

Automating User-Centered Design of Data-Intensive Processes Research Project Report (RPR)

Vasileios Theodorou 26-05-2015

Home University Supervisor: Prof. Alberto Abelló Host University Supervisor: Prof. Wolfgang Lehner

Coadvisor: Dr. Maik Thiele

Example - Two Alternative Flows

Conceptual model of flow: "Details about suppliers in Europe sorted on revenue"

Measures from experiments

		ETL Flow A	ETL Flow B
Performance	Process cycle time	10.4 sec	18.9 sec
	Throughput	52,906 tuples/sec	29,179 tuples/sec
Data quality	% of correct tuples	91.5%	100%
	% of non-null tuples	90.3%	95.2%
Understandability ->	# of precedence dependencies	20	40
Manageability \rightarrow	Length of longest path	9 steps	23 steps

EXECUTION

- TPC-H with s.f.=1
- Executed on Pentaho Data Integration (Kettle)
- Data quality improved Performance, Understandability and Manageability reduced

Agenda

APPROACH

- Conceptual model reflecting user requirements
- User requirements-driven flow redesign
- Automatic "quality" pattern integration
- Configurable testing

CHALLENGES AND DISCUSSION

- Relate patterns to utility
- Assess pattern significance, model accuracy & completeness
- Future plan

ETL Quality Attributes Paper: Quality Measures for ETL Processes (DaWaK '14)

TRADE-OFFS

- It's not only about performance!
- Improving some quality attributes can affect others positively or negatively

ETL Quality Attributes Paper: Quality Measures for ETL Processes (DaWaK '14)

CONTRIBUTION

- Define a set of ETL process quality characteristics AND the relationships between them
- Provide quantitative measures for each characteristic, backed by literature!

METHODOLOGY

- SLR for quality attributes specific to data intensive processes
- Collection from literature of (proven) metrics for monitoring and quantitatively evaluating ETL processes

INVITED JOURNAL EXTENSION

- Special Issue of Journal CCPE 2015 (under minor revision)
- Introduce and apply goal modeling "stepping" on defined models
- Showcase evaluation of use case ETLs using proposed measures

requirements

- Expensive processHard to map requirements-implementation
- IT optimize only for performance
- Need more dynamicity (Big Data, data scope...)

User requirements driving flow redesign

Paper: A Framework for User-Centered Declarative ETL (DOLAP '14)

INSPIRATION

Model-driven approach

TRADITIONAL APPROACH PROBLEMS

- ETL process as a business process
- Agile BI, Self-service BI

APPROACH

- User at the center of the iterative process
- Functional and non-functional requirements are analyzed at the same time using automatic Pattern management

DW

- High level representation for Business Users
- Translation to low level models for IT and vice versa

User requirements driving flow redesign

UPC

Automated Process Redesign (POIESIS) Demo Paper: POIESIS: a Tool for Quality-aware ETL Process Redesign (EDBT '15)

ETL Flow 1 visualization ETL Flow 2 **○→☆** Initial ETL Flow ETL Flow n Flo Mea configurations Mel Flow Measures POIESIS Pattern Measures Pattern **FCPs** Generation Application Estimation

AUTOMATIC GENERATION OF ALTERNATIVE PHYSICAL ETL FLOWS

- Alternative designs: Same functionality (constant data schemata), different flow componentspermutations
- Policies and patterns
- · Measures estimation for evaluation

Logical Modeling & FCPs Demo Paper: POIESIS: a Tool for Quality-aware ETL Process Redesign (EDBT '15)

Considered ETL Operations

Aggregation			
Cross Join			
Dataset Copy			
Datatype Conversion			
Difference			
Duplicate Removal			
Duplicate Row			
Field Addition			
Field Alteration			
Field Renaming			
Filter			

Intersect Join (Outer) Pivoting Projection Router Single Value Alteration Sampling Sort Union Unpivoting

FCP	Related quality attribute	
RemoveDuplicateEntries	Data Quality	
FilterNullValues	Data Quality	
CrosscheckSources	Data Quality	
ParallelizeTask	Performance	
AddCheckpoint	Reliability	

LOGICAL MODELLING OF ETL FLOWS

- Each operator is a node in a DAG structure
- Flow Component Patterns represented in the same logical model
- Each (combination of) pattern application(s) produces a new ETL flow

Example Visualization Demo Paper: POIESIS: a Tool for Quality-aware ETL Process Redesign (EDBT '15)

MULTIDIMENSIONAL ANALYSIS

- Pareto frontier
- Each point represents an ETL flow
- Metrics (compound and detailed) compared to initial flow

Quality-aware testing Paper: Bijoux: Data Generator for Evaluating ETL Process Quality (DOLAP '14)

APPROACH

- An automatic, semantic-aware framework for generating testing workloads for evaluating quality of ETL processes
- Using a taxonomy of ETL operations and their semantics, create synthetic datasets to test flows
- Configurable properties (e.g., selectivity, distribution) to emphasize specific flow parts characteristics

INVITED JOURNAL EXTENSION

- Information Systems, Elsevier 2015 (under review)
- Highlight workflow perspective and analyze properties like flow coverage
- Propose architecture and showcase updated implementation that scales

Execution on the Cloud

ELASTICITY FOR RESPONSIVENESS

- Hundreds of flows executed very fast
- Load balancing based on pre-evaluation

OPEN RESEARCH QUESTIONS

- Do instances share state? Common input data?
- Can results be generalized for platform dependent executions?

Decomposition to Structural Patterns

QUALITY EVALUATION OF ETL FLOWS

- Different design choices → large number of alternative ETL flows
- Need for fine-grained cost models
- Repository of patterns to increase reusability of models

PATTERN-BASED DECOMPOSITION OF ETL FLOWS

- Classify structural patterns & identify on each flow
- Derive utility as a function of the patterns that each flow contains
- Adaptive model: Knowledge Base enrichment
 Flow evaluation improvement

Challenges

RELATE STRUCTURAL PATTERNS TO QUALITY MEASURES

- When and where is a quality pattern worth considering?
- Knowledge Base including pattern applications detailed (measured) quality tradeoffs
- Also rules about pattern combinations

MODEL-THEORETIC PROPERTIES

- Accuracy, completeness
- How to evaluate significance of models?

Future Plan

JOURNALS

- DSS '16: Using statistical methods to examine model-theoretic properties of ETL utility characteristics
- IJDWM '16: ETL utility characteristics modelling and results from empirical study