
Towards OLAP over Federated RDF Sources
Dilshod Ibragimov (Supervisors Esteban Zimányi, Torben Bach Pedersen)

dibragim@ulb.ac.be, diib@cs.aau.dk
Université Libre de Bruxelles (ULB), Aalborg University (AAU)

1. BI and the Semantic Web
• Business Intelligence tools need to analyze data published on

the Web
• OLAP-style analysis of Linked Data may help in better

decision making

2. System Architecture

• Global Conceptual Schema (GSC) – high-level view of the system
(expressed in QB4OLAP)

• Source Discovery/Schema Builder – discovery of data sources and
construction of the GCS

• Federated Query Processor (FQP) – retrieval, in parallel, data from
several federated data sources

• Semantic Query Processor – conversion of a user query to SPARQL
which is sent to the FQP

3. Processing Aggregate Queries in a Federation of SPARQL Endpoints

4. Improving Performance of Aggregate Queries using Materialized RDF Views

SELECT ?placeID ?regName
WHERE {
?placeID gn:parentFeature/gn:name

?regName .
}

SELECT ?placeID ?regName WHERE {
?placeID gn:parentFeature/gn:name
?regName .
VALUES (?placeID) { ….
(<http://sws.geonames.org/182083/>) }

}

Basic Strategies

Estimating Result Size
Result size estimation - VoID statistics (dataset statistics)

o 𝑐𝑡 - total number of triples (void:triples), 𝑐𝑠- total number of
distinct subjects (void:distinctSubjects), 𝑐𝑜 - total number of
distinct objects (void:distinctObjects)

o Single patterns - 𝐶𝑟𝑒𝑠 for (?s ?p ?o) is given by 𝑐𝑡, (s ?p ?o)
estimated as 𝑐𝑡/𝑐𝑠, (?s ?p o) as 𝑐𝑡/𝑐𝑜, and (s ?p o) as 𝑐𝑡/(𝑐𝑠∗ 𝑐𝑜)

o Joins - estimates depend on shape (star vs path). Formulas from
“Resource Planning for SPARQL Query Execution on Data Sharing
Platforms”

o 𝐶𝑚𝑎𝑝 - estimated using “SELECT * WHERE { ?s #p

?o . FILTER(?o = #o) } LIMIT #L”; different values
for #L, #o and #p

o 𝐶𝑂 - estimated with multiple “ASK {}” or “SELECT
(1 AS ?v) {}”

o 𝐶𝐴𝐺𝐺 - estimated based on multiple “SELECT
COUNT(?s) WHERE {?s ?p ?o } GROUP BY ?o”

The goal is to find efficient plan (not to estimate the
execution time)

Future Work:
Analyzing the Performance of Complex Aggregate SPARQL Queries with
Intermediate Results Materialization
Answering Aggregate SPARQL Queries over Materialized Views with Inferred
Knowledge

5. Publications

Mediator Join Semi-Join PartialAgg

Estimating Constants

Overall costs 𝐶𝑄: 𝐶𝑄 = 𝐶𝑃 + 𝐶𝐶
Communication costs 𝐶𝐶 for subquery 𝑆𝑖:

𝐶𝐶 𝑆𝑖 = 𝐶𝑂 + 𝑐𝑆𝑖 ∗ 𝐶𝑚𝑎𝑝 ; 𝐶𝑂 - communication establishing

overhead , 𝑐𝑆𝑖 - result size, and 𝐶𝑚𝑎𝑝 - single result transfer cost

Processing costs
𝐶𝑃 = 𝑐𝑎𝑔𝑔𝑖 ∗ 𝐶𝐴𝐺𝐺 ; 𝑐𝑎𝑔𝑔𝑖 - number of aggregated observations,

𝐶𝐴𝐺𝐺 - cost for processing a single observation

Cost Model
o Decomposes the original query into multiple

subqueries (query 𝑄𝑀 and SERVICE queries
𝑄𝑒1 … 𝑄𝑒𝑁)

o Estimates query execution costs for different
query execution plans

o Chooses the one with minimum costs

CODA – Cost-based Optimizer for Distributed Aggregate Queries

SELECT ?placeID ?regName WHERE {
?placeID gn:parentFeature/gn:name
?regName .
VALUES (?placeID) { ….
(<http://sws.geonames.org/182083/>) }

}

SELECT ?regName (AVG (?rValue) AS ?avgSUM)
WHERE {

?s ev:place ?placeID . ?s ev:time ? time .
?s rdf:value ? rValue .
SERVICE <http://lod2.openlinksw.com/sparql> {

?placeID gn:parentFeature ?regionID .
?regionID gn:name ?regName . }

} GROUP BY ?regName
#Query times out because of inefficient strategy

Motivating Example

#observation
<http://www.kanzaki.com/works/2011/stat/ra/20110414/p13/t08>

rdf:value "0.079"^^ms:microsv ;
ev:place <http://sws.geonames.org/1852083/> ;
ev:time

<http://www.kanzaki.com/works/2011/stat/dim/d/20110414T08PT1H> ;
scv:dataset <http://www.kanzaki.com/works/2011/stat/ra/set/moe> .

#dimension – time
<http://www.kanzaki.com/works/2011/stat/dim/d/20110414T08PT1H>

rdfs:label "2011-04-14T08";
tl:at "2011-04-14T08:00:00+09:00"^^xsd:dateTime ;
tl:duration "PT1H"^^xsd:duration .

SELECT ?placeID ?rValue WHERE {
?s ev:place ?placeID .
?s rdf:value ?rValue .

}

SELECT ?placeID ?rValue WHERE {
?s ev:place ?placeID .
?s rdf:value ?rValue .
FILTER(rValue < 0.08)

}

SELECT ?placeID (SUM (?floatRV) AS
?avgSUM) (COUNT (?floatRV) AS
?avgCNT) WHERE {

?s ev:place ?placeID . ?s ev:time ?
time .

?s rdf:value ? radioValue .
}
GROUP BY ?placeID

Data Structure Federated Query

Overview

SELECT ?c_state ?month (SUM(?total) AS ?sum_total)
FROM <http://ex.com>
WHERE {

?obs ex:OrderDate ?lo_orderdate ; ex:Customer ?customer ;
ex:Revenue ?total . ?customer skos:broader ?c_city .
?c_city skos:broader ?c_state . ?c_city ex:population ?pop .
?lo_orderdate skos:broader ?month . ?month skos:broader ?year .
?year ex:value ?yearNum .
FILTER(?yearNum=2010 && ?pop > 1000000)

}
GROUP BY ?c_state ?month

o Materializing all views in a data cube is not
efficient

o Only several views with max benefit are
chosen for materialization

Data Cube Query Example Materializing RDF Data Cube Cost Model

o The cost of answering a query – number of
triples contained in the materialized view used
to answer the query

o Observation is described by its n dimensions
and contains m measures.

o The total number of triples in a view – (n + m)
* N, where N is the number of observations

o In each step the algorithm selects a view with
maximum benefit , taking into account
previously materialized views.

Defining Views

o View query consists of 2 parts: SELECT query specifies the
desired lattice node, CONSTRUCT query creates RDF triples from
SELECT query results

CONSTRUCT {
?id ex:DateMonth ?vMonth ; ex:CustomerCity ?vCity ;
ex:RevenueCount ?crev ; ex:RevenueSum ?srev .

}
WHERE {

SELECT ?id ?vCity ?vMonth (SUM(?rev) AS ?srev) (COUNT(?rev) AS
?crev)
WHERE {

?li ex:OrderDate ?odate ; ex:Customer ?cust ;
ex:Revenue ?rev . ?cust skos:broader ?city .

?odate skos:broader ?vMonth .
BIND(IRI(‘http://ex.org/id#’, CONCAT(?vCity, ?vMonth)) AS ?id) .

}
GROUP BY ?id ?vState ?vMonth

}

Storing Views
o Storing each materialized RDF view in a

separate named graph is a better option
o Benefits include:

• Easier maintenance (easier to update)
• Faster retrieval (scanning is faster)
• Correctness of aggregation

Published:
D. Ibragimov, K. Hose, T. B. Pedersen, E. Zimányi. Towards Exploratory OLAP
over Linked Open Data – A Case Study. BIRTE 2014
D. Ibragimov, K. Hose, T. B. Pedersen, E. Zimányi. Executing Aggregate
SPARQL Queries over Federated Endpoints

