¸ number= CNT 𝑝
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Aggregation 𝑝: Person age = 𝑎 ,
𝑐: Car(class = 𝑘),
𝑝 → 𝑐: drives,
𝑏: Brand(),

𝑐 → 𝑏:madeBy	

→

𝑔@𝑎:AgeGroup age = 𝑎, number = CNT(𝑝) ,
𝑧@𝑘:Class name= 𝑘 ,𝑏

𝑔 → 𝑧 numdrivers = CNT 𝑝 ,
𝑧 → 𝑏 avgage = AVG 𝑝.age ,
𝑔 → 𝑏 totalcars = CNT 𝑐

age=35

𝑝¼

name=BMW

𝑏c

class=Intermediate

𝑐c

age=45

𝑝c

class=Compact

𝑐½name=VW

𝑏�

Matches
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Aggregation 𝑝: Person age = 𝑎 ,
𝑐: Car(class = 𝑘),
𝑝 → 𝑐: drives,
𝑏: Brand(),

𝑐 → 𝑏:madeBy	

→

𝑔@𝑎:AgeGroup age = 𝑎, number = CNT(𝑝) ,
𝑧@𝑘:Class name= 𝑘 ,𝑏

𝑔 → 𝑧 numdrivers = CNT 𝑝 ,
𝑧 → 𝑏 avgage = AVG 𝑝.age ,
𝑔 → 𝑏 totalcars = CNT 𝑐

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�
name=BMW

𝑏c

class=Intermediate

𝑐c

age=45

𝑝c

class=Compact

𝑐½

class=Intermediate

𝑐¿

name=VW

𝑏�
age=35

𝑝¾
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Aggregation 𝑝: Person age = 𝑎 ,
𝑐: Car(class = 𝑘),
𝑝 → 𝑐: drives,
𝑏: Brand(),

𝑐 → 𝑏:madeBy	

→

𝑔@𝑎:AgeGroup age = 𝑎, number = CNT(𝑝) ,
𝑧@𝑘:Class name= 𝑘 ,𝑏

𝑔 → 𝑧 numdrivers = CNT 𝑝 ,
𝑧 → 𝑏 avgage = AVG 𝑝.age ,
𝑔 → 𝑏 totalcars = CNT 𝑐

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�
name=BMW

𝑏c

class=Intermediate

𝑐c

age=45

𝑝c

age=45
number=1

𝑔¾

name=Intermediate

𝑧c

name=BMW

𝑏c

age=35
number=1

𝑔c

name=Compact

𝑧�

name=VW

𝑏�

class=Compact

𝑐½

class=Intermediate

𝑐¿

name=VW

𝑏�
age=35

𝑝¾

age=40
number=2

𝑔�

Production



82

Aggregation 𝑝: Person age = 𝑎 ,
𝑐: Car(class = 𝑘),
𝑝 → 𝑐: drives,
𝑏: Brand(),

𝑐 → 𝑏:madeBy	

→

𝑔@𝑎:AgeGroup age = 𝑎, number = CNT(𝑝) ,
𝑧@𝑘:Class name= 𝑘 ,𝑏

𝑔 → 𝑧 numdrivers = CNT 𝑝 ,
𝑧 → 𝑏 avgage = AVG 𝑝.age ,
𝑔 → 𝑏 totalcars = CNT 𝑐

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�
name=BMW

𝑏c

class=Intermediate

𝑐c

age=45

𝑝c

age=45
number=1

𝑔¾

name=Intermediate

𝑧c

name=BMW

𝑏c

age=35
number=1

𝑔c

name=Compact

𝑧�

name=VW

𝑏�

num=2

num=2

num=2 num=1

class=Compact

𝑐½

class=Intermediate

𝑐¿

name=VW

𝑏�
age=35

𝑝¾

age=40
number=2

𝑔�

Production
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Aggregation 𝑝: Person age = 𝑎 ,
𝑐: Car(class = 𝑘),
𝑝 → 𝑐: drives,
𝑏: Brand(),

𝑐 → 𝑏:madeBy	

→

𝑔@𝑎:AgeGroup age = 𝑎, number = CNT(𝑝) ,
𝑧@𝑘:Class name= 𝑘 ,𝑏

𝑔 → 𝑧 numdrivers = CNT 𝑝 ,
𝑧 → 𝑏 avgage = AVG 𝑝.age ,
𝑔 → 𝑏 totalcars = CNT 𝑐

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�
name=BMW

𝑏c

class=Intermediate

𝑐c

age=45

𝑝c

age=45
number=1

𝑔¾

name=Intermediate

𝑧c

name=BMW

𝑏c

age=35
number=1

𝑔c

name=Compact

𝑧�

name=VW

𝑏�

num=2

num=2

num=2 num=1

class=Compact

𝑐½

class=Intermediate

𝑐¿

name=VW

𝑏�

avg=37,5 avg=42,5

avg=40

age=35

𝑝¾

age=40
number=2

𝑔�
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Aggregation 𝑝: Person age = 𝑎 ,
𝑐: Car(class = 𝑘),
𝑝 → 𝑐: drives,
𝑏: Brand(),

𝑐 → 𝑏:madeBy	

→

𝑔@𝑎:AgeGroup age = 𝑎, number = CNT(𝑝) ,
𝑧@𝑘:Class name= 𝑘 ,𝑏

𝑔 → 𝑧 numdrivers = CNT 𝑝 ,
𝑧 → 𝑏 avgage = AVG 𝑝.age ,
𝑔 → 𝑏 totalcars = CNT 𝑐

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�
name=BMW

𝑏c

class=Intermediate

𝑐c

age=45

𝑝c

age=45
number=1

𝑔¾

name=Intermediate

𝑧c

name=BMW

𝑏c

age=35
number=1

𝑔c

name=Compact

𝑧�

name=VW

𝑏�

num=2

num=2

num=2 num=1

class=Compact

𝑐½

class=Intermediate

𝑐¿

name=VW

𝑏�

avg=37,5 avg=42,5

avg=40
tot=1

age=35

𝑝¾

tot=1

tot=3
tot=2

age=40
number=2

𝑔�
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𝑝: Person age = 𝑎 ,
𝑐: Car(class = 𝑘),
𝑝 → 𝑐: drives,
𝑏: Brand(),

𝑐 → 𝑏:madeBy	

→

𝑔@𝑎:AgeGroup age = 𝑎, number = CNT(𝑝) ,
𝑧@𝑘:Class name= 𝑘 ,𝑏

𝑔 → 𝑧 numdrivers = CNT 𝑝 ,
𝑧 → 𝑏 avgage = AVG 𝑝.age ,
𝑔 → 𝑏 totalcars = CNT 𝑐

Edge Tables

Vertex Tables

On Tables

𝒑 𝒂 𝒄 𝒌 𝒃

1 45 1 I 1

2 40 2 I 1

2 40 3 C 2

3 35 4 C 2

4 35 5 C 2

5 40 5 C 2

5 40 6 I 2

𝒂 𝒈 𝐂𝐍𝐓(𝒑)

35 1 2

40 2 2

45 3 1

𝒌 𝒛

I 1

C 2

𝒂 𝒈 𝒌 𝒛 𝐂𝐍𝐓(𝒑)

35 1 C 2 2

40 2 C 2 2

40 2 I 1 2

45 3 I 1 1

𝒌 𝒛 𝒃 𝐀𝐕𝐆(𝒑.age )

I 1 1 42,5

I 1 2 40,0

C 2 2 37,5

𝒂 𝒈 𝒃 𝐂𝐍𝐓(𝒄)

35 1 2 2

40 2 2 3

40 2 1 1

45 3 1 1

src trg num avg tot

𝑔c 𝑧� 2

𝑔� 𝑧� 2

𝑔� 𝑧c 2

𝑔¾ 𝑧c 1

𝑧c 𝑏c 42,5

𝑧c 𝑏� 40,0

𝑧� 𝑏� 37,5

𝑔c 𝑏� 2

𝑔� 𝑏� 3

𝑔� 𝑏c 1

𝑔¾ 𝑏c 1

id L name age num

𝑔c AgeGroup 35 2

𝑔� AgeGroup 40 2

𝑔¾ AgeGroup 45 1

𝑧c Class

𝑧� Class

𝑏c Brand BMW

𝑏� Brand VW

union

union

Matching

src trg …

⋮ ⋮ ⋮

id L …

⋮ ⋮ ⋮
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Grouping Lattice

𝛾Î,¶,Ï,Ð,¸

𝛾¶,Ð,ÑÒÓÔÕÖ×(Î)

𝛾¶,ÑÒÓÔÕÖ×(Î)

𝛾Ð

𝛾¶,¸,ØÙØÔÕÖ×(Ï)

𝛾Ð,¸,ÚÛÜÔÝÞß(Î.ÚÜà)

𝜋@â(¶),@â(Ð),ÑÒÓ
𝜋@â(Ð),¸,ÚÛÜ
𝜋@â(¶),¸,ØÙØ
𝜋@â ¶ ,ÚÜàÔ¶,ÑÒÓ

𝜋@â Ð ,ÑÚÓàÔÐ
∪

∪ Edge Table

Vertex Table

Edge Table

Vertex Table

Matching Group/Aggregate ID creation

𝛾Î,¶,Ï,Ð,¸

𝛾¶,Ð,ÑÒÓÔãäå(ÑÒÓ)

𝛾¶,ÑÒÓÔãäå(ÑÒÓ)

𝛾Ð

𝛾¶,¸,ØÙØÔãäå(ØÙØ)

𝛾Ð,¸,ÚÛÜÔ	...

𝜋@â(¶),@â(Ð),ÑÒÓ
𝜋@â(Ð),¸,ÚÛÜ
𝜋@â(¶),¸,ØÙØ
𝜋@â ¶ ,ÚÜàÔ¶,ÑÒÓ

𝜋@â Ð ,ÑÚÓàÔÐ
…

……

…

𝛾¶,Ð,¸,ÑÒÓÔÕÖ×(Î),		ÚÛÜæÔãäå(Î.ÚÜà),			ÚÛÜçÔÕÖ×(Î),ØÙØÔÕÖ×(Ï)
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Multidimensional Graph Aggregation

𝑐¼

𝑐¾

𝑐�

𝑐c

𝑐½

𝑐¿

Fact
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙
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Multidimensional Graph Aggregation

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�

class=Intermediate

𝑐c

class=Compact

𝑐½

class=Intermediate

𝑐¿

Fact
Dimension Class

[h
tt

p
s:
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙
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Multidimensional Graph Aggregation

age=45

𝑝c

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�

class=Intermediate

𝑐c

class=Compact

𝑐½

class=Intermediate

𝑐¿

age=35

𝑝¾

Fact
Dimension Class

[h
tt
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s:
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Dim. Driver Age
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Multidimensional Graph Aggregation

age=45

𝑝c

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�BMW

𝑏c class=Intermediate

𝑐c

class=Compact

𝑐½

class=Intermediate

𝑐¿

age=35

𝑝¾

VW

𝑏�

Fact
Dimension Class

Dim. Brand
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p
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Dim. Driver Age
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Multidimensional Graph Aggregation

age=45

𝑝c

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�BMW

𝑏c class=Intermediate

𝑐c

class=Compact

𝑐½

class=Intermediate

𝑐¿

age=35

𝑝¾
Berlin

𝑠c

Dresden

𝑠�

Paris

𝑠¾

France

𝑙c

Germany

𝑙�
VW

𝑏�

Fact
Dimension Class

Dim. Brand

Dimension Location
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Dim. Driver Age
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Multidimensional Graph Aggregation

age=45

𝑝c

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�BMW

𝑏c class=Intermediate

𝑐c

class=Compact

𝑐½

class=Intermediate

𝑐¿

age=35

𝑝¾
Berlin

𝑠c

Dresden

𝑠�

Paris

𝑠¾

France

𝑙c

Germany

𝑙�
VW

𝑏�

Fact
Dimension Class

Dim. Brand

Dimension Location
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Dim. Driver Age

Measure noCars
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Multidimensional Graph Aggregation

Cube dimension
vertices

age=45

𝑝c

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�BMW

𝑏c class=Intermediate

𝑐c

class=Compact
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𝑐¿
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Germany
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𝑔�

France

𝑙c

age=35

𝑔c

Compact

𝑧�
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Germany

𝑙�

Fact
Dimension Class

Dim. Brand

Dimension Location
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Dim. Driver Age

Measure noCars
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Multidimensional Graph Aggregation

Cube dimension
vertices

Cube cell 
vertices

age=45

𝑝c

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�BMW

𝑏c class=Intermediate

𝑐c

class=Compact

𝑐½

class=Intermediate

𝑐¿

age=35

𝑝¾
Berlin

𝑠c

Dresden

𝑠�

Paris

𝑠¾

France

𝑙c

Germany

𝑙�
VW

𝑏�

age=45

𝑔¾

Intermediate

𝑧c

BMW

𝑏c

age=40

𝑔�

France

𝑙c

age=35

𝑔c

Compact

𝑧�

VW

𝑏�

Germany

𝑙�

noCars=2

𝑥c

noCars=1

𝑥c

Fact
Dimension Class

Dim. Brand

Dimension Location
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Dim. Driver Age

Measure noCars
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Multidimensional Graph Aggregation

Cube dimension
vertices

age=45

𝑝c

age=40

𝑝½

age=35

𝑝¼

age=40

𝑝�

class=Compact

𝑐¼

class=Compact

𝑐¾

class=Intermediate

𝑐�BMW

𝑏c class=Intermediate

𝑐c

class=Compact

𝑐½

class=Intermediate

𝑐¿
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𝑝¾
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Dresden
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𝑠¾

France

𝑙c

Germany

𝑙�
VW

𝑏�

age=45

𝑔¾

Intermediate

𝑧c

BMW

𝑏c

age=40

𝑔�

France

𝑙c

age=35

𝑔c

Compact

𝑧�

VW

𝑏�

Germany

𝑙�

noCars=2

𝑥c

noCars=1

𝑥c

noCars=1

𝑥c

…

…

Fact
Dimension Class

Dim. Brand

Dimension Location
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𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Dim. Driver Age

Measure noCars



Interactive Multidimensional Graph Exploration
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 CONSIDER A DATA SCIENTIST DOING MULTIDIMENSIONAL DATA EXPLORATION

Interactive Exploration

[http://jupyter.org/]

[C
ro

tty et al, V
izd

o
m

. V
LD

B
 20

15][http://wwwis.win.tue.nl/~wvdaalst/data_science/data_science.html]
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Interactive Exploration

[http://jupyter.org/]

[C
ro

tty et al, V
izd

o
m

. V
LD

B
 20

15]
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Interactive Exploration

[http://jupyter.org/]

[C
ro

tty et al, V
izd

o
m

. V
LD

B
 20

15]
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Interactive Exploration

[http://jupyter.org/]

[C
ro

tty et al, V
izd

o
m

. V
LD

B
 20

15]

Drilldown

Redefine

Slice

Dice
Incremental 

State Change

Adhoc



101

Interactive Exploration

[http://jupyter.org/]

[C
ro

tty et al, V
izd

o
m

. V
LD

B
 20

15]

Drilldown

Redefine

Slice

Dice
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SynopSys/SPARQLytics

Artifacts Repository 
Fact Car: 𝑐: Car()

Dimension Class: 𝑐: Car class = 𝑘

Dimension Brand: 𝑏: Brand, 𝑐 → 𝑏

Dimension Location: 𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

Dimension Driver Age: 𝑝: Person age = 𝑎 ,𝑝 → 𝑐

Measure noCars: noCars = COUNT 𝑐

Create artifacts

[Michael Rudolf et al. SynopSys: Foundations for Multidimensional Graph Analytics. BIRTE 2014]
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SynopSys/SPARQLytics

Artifacts Repository 

Create artifacts

Rollup/
Drilldown/
etc.

Define cube 
by selecting 
predefined 
artifact

[Michael Rudolf et al. SynopSys: Foundations for Multidimensional Graph Analytics. BIRTE 2014]

𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Compute
(generates the actual query)

Fact Car: 𝑐: Car()

Dimension Class: 𝑐: Car class = 𝑘

Dimension Brand: 𝑏: Brand, 𝑐 → 𝑏

Dimension Location: 𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

Dimension Driver Age: 𝑝: Person age = 𝑎 ,𝑝 → 𝑐

Measure noCars: noCars = COUNT 𝑐
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SynopSys/SPARQLytics

Artifacts Repository 

𝑐: Car(class = 𝑘),	
𝑝: Person age = 𝑎 ,𝑝 → 𝑐,

𝑏: Brand, 𝑐 → 𝑏,
𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

→

𝑥@𝑏, 𝑘,𝑎, 𝑙 noCars = COUNT 𝑐 ,
𝑔@𝑎:AgeGroup age = 𝑎 ,𝑥 → 𝑔,
𝑧@𝑘: Class name = 𝑘 ,𝑥 → 𝑧,

𝑏,𝑥 → 𝑏, 𝑙, 𝑥 → 𝑙

Create artifacts

Rollup/
Drilldown/
etc.

Compute
(generates the actual query)

Define cube 
by selecting 
predefined 
artifact

[Michael Rudolf et al. SynopSys: Foundations for Multidimensional Graph Analytics. BIRTE 2014]

Fact Car: 𝑐: Car()

Dimension Class: 𝑐: Car class = 𝑘

Dimension Brand: 𝑏: Brand, 𝑐 → 𝑏

Dimension Location: 𝑠: City, 𝑐 → 𝑠, 𝑙: Country, 𝑠 → 𝑙

Dimension Driver Age: 𝑝: Person age = 𝑎 ,𝑝 → 𝑐

Measure noCars: noCars = COUNT 𝑐

Redefine cube/Define another cube
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SynopSys/SPARQLytics – Experiments

 LDBC SOCIAL NETWORK BENCHMARK – BI WORKLOAD

In
te

ra
c

ti
ve

 E
xp

lo
ra

tio
n

Very low reuse, in 
practice likely to 
be much higher!

Unfavorable 
setting for our 

approach!
Already 

considerably 
fewer lines of 
code needed

(factor 2)



Aggregating Graph Structure
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 SUMMARIZE THE STRUCTURE OF A GRAPH IN A SMALLER GRAPH

§ Group all vertices and all edge

§ Represent the relationship 
of the groups in a graph

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

c

a

f

d

h i

b

e

g

j

𝛾gender,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸 9
13

5 5

FriendsCo-workersSchema: Male/Teacher Female/Teacher Male/Lawyer Female/Lawyer
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 SUMMARIZE THE STRUCTURE OF A GRAPH IN A SMALLER GRAPH

§ Group all vertices and all edge

§ Represent the relationship 
of the groups in a graph

𝛾gender,job,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

c

a

f

d

h i

b

e

g

j

2

1

1

2

4 3

3 3

2 2

𝛾gender,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸 9
13

5 5

FriendsCo-workersSchema: Male/Teacher Female/Teacher Male/Lawyer Female/Lawyer
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 SUMMARIZE THE STRUCTURE OF A GRAPH IN A SMALLER GRAPH

§ Group all vertices and all edge

§ Represent the relationship 
of the groups in a graph

𝛾gender,job,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸

𝛾gender,COUNT ∗ 𝑉,𝛾status,COUNT ∗ 𝐸

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]
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f

d

h i

b

e

g

j
6 12
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3 3

2 2

𝛾gender,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸 9
13

5 5

FriendsCo-workersSchema: Male/Teacher Female/Teacher Male/Lawyer Female/Lawyer
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 SUMMARIZE THE STRUCTURE OF A GRAPH IN A SMALLER GRAPH

§ Group all vertices and all edge

§ Represent the relationship 
of the groups in a graph

𝛾gender,job,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸

𝛾gender,COUNT ∗ 𝑉,𝛾status,COUNT ∗ 𝐸

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

c

a

f

d

h i

b

e

g

j
6 12

31

5 5

2

1

1

2

4 3

3 3

2 2

𝛾gender,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸 9
13

5 5

FriendsCo-workersSchema: Male/Teacher Female/Teacher Male/Lawyer Female/Lawyer

Generalization
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 SUMMARIZE THE STRUCTURE OF A GRAPH IN A SMALLER GRAPH

§ Group all vertices and all edge

§ Represent the relationship 
of the groups in a graph

𝛾gender,job,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸

𝛾gender,COUNT ∗ 𝑉,𝛾status,COUNT ∗ 𝐸

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

c

a

f

d

h i

b

e

g

j
6 12

31

5 5

2

1

1

2

4 3

3 3

2 2

𝛾gender,COUNT ∗ 𝑉,𝛾∅,COUNT ∗ 𝐸 9
13

5 5

FriendsCo-workersSchema: Male/Teacher Female/Teacher Male/Lawyer Female/Lawyer

Generalization

𝑉, 𝛾∅,SUM Ïeê 𝐸

𝛾gender,SUM ∗ 𝑉,𝛾∅,SUM Ïeê 𝐸
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 GRAPH CUBE (CUBOID)

§ Cube of all possible aggregation of a graph

§ Example grouping attributes: id, gender, job, status

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

𝐵𝑎𝑠𝑒 = id, gender , job,status

gender, job, status

gender, status job, statusgender , job

job statusgender

∅

Grouping Lattice
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 GRAPH CUBE (CUBOID)

§ Cube of all possible aggregation of a graph

§ Example grouping attributes: id, gender, job, status

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

𝐵𝑎𝑠𝑒 = id, gender , job,status

gender, job, status

gender, status job, statusgender , job

job statusgender

∅

c

a

f

d

h i

b

e

g

j

Grouping Lattice
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 GRAPH CUBE (CUBOID)

§ Cube of all possible aggregation of a graph

§ Example grouping attributes: id, gender, job, status

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

𝐵𝑎𝑠𝑒 = id, gender , job,status

gender, job, status

gender, status job, statusgender , job

job statusgender

∅

Grouping Lattice
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5 5
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 GRAPH CUBE (CUBOID)

§ Cube of all possible aggregation of a graph

§ Example grouping attributes: id, gender, job, status

Graph Cube

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

𝐵𝑎𝑠𝑒 = id, gender , job,status

gender, job, status

gender, status job, statusgender , job

job statusgender

∅

Grouping Lattice
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e
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j
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3 3

2 2

9
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5 5
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 GRAPH CUBE (CUBOID)

§ Cube of all possible aggregation of a graph

§ Example grouping attributes: id, gender, job, status

Graph Cube

Graph Aggregation
[Peixiang Zhao et al.: Graph Cube: On Warehousing and OLAP Multidimensional Networks, SIGMOD 2011]

𝐵𝑎𝑠𝑒 = id, gender , job,status

gender, job, status

gender, status job, statusgender , job

job statusgender

∅

Grouping Lattice

c
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f

d

h i

b

e

g

j

6 12

31

5 5

2

1

1

2

4 3

3 3

2 2

9
13

5 5

Cube definition only requires list of grouping attributes and 
measures (e.g. count) for vertices and edges 
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

Composable
Graph 

Matching w/ 
Aggregation

Integration with 
Machine 
Learning and 
Optimization 
Methods
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

Composable
Graph 

Matching w/ 
Aggregation

Vertex-
centric 

Programming



Vertex-centric Programming



120

Vertex-centric Programming Model

 COMPUTE - COMMUNICATE

§ Based on stateless user-defined function(s)

§ Collection data from adjacent vertices

§ Compute new state of vertex (update)

§ Send data to adjacent vertices

§ A vertex can be set to inactive to vote for termination of 
the whole computation

§ Processing terminates when all vertices are 
simultaneously inactive and there is no 
data in transit

§ User has to provide Compute function

§ Depending framework further function are necessary, 
controlling data collection and sending

?

?

X

?

?

?

Collect 
information

Compute
Distribute 
information
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Pregel/Giraph

 PREGEL

§ Developed by Google

§ “a scalable and fault-tolerant platform with an API that is 
sufficiently flexible to express arbitrary graph algorithms”

§ For directed graphs with vertex and edge labels (byte strings)

§ First framework using vertex-centric API

§ Vertices exchange instruction messages along edges

§ Bulk-Synchronous-Parallel (BSP) processing in super steps

 APACHE GIRAPH

§ Open source 
implementation 
of Pregel

Euler’s Seven Bridges of Königsberg
(from 1735)

Pregel River

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Pregel/Giraph

 MESSAGE ABSTRACTION

§ Data send between vertices, typically neighbors

§ Think of message as data store on edges

§ Exception
- Combined message (cf. Combiner)

- message not send directly, not along edge

§ Receiving message = collecting data

§ Sending message = sending data

§ Message delivery done by framework

 SINGLE COMPUTE-FUNCTION

§ Gets incoming messages as parameter
- Think of reading data on incoming edges of current vertex

§ Computes new vertex state

§ Sends you new messages
- Think of write data on outgoing edges of current vertex

?

?

X

?

?

?

Compute(incoming Message) {
…
Send Message
…

}

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Pregel/Giraph

 WRITING A VERTEX-CENTRIC PROGRAM

§ Subclassing the predefined Vertex class

§ Virtual compute() method, which will be 
executed at each active vertex in every super step

§ Vertex class provides compute() helper 
methods

§ Get vertex id with vertex_id() and super step 
with superstep()

§ Inspect the value associated with its vertex via 
GetValue() or modify it via MutableValue()

§ Get outgoing edges with 
getOutEdgeIterator()

§ Send messages to other vertices with 
sendMessageTo(…)

§ Change vertex state from active to halt with 
voteToHalt()

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void compute(MessageIterator* msgs) = 0;

};

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void compute(MessageIterator* msgs) = 0;
const string& vertex_id() const;
int64 superstep() const;

};

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void compute(MessageIterator* msgs) = 0;
const string& vertex_id() const;
int64 superstep() const;
const VertexValue& getValue();
VertexValue* mutableValue();

};

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void compute(MessageIterator* msgs) = 0;
const string& vertex_id() const;
int64 superstep() const;
const VertexValue& getValue();
VertexValue* mutableValue();
OutEdgeIterator getOutEdgeIterator();

};

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void compute(MessageIterator* msgs) = 0;
const string& vertex_id() const;
int64 superstep() const;
const VertexValue& getValue();
VertexValue* mutableValue();
OutEdgeIterator getOutEdgeIterator();
void sendMessageTo(const string& dest_vertex,

const MessageValue& message);

};

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void compute(MessageIterator* msgs) = 0;
const string& vertex_id() const;
int64 superstep() const;
const VertexValue& getValue();
VertexValue* mutableValue();
OutEdgeIterator getOutEdgeIterator();
void sendMessageTo(const string& dest_vertex,

const MessageValue& message);
void voteToHalt();

};

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Pregel/Giraph

 COMBINERS

§ User-written code

§ Combines all message for a vertex 𝑉 into a single 
message

§ Reduces overhead of message passing

§ Enabled by subclassing the Combiner class and 
overriding a virtual combine() method

§ No guarantees about 
- which (if any) messages are combined, 

- the groupings presented to the combiner, or 

- the order of combining

§ Combiners operations should be commutative and 
associative operations.

 AGGREGATORS

§ User-written code

§ Mechanism for global communication, monitoring, 
and data

§ Each vertex can provide a value to an aggregator in 
super step 𝑆

§ Aggregator is used to combine these values to a 
single value

§ resulting value is made available to all vertices in 
super step 𝑆 + 1

§ Predefined aggregators for min, max, sum , etc.

§ Enabled by subclassing the Aggregator class

§ Implementation specifies how 
- aggregated value is initialized from the first input value

- multiple partially aggregated values are reduced to one

§ Aggregator operation should be commutative and 
associative

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Pregel/Giraph

 EXAMPLE: SINGLE-SOURCE SHORTEST PATHS PROBLEM

§ Finding a shortest path between a single source vertex and every other vertex in the graph

If vertex is source shortest distance is 0

Find shortest distance send with messages 

If send distance is shorter that shortest distance already known, remember it

and for each out edge: multiply 
own distance with edge length 
and send result to target vertex

Combiner:

class ShortestPathVertex : public Vertex<int, int, int> {
void compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
if (mindist < getValue()) {

*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())
SendMessageTo(iter.Target(), mindist + iter.GetValue());

}
VoteToHalt();

}
};

class MinIntCombiner : public Combiner<int> {
virtual void combine(MessageIterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next()) mindist = min(mindist, msgs->Value());
Output("combined_source", mindist);

}
};

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Pregel/Giraph

 EXAMPLE: SINGLE-SOURCE SHORTEST PATHS PROBLEM

§ Finding a shortest path between a single source vertex and every other vertex in the graph

[http://giraph.apache.org/intro.html]

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Pregel/Giraph

 EXAMPLE: SINGLE-SOURCE SHORTEST PATHS PROBLEM

§ Finding a shortest path between a single source vertex and every other vertex in the graph

public void compute(Iterable<DoubleWritable> messages) {
double minDist = Double.MAX_VALUE;
for (DoubleWritable message : messages) {
minDist = Math.min(minDist, message.get());

}
if (minDist < getValue().get()) {
setValue(new DoubleWritable(minDist));
for (Edge<LongWritable, FloatWritable> edge : getEdges()) {

double distance = minDist + edge.getValue().get();
sendMessage(edge.getTargetVertexId(), new DoubleWritable(distance));

}
}
voteToHalt();

}
[http://giraph.apache.org/intro.html]

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Pregel/Giraph

 EXAMPLE: PAGE RANK

void compute(MessageIterator* msgs) {
int sum = 0;
for (; !msgs->Done(); msgs->Next())
sum = sum + msgs->Value();

rank = ALPHA + ((1-ALPHA)/N) * sum;
*MutableValue() = rank;

if (superstep() < MAX_STEPS) {
nedges = <count number of out edges with iterator>;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(), rank / nedges);
} else {
VoteToHalt();

}
} 

𝑅 𝑖 = 𝛼 +
1− 𝛼
𝑁

ï
1
𝐿[𝑗]

𝑅[𝑗]
�

@,A ∈2

Sum page rank 
over incoming 
messages

Send new message 
over outgoing message 
or terminate

[Grzegorz Malewicz et al.: Pregel: a system for large-scale graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]
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Vertex-centric Frameworks

 SCALE-OUT DISK-BASED

§ Pregel
[Grzegorz Malewicz et al.: Pregel: a system for large-scale 
graph processing. SPAA 2009/PODC 2009/SIGMOD 2010]

§ Giraph
[http://giraph.apache.org/]

 SCALE-OUT IN-MEMORY BASED

§ GraphLab (asynchronous) 
[Low et al.: Distributed GraphLab: A Framework for Machine Learning in the Cloud. VLDB 2012]

§ PowerGraph (Gather, Sum, Apply, Scatter)
[Gonzalez et al.: PowerGraph: Distributed Graph-Parallel 
Computation on Natural Graphs. OSDI 2012]

§ GraphX (on Apache Spark)
[http://spark.apache.org/graphx/]

§ Gelly (on Apache Flink)
[https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/gelly.html]

 SINGLE-BOX DISK-BASED

§ GraphChi
[Kyrola. Ligra: GraphChi: Large-Scale Graph Computation on Just a PC. OSDI 2012]

§ TurboGraph
[Han et al.: TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale Graphs in a Single PC. SIGKDD 
2013]

 SHARED-MEMORY BOX

§ Ligra
[J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing Framework for Shared Memory. PPoPP
2013]

§ X-Stream
[Roy et al.: Ligra: X-Stream: Edge-centric Graph Processing using Streaming Partitions. SIGOPS 2013]

§ Polymer (NUMA optimized)
[Zhang et al.: NUMA-Aware Graph-Structured Analytics. PPoPP 2015]
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Level of Analytics

[http://www.rosebt.com/blog/eight-levels-of-analytics-business-intelligence-to-business-analytics]

0. Transactional Data Management (OLTP)

batch
long running
imperative

ad-hoc
short running

declarative

Graph Data 
Management 
Applications

Composable
Graph 

Matching w/ 
Aggregation

Vertex-
centric 

Programming

?
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[http://www.bordalierinstitute.com/images/yeastProteinInteractionNetwork.jpg]
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