
  

Time Series Databases and Streaming 
algorithms



  

Introduction and motivation 
for Time Series



  

Financial



  

Internet of things



  

Domotics



  

Predictive Maintenance



  

Environmental tracking



  

A time series is a sequence of data points, 
typically consisting of successive measurements 

made over a time interval.



  

Why Time Series Databases?
● High Volume of Data

● Large Quantities of Immutable Data

● Is Primarily Sorted Temporally

● Needs to Be Rolled Up To Gain Majority of Insights

● Needs to Be Normalized Across Multiple Time 
Zones

https://blog.tempoiq.com/blog/2013/01/25/characteristics-of-a-time-series-dataset-time-series-database-overview-part-2



  

Problems using Relational DBs

1. It’s Difficult to Change the Sample Rate

2. It’s Difficult To Use SQL Queries For Analysis

3. Time Zones Add Extra Complexity To Your Data 
Analysis

https://blog.tempoiq.com/blog/2013/04/22/optimizing-relational-databases-for-time-series-data-time-series-database-
overview-part-3



  

Advantages of NoSQL

1. Greater simplicity in the DB engine

2. Ability to handle semi-structured and 
denormalized data

3. Potentially much higher scalability



  

Disadvantages of NoSQL

1. Higher complexity in the application

2. Loss of abstraction provided by the query 
optimizer



  

Basic Operations on Time Series Data



  

What do we need to do with TS

● Acquire

– Measurement, trasnmission, reception

● Store

● Retrieve

● Analize and visualize



  

Rescaling

● Transform the range of variation to a given 
scale

● Useful for algorithms sensitive to the 
magnitude of the signal



  

Resampling

● Differences in sampling resolution
● Bring both series to the same sample 

frequency
● Requires a function for collapsing points 

together



  

Shifting

● Align series we know are misaligned
● Bad reference time, drifting clock, ... 



  

Slicing

● Retrieve a time series based on a given time 
range



  

Dynamic Time Warping

● Used for measuring similarity between series that 
vary in time or speed

● Dynamic time warping is a sequence alignment 
technique used in speech recognition

● It is an algorithm that has O(n²)  complexity



  

Subsequence Matching

● A sequence query is matched against a longer TS

● Also related with Chunking where we look for 
repeating patterns



  

Statistical measures

● Mean

● Median

● Standard Deviation

● Variance

● Quantiles



  

Statistical fitting

● Interpolation

● Linear models

● Non linear models



  

Data Storage for Time Series Data



  

Log Files

● Simplest solution

● Right solution when low number of 
time series or data fits in memory

 1950    1  0.92000E+00
 1950    2  0.40000E+00
 1950    3 -0.36000E+00
 1950    4  0.73000E+00
 1950    5 -0.59000E+00
 1950    6 -0.60000E-01
 1950    7 -0.12600E+01
 1950    8 -0.50000E-01
 1950    9  0.25000E+00
 1950   10  0.85000E+00
 1950   11 -0.12600E+01
 1950   12 -0.10200E+01
 1951    1  0.80000E-01
 1951    2  0.70000E+00
 1951    3 -0.10200E+01
 1951    4 -0.22000E+00
 1951    5 -0.59000E+00
 1951    6 -0.16400E+01
 1951    7  0.13700E+01
 1951    8 -0.22000E+00
 1951    9 -0.13600E+01
 1951   10  0.18700E+01



  

Advanced Log Files
● Same concept about storing TS in files
● Use a smart binary encoding format
● Allows less processing, aka no parsing
● Stores data more efficiently for scan readings



  

Advanced Log Files

● Lots of binary formats lately
– Thrift
– Avro
– Parquet

We created Parquet to make the advantages of 

compressed, efficient columnar data representation 

available to any project in the Hadoop ecosystem.



  

Relational Databases

● True and tested technology validated in multitude 
of scenarios

● Allows indexing out of the box
● Allows data replication and sharding (to some 

extent)



  

Relational Databases

● Use the Star Schema
● The fact table contains the 

measurements
● The dimension tables contains 

info about the series



  

Relational Databases

● The Star Schema can work reasonably to the 
hundreds of millions

● We can even implement the Star Schema in a 
NoSQL database

● When data grows this size several problems arise 
mostly related to the Star Schema itself. 



  

Limitations of the Star Schema

● It uses one row per measurement
● Limitants of retrieval speed:

– number of rows scanned,
– total number of values retrieved
– total volume of data retrieved



  

NoSQL databases

● Most of TS DBs use a NoSQL engine 
– OpenTSB  Hbase→

– InfuxDB  BoltDB→

– Prometheus  LevelDB→

– Newts  Cassandra→



  

NoSQL databases

● Tall and narrow vs Short and wide table designs
● Short and wide denormalizes data
● Short and wide provides several advantages over 

the columnar data model



  

NoSQL databases

● Indexed by TS and timestamp the most common 
access pattern

● Retrieving data is an almost sequential reading 
from disk



  

Improvements over the Wide 
Table Design
● Collapse all the data into a blob

● Compress the blob so less data has to be read

● Allow coexistence of wide table columns and the 
blob 



  

Improvements over the Wide 
Table Design
● Avoid the reads in order to overcome insert 

bottlenecks
● Create a fallback system in order to prevent failures
● Allow access to the in-memory data



  

Why not with RDBMs?

● Why use a RDBMs when you're not using any of its 
strong points?

● Also some features, ie. transactions, get in your way 
for scaling



  

Time Series Databases



  

InfuxDB



  

● Written in Go

● Using BoltDB a its internal storage engine

● SQL-like language

● HTTP(S) API for querying data

● Stores metrics and event data

● Horizontally scalable

Features



  

A series is a collection of data points along a 
timeline that share a common key, expressed as a 
measurement and tag set pairing, grouped under a 
retention policy

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html



  

● Measurement
● It is the value being recorded
● Can be shared amongst many series
● All series under a given measurement have the 

same field keys and differ only in their tag set

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html



  

● Tag
● It is a key-value pair. 
● A measurement could have several tags
● Tags are indexed
● Both the key and value are strings

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html



  

● Point
● A point is a single collection of fields in a series.
● It is uniquely identified by its series and timestamp

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html



  

● Field
● A field is a key-value pair 
● It records an actual metric for a given point
● They are not indexed
● They are required at least 1 on each point

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html



  

● Database
● similar in concept to RDBS groups series

● Retention policy
● defines what to do with data that is older than the 

prescribed retention policy

Key concepts

https://influxdb.com/docs/v0.9/concepts/key_concepts.html



  

{
    "database": "mydb",
    "points": [
         {
            "measurement": "cpu_load",
            "tags": {
                "host": "server01",
                "core": "0"
            },
            "time": "2009-11-10T23:00:00Z",
            "fields": {
                "value": 0.45
            }
        },
        {
            "measurement": "cpu_load",
            "tags": {
                "host": "server01",
                "core": "1"
            },
            "time": "2009-11-10T23:00:00Z",
            "fields": {
                "value": 1.56
            }
        }
    ]
}

Logging points into InfluxDB



  

HTTP endpoint

/query GET
/write OPTIONS
/write POST
/ping GET
/ping HEAD
/data/process_continuous_queries POST



  

Query exploration

Queries like in RDBMs

Querying by time



  

Dealing with Time

● Querying using time strings

● Relative time

● Absolute time



  

Dealing with missing values

● Use null, previous, none for missing values



  

Write data

● Ingest data into InfuxDB using the HTTP API

● Create the Database
curl -G http://localhost:8086/query --data-urlencode "q=CREATE 

DATABASE mydb

● Write data into the database
curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary 

'cpu_load_short,host=server01,region=us-west value=0.64 

1434055562000000000'



  

Hands on

● Import data from Standard&Poor
● Explore the performance of different encodings:

– Several fields for a single point
– Each column as a separate TS

● Create the following queries:
– Select maximum opening price on a given 

period for each quote
– Select the monthly average 



  

Hands on (Advanced)

● Import extra dataset
● Compare loading and querying data between 

MySQL and InfuxDB 



  

Streaming data



  

Algorithms for processing data streams in which 
the input is presented as a sequence of items 

and can be examined in only a few passes



  

Examples



  

Examples: Anomaly Detection



  

Real Time Telemetry



  

Trends in Social Networks



  

Streaming algorithms



  

Characteristics of streaming 
algorithms
● Operates on a continuos stream of data
● Unknown or infinite size
● Only one pass, that allows following options:

● Store it
● Lose it
● Store an approximation of it

● Limited processing time per item
● Limited total memory



  

These algorithms produce an approximate 
answer based on a summary or "sketch" of the 
data stream in memory



  

They have limited memory available to them 
(much less than the input size) and also 
limited processing time per item.



  

Questions to answer

● Frequency moments
● Counting distinct elements
● Heavy Hitters
● Anomaly detection / Membership query
● Online learning



  https://highlyscalable.wordpress.com/2012/05/01/probabilistic-structures-web-analytics-data-mining/



  

Cardinality estimation
Linear Counting

Load Factor is the ratio of distinct elements over the size m



  

Cardinality estimation
Linear Counting



  

Cardinality estimation
Loglog Counting



  

Cardinality estimation
Loglog Counting



  

Frequency Estimation:
Count-Min Sketch



  

Frequency Estimation:
Count-Min Sketch



  

Frequency Estimation:
Count-Mean-Min Sketch



  

Heavy Hitters
Count-Min Sketch



  

Heavy Hitters
Stream-Summary



  

Membership Query
Bloom Filter



  

Online Learning

Data Prediction

Parameters



  

Feature Hashing
● John likes to watch movies.
● Mary likes movies too.
● John also likes football.



  

Feature Hashing

Pros:
● Extremely fast 
● No memory footprint

Cons
● There is no way to reverse features

Can be extended to use signed hashing functions



  

Stochastic Gradient Descents



  

Apache Spark



  

Storage
System
Storage
System

Program 
Model

Program 
Model



Word Count

Hello cruel 
world

Say hello! 
Hello!

hellohello 1

cruelcruel 1

worldworld 1

saysay 1

hellohello 2

hellohello 3

cruelcruel 1

worldworld 1

saysay 1

Raw Map Reduce Result



Problem with Iterative Algos

Disk I/O is very expensive



Oportunity for a new approach

● Keep data in memory

● Use a new distribution model



  

Spark Streaming



  

Resilient Distributed Dataset 
(RDDs)
● A distributed and immutable collection of 

objects
● Each RDD can be split into multiple 

partitions
● RDDs allow two types of operations:
● Transformations (lazy)
● Actions (non-lazy)



  

DStream

A sequence of RDDs representing a stream of data



  http://www.slideshare.net/spark-project/deep-divewithsparkstreaming-tathagatadassparkmeetup20130617

DStreams



  

Windows



  

Windowing computations



  

Stateful computations



  

DStream API

http://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.stream
ing.dstream.DStream
 

http://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.streaming.dstream.DStream
http://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.streaming.dstream.DStream


  

Hands on Streaming

● Start the Spark server
● Create a Job
● Run netcat
● Send 



  

Hands on Streaming (Advanced)

● Implement Count-Log on basic Spark



  

Setup environment
● Prerequisite: 

– Install latest version of  Vagrant 
https://www.vagrantup.com/

– Install latests version of Virtualbox
https://www.virtualbox.org/ 

● Create the Virtual Machine: 
vagrant init codezomb/trusty64-docker

vagrant up
http://blog.scottlowe.org/2015/02/10/using-docker-with-vagrant/

https://www.vagrantup.com/
https://www.virtualbox.org/


  

Setup environment
● Log in into the VM machine
vagrant ssh

● Install some Ubuntu packages
sudo apt-get update
sudo apt-get -y install docker 

openjdk-7-jdk

● Pull docker images
docker pull tutum/influxdb

docker pull sequenceiq/spark:1.3.0
http://old.blog.phusion.nl/2013/11/08/docker-friendly-vagrant-boxes/



  

@tonicebrian, @Enerbyte
toni.cebrian@gmail.com
https://es.linkedin.com/in/tonicebrian
http://www.tonicebrian.com

mailto:toni.cebrian@gmail.com
https://es.linkedin.com/in/tonicebrian
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