

Time Series Databases and Streaming
algorithms

Introduction and motivation
for Time Series

Financial

Internet of things

Domotics

Predictive Maintenance

Environmental tracking

A time series is a sequence of data points,
typically consisting of successive measurements

made over a time interval.

Why Time Series Databases?
● High Volume of Data

● Large Quantities of Immutable Data

● Is Primarily Sorted Temporally

● Needs to Be Rolled Up To Gain Majority of Insights

● Needs to Be Normalized Across Multiple Time
Zones

https://blog.tempoiq.com/blog/2013/01/25/characteristics-of-a-time-series-dataset-time-series-database-overview-part-2

Problems using Relational DBs

1. It’s Difficult to Change the Sample Rate

2. It’s Difficult To Use SQL Queries For Analysis

3. Time Zones Add Extra Complexity To Your Data
Analysis

https://blog.tempoiq.com/blog/2013/04/22/optimizing-relational-databases-for-time-series-data-time-series-database-
overview-part-3

Advantages of NoSQL

1. Greater simplicity in the DB engine

2. Ability to handle semi-structured and
denormalized data

3. Potentially much higher scalability

Disadvantages of NoSQL

1. Higher complexity in the application

2. Loss of abstraction provided by the query
optimizer

Basic Operations on Time Series Data

What do we need to do with TS

● Acquire

– Measurement, trasnmission, reception

● Store

● Retrieve

● Analize and visualize

Rescaling

● Transform the range of variation to a given
scale

● Useful for algorithms sensitive to the
magnitude of the signal

Resampling

● Differences in sampling resolution
● Bring both series to the same sample

frequency
● Requires a function for collapsing points

together

Shifting

● Align series we know are misaligned
● Bad reference time, drifting clock, ...

Slicing

● Retrieve a time series based on a given time
range

Dynamic Time Warping

● Used for measuring similarity between series that
vary in time or speed

● Dynamic time warping is a sequence alignment
technique used in speech recognition

● It is an algorithm that has O(n²) complexity

Subsequence Matching

● A sequence query is matched against a longer TS

● Also related with Chunking where we look for
repeating patterns

Statistical measures

● Mean

● Median

● Standard Deviation

● Variance

● Quantiles

Statistical fitting

● Interpolation

● Linear models

● Non linear models

Data Storage for Time Series Data

Log Files

● Simplest solution

● Right solution when low number of
time series or data fits in memory

 1950 1 0.92000E+00
 1950 2 0.40000E+00
 1950 3 -0.36000E+00
 1950 4 0.73000E+00
 1950 5 -0.59000E+00
 1950 6 -0.60000E-01
 1950 7 -0.12600E+01
 1950 8 -0.50000E-01
 1950 9 0.25000E+00
 1950 10 0.85000E+00
 1950 11 -0.12600E+01
 1950 12 -0.10200E+01
 1951 1 0.80000E-01
 1951 2 0.70000E+00
 1951 3 -0.10200E+01
 1951 4 -0.22000E+00
 1951 5 -0.59000E+00
 1951 6 -0.16400E+01
 1951 7 0.13700E+01
 1951 8 -0.22000E+00
 1951 9 -0.13600E+01
 1951 10 0.18700E+01

Advanced Log Files
● Same concept about storing TS in files
● Use a smart binary encoding format
● Allows less processing, aka no parsing
● Stores data more efficiently for scan readings

Advanced Log Files

● Lots of binary formats lately
– Thrift
– Avro
– Parquet

We created Parquet to make the advantages of

compressed, efficient columnar data representation

available to any project in the Hadoop ecosystem.

Relational Databases

● True and tested technology validated in multitude
of scenarios

● Allows indexing out of the box
● Allows data replication and sharding (to some

extent)

Relational Databases

● Use the Star Schema
● The fact table contains the

measurements
● The dimension tables contains

info about the series

Relational Databases

● The Star Schema can work reasonably to the
hundreds of millions

● We can even implement the Star Schema in a
NoSQL database

● When data grows this size several problems arise
mostly related to the Star Schema itself.

Limitations of the Star Schema

● It uses one row per measurement
● Limitants of retrieval speed:

– number of rows scanned,
– total number of values retrieved
– total volume of data retrieved

NoSQL databases

● Most of TS DBs use a NoSQL engine
– OpenTSB Hbase→

– InfuxDB BoltDB→

– Prometheus LevelDB→

– Newts Cassandra→

NoSQL databases

● Tall and narrow vs Short and wide table designs
● Short and wide denormalizes data
● Short and wide provides several advantages over

the columnar data model

NoSQL databases

● Indexed by TS and timestamp the most common
access pattern

● Retrieving data is an almost sequential reading
from disk

Improvements over the Wide
Table Design
● Collapse all the data into a blob

● Compress the blob so less data has to be read

● Allow coexistence of wide table columns and the
blob

Improvements over the Wide
Table Design
● Avoid the reads in order to overcome insert

bottlenecks
● Create a fallback system in order to prevent failures
● Allow access to the in-memory data

Why not with RDBMs?

● Why use a RDBMs when you're not using any of its
strong points?

● Also some features, ie. transactions, get in your way
for scaling

Time Series Databases

InfuxDB

● Written in Go

● Using BoltDB a its internal storage engine

● SQL-like language

● HTTP(S) API for querying data

● Stores metrics and event data

● Horizontally scalable

Features

A series is a collection of data points along a
timeline that share a common key, expressed as a
measurement and tag set pairing, grouped under a
retention policy

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html

● Measurement
● It is the value being recorded
● Can be shared amongst many series
● All series under a given measurement have the

same field keys and differ only in their tag set

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html

● Tag
● It is a key-value pair.
● A measurement could have several tags
● Tags are indexed
● Both the key and value are strings

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html

● Point
● A point is a single collection of fields in a series.
● It is uniquely identified by its series and timestamp

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html

● Field
● A field is a key-value pair
● It records an actual metric for a given point
● They are not indexed
● They are required at least 1 on each point

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html

● Database
● similar in concept to RDBS groups series

● Retention policy
● defines what to do with data that is older than the

prescribed retention policy

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html

{
 "database": "mydb",
 "points": [
 {
 "measurement": "cpu_load",
 "tags": {
 "host": "server01",
 "core": "0"
 },
 "time": "2009-11-10T23:00:00Z",
 "fields": {
 "value": 0.45
 }
 },
 {
 "measurement": "cpu_load",
 "tags": {
 "host": "server01",
 "core": "1"
 },
 "time": "2009-11-10T23:00:00Z",
 "fields": {
 "value": 1.56
 }
 }
]
}

Logging points into InfluxDB

HTTP endpoint

/query GET
/write OPTIONS
/write POST
/ping GET
/ping HEAD
/data/process_continuous_queries POST

Query exploration

Queries like in RDBMs

Querying by time

Dealing with Time

● Querying using time strings

● Relative time

● Absolute time

Dealing with missing values

● Use null, previous, none for missing values

Write data

● Ingest data into InfuxDB using the HTTP API

● Create the Database
curl -G http://localhost:8086/query --data-urlencode "q=CREATE

DATABASE mydb

● Write data into the database
curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary

'cpu_load_short,host=server01,region=us-west value=0.64

1434055562000000000'

Hands on

● Import data from Standard&Poor
● Explore the performance of different encodings:

– Several fields for a single point
– Each column as a separate TS

● Create the following queries:
– Select maximum opening price on a given

period for each quote
– Select the monthly average

Hands on (Advanced)

● Import extra dataset
● Compare loading and querying data between

MySQL and InfuxDB

Streaming data

Algorithms for processing data streams in which
the input is presented as a sequence of items

and can be examined in only a few passes

Examples

Examples: Anomaly Detection

Real Time Telemetry

Trends in Social Networks

Streaming algorithms

Characteristics of streaming
algorithms
● Operates on a continuos stream of data
● Unknown or infinite size
● Only one pass, that allows following options:

● Store it
● Lose it
● Store an approximation of it

● Limited processing time per item
● Limited total memory

These algorithms produce an approximate
answer based on a summary or "sketch" of the
data stream in memory

They have limited memory available to them
(much less than the input size) and also
limited processing time per item.

Questions to answer

● Frequency moments
● Counting distinct elements
● Heavy Hitters
● Anomaly detection / Membership query
● Online learning

 https://highlyscalable.wordpress.com/2012/05/01/probabilistic-structures-web-analytics-data-mining/

Cardinality estimation
Linear Counting

Load Factor is the ratio of distinct elements over the size m

Cardinality estimation
Linear Counting

Cardinality estimation
Loglog Counting

Cardinality estimation
Loglog Counting

Frequency Estimation:
Count-Min Sketch

Frequency Estimation:
Count-Min Sketch

Frequency Estimation:
Count-Mean-Min Sketch

Heavy Hitters
Count-Min Sketch

Heavy Hitters
Stream-Summary

Membership Query
Bloom Filter

Online Learning

Data Prediction

Parameters

Feature Hashing
● John likes to watch movies.
● Mary likes movies too.
● John also likes football.

Feature Hashing

Pros:
● Extremely fast
● No memory footprint

Cons
● There is no way to reverse features

Can be extended to use signed hashing functions

Stochastic Gradient Descents

Apache Spark

Storage
System
Storage
System

Program
Model

Program
Model

Word Count

Hello cruel
world

Say hello!
Hello!

hellohello 1

cruelcruel 1

worldworld 1

saysay 1

hellohello 2

hellohello 3

cruelcruel 1

worldworld 1

saysay 1

Raw Map Reduce Result

Problem with Iterative Algos

Disk I/O is very expensive

Oportunity for a new approach

● Keep data in memory

● Use a new distribution model

Spark Streaming

Resilient Distributed Dataset
(RDDs)
● A distributed and immutable collection of

objects
● Each RDD can be split into multiple

partitions
● RDDs allow two types of operations:
● Transformations (lazy)
● Actions (non-lazy)

DStream

A sequence of RDDs representing a stream of data

 http://www.slideshare.net/spark-project/deep-divewithsparkstreaming-tathagatadassparkmeetup20130617

DStreams

Windows

Windowing computations

Stateful computations

DStream API

http://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.stream
ing.dstream.DStream

http://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.streaming.dstream.DStream
http://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.streaming.dstream.DStream

Hands on Streaming

● Start the Spark server
● Create a Job
● Run netcat
● Send

Hands on Streaming (Advanced)

● Implement Count-Log on basic Spark

Setup environment
● Prerequisite:

– Install latest version of Vagrant
https://www.vagrantup.com/

– Install latests version of Virtualbox
https://www.virtualbox.org/

● Create the Virtual Machine:
vagrant init codezomb/trusty64-docker

vagrant up
http://blog.scottlowe.org/2015/02/10/using-docker-with-vagrant/

https://www.vagrantup.com/
https://www.virtualbox.org/

Setup environment
● Log in into the VM machine
vagrant ssh

● Install some Ubuntu packages
sudo apt-get update
sudo apt-get -y install docker

openjdk-7-jdk

● Pull docker images
docker pull tutum/influxdb

docker pull sequenceiq/spark:1.3.0
http://old.blog.phusion.nl/2013/11/08/docker-friendly-vagrant-boxes/

@tonicebrian, @Enerbyte
toni.cebrian@gmail.com
https://es.linkedin.com/in/tonicebrian
http://www.tonicebrian.com

mailto:toni.cebrian@gmail.com
https://es.linkedin.com/in/tonicebrian

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

