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Big Data – what does that mean? 
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Big Data Analytics ? 

 Big Data Analytics : Extracting Meaningful and Actionable 

Information from a Massive Source 

 Let’s avoid 

– Triviality, Tautology: a series of self-reinforcing statements that cannot 

be disproved because they depend on the assumption that they are 

already correct 

– Thinking that noise is an information 

 

 Let’s try to have 

– Translation:  capacity to transfer in concrete terms the discovery 

(actionable information) 

– TTM: Time To Market, ability to have quickly information on every 

customers (Who, What, Where, When) 
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Big Data vs. Fast Data 

 Big Data : 

– Static data 

– Storage : distributed on several computers  

– Query & Analysis : distributed and parallel processing  

– Specific tools : Very Large Database (ex : Hadoop)  

   

 

 

 

 

 

 Fast Data :  

– Data in motion  

– Storage : none (only buffer in memory) 

– Query & Analysis : processing on the fly (and parallel) 

– Specific Tools : CEP (Complex Event Processing) 

More than 10 To 

More than 1000 operations / sec 
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Application Areas 

 Finance: High frequency trading 

– Find correlations between the prices of stocks within the historical 
data;   

– Evaluate the stationarity of these correlations over the time; 

– Give more weight to recent data. 

  

 Banking : Detection of frauds with credit cards 

– Automatiocally monitor a large amount of transactions; 

– Detects patterns of events that indicate a likelihood of fraud; 

– Stop the processing and send an alert for a human adjudication. 

 

 Medicine: Health monitoring  

– Perform automatic medical analysis to reduce workload on nurses; 

– Analyze measurements of devices to detect early signs of disease.; 

– Help doctors to make a diagnosis in real time. 

      

 Smart Cities & Smart grid :  

– Optimization of public transportation; 

– Management of the local production of electricity;  

– Flattening  of the evening peak of consumption.   
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An example of data stream 

Input data stream 

A tuple : 

(1,1);(1,2);(2,2);(1,3) 

All tuples can be coded by 4 couples of 

integers 

Online 

processing : 

Rotate and 

combine tuples 

in a compact 

way 
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Specific constrains of stream-processing  

 A data stream continuously emits tuples 

 The order of tuples is not controlled 

 The emission rate of tuples is not controlled 

 Stream processing is an on-line process 

 

 

 

In the end, the quality of the processing is the 

adjusting variable 

What is a data stream ? 

What is a tuple ? 

• A small piece of information in motion 

• Composed by several variables 

• All tuples share the same structure (i.e. the variables) 
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How to manage the time?  

• A timestamp is associated with each tuple : 

 

– Explicit timestamp : defined as a variable within the structure of the data stream 

– Implicit timestamp : assigned by the system when tuples are processed 

 

• Two ways of representing the time : 

 

– Logical time : only the order of processed tuples is considered 

– Physical time : characterizes the time when the tuple was emitted 

 

• Buffer issues : 

 

– The tuples are not necessarily received in the order 

– How long a missing tuple can be waited ? 
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Complex Events Processing (CEP) 

Operator 

 An operator implements a query or a more complex analysis 

 An operator processes data in motion with a low latency 

 Several operators run at the same time, parallelized on several CPUs and/or Computers 

 The graph of operators is defined before the processing of data-streams 

 Connectors allows to interact with: external data streams, static data in SGBD, 

visualization tools.   

 

 

Operator 

Operator 

Operator Operator 

E-mail 

Twitter 

RSS 

Stocks 

XML 

Visualization 

Database 

Input data stream Output data stream 
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Complex Events Processing (CEP) 

Main features: 
• High frequency processing 

• Parallel computing   

• Fault-tolerant 

• Robust to imperfect and asynchronous data 

• Extensible (implementation of new operators) 

Notable products: 
• StreamBase (Tibco) 
• InfoSphere Streams (IBM)  
• STORM (Open source – Twitter) 
• KINESIS (Amazon) 
• SQLstream 

• Apama 
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Time-window 

• A query is performed on a finite part of the past 
tuples 

Futur Current time Past 

• Fixed window : “June 2000” 

• Sliding window : “last week” 

• Landmark window : “since 1 January 2000” 

 

Define a time-window: 

t1 

t2 

t3 

Sliding window 

t1 

t2 

t3 

Jumping window 

t1 

t2 

t3 

Tumbling window 

Update interval: 

• A result is produced at each update 

• The type of window depends on the update interval 
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• Most of the CEP provide a SQL-like language 

• Few CEP provide a user-friendly interface  

• Each software publisher propose its own language (not standardized) 

• Main features : 

 

– Define the structure of the connection of the data streams 

– Define time-windows on data streams 

– Extend the SQL language (able to run SQL queries on relational data bases)  

– Run queries on data streams within time-windows   

 

• Additional functions : 

– Statistics  (min, max, mean, standard deviation … etc) 

– Math   (trigonometry, logarithm, exponential … etc) 

– String   (regular expression, trim, substring … etc) 

– Date   (getDayType, getSecond, now … etc)    

 

SQL-like language 
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SQL-like language 

CREATE INPUT STREAM InputStream( 

 Compteur  string(12), 

 Type   string(12), 

 Souscription int, 

 C_index int, 

 Date  timestamp 

); 

CREATE WINDOW OneMinuteWindow(SIZE 

60  

ADVANCE 60 ON Date); 

Geek zone A simple example with StreamBase : 



17 

SQL-like language 

CREATE OUTPUT STREAM OuputStream; 

 

SELECT firstval(Compteur) AS Compteur, 

 lastval(C_index) – firstval(C_index) AS 

Conso 

 openval(Date) AS StartTime 

 closeval(Date) AS EndTime 

FROM InputStream[OneMinuteWindow] 

 

INTO OutputStream; 

A simple example with StreamBase : Geek zone 
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SQL-like language 

User-friendly interface A simple example with StreamBase : 
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Online vs. Batch mode  

 An entire dataset is available   

 The examples can be processed several times  

 Weak constrain on the computing time 

 The distribution of data does not change over time 

 

 

 

 

What is unsupervised learning ? 

• Mining data in order to find new knowledge  

• No idea about the expected result 

• Tuples are emitted one by one 

• Tuples are processed on the fly due to their high 

rate 

• Real-time computing (low latency) 

• The distribution of tuples changes over time (drift) 

 

 

 

 

Batch mode : 

Online processing : 

20 
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Summarizing data streams 

Why we need to summarize data streams ? 

• The number of tuples in infinite …  

• Their emission rate is potentially very high …  

• The hardware resources are limited (CPU, RAM & I/O) 

What is a summary ? 

• A compact representation of the past tuples 

• With a controlled memory space , accuracy and 
latency  

• Which allows to query (or analyze) the history of the 
stream, in an approximated way 

The objective is to maximize the accuracy of the 

queries, given technical constrains (stream rate, 

CPU, RAM & I/O) 
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Two types of summary 

Specific summaries :  dedicated to a single query (or few)   

• Flajolet-Martin Sketch : approximates the number of unique objects in a stream;  

• Bloom Filter : efficiently tests if an element is a member of a predefine set; 

• Count-Sketch : efficiently finds the k most frequent elements of a set; 

• Count-Min Sketch :  enumerates the number of elements with a particular value, 

or within an interval of values.  

Generic summaries : allow a large range of queries on any past 

period  
• StreamSamp : based on successive windowing and sampling;  

• CluStream : based on micro-clustering; 

• DenStream : based on evolving micro-clustering; 

  

Detailed in this talk  
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Flajolet-Martin Sketch [1] 
approximates the number of unique objects in a stream 

• S is a collection of N elements : S = {s1, s2 …. sN} 

• Two elements of S may be identical  

• S includes only F distinct elements 

• The objective is to efficiently estimate F in terms of: 

– Time complexity 

– Space complexity 

– Probabilistic guarantee     

 

Problem statement: 

How many  
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Hash function : h(.)  

• Associates an element si with a random binary value  

• h(.) is a deterministic function 

• w is the length of binary values (number of bits)  

• w is an integer such that  

•  Random values are uniformly drawn within  

 

FNw 2

0,2w -1é
ë

ù
û

Intuition :  

Given a large set of random binary values, 

     of them begin with “1” 

     of them begin with “11” 

     of them begin with “111” 

     of them begin with k “1” 

 

1
2

1
4

1
8

1
2k

1 

1

1 1

1

1 

10010110 

00100011 

10001010 

01011011 

00011001 

01010011 

Flajolet-Martin Sketch [1] 
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Example :      h(si) = 01001111011010         t(h(si)) = 01000000000000      

  

 t(.) is the function which keeps only the first “1” (counting 
from left), other bits are set to “0”     

Location of the first “1” within h(.)  
10000000 

00100000 

10000000 

01000000 

00010000 

01000000 

 B is the fusion of all the binary words t(h(si))  
  by using the OR operator denoted by    

B = Å
i=1

N

t(h(si ))

Fusion of binary words :  

Å

B = 11110000 

R is the rank of the first “0” (counting from left) within B. 

That is a random variable related with F !  

R = MAX
N
t(h(si ))

é

ëê
ù

ûú
+1

R = 5 

Flajolet-Martin Sketch [1] 
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FM Sketch 
A single-pass algorithm : 

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  

B = 00000000000000  

  

Input data 

stream 

R = 0  

  

Flajolet-Martin Sketch [1] 
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FM Sketch 
A single-pass algorithm : 

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  

B = 01000000000000      

  

Input data 

stream 

h(b) = 10001010011011         t(h(b)) = 10000000000000      

  

R = 2 

  

Flajolet-Martin Sketch [1] 
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FM Sketch 
A single-pass algorithm : 

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  

B = 11000000000000      

  

Input data 

stream 

h(b) = 10001010011011         t(h(b)) = 10000000000000      

  

R = 2 

  

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  

Flajolet-Martin Sketch [1] 
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FM Sketch 
A single-pass algorithm : 

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  

B = 11000000000000      

  

Input data 

stream 

h(b) = 10001010011011         t(h(b)) = 10000000000000      

  

R = 2 

  

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  
h(c) = 00010110010110         t(h(c)) = 00010000000000      

  

Flajolet-Martin Sketch [1] 
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FM Sketch 
A single-pass algorithm : 

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  

B = 11010000000000      

  

Input data 

stream 

h(b) = 10001010011011         t(h(b)) = 10000000000000      

  

R = 4 

  

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  
h(c) = 00010110010110         t(h(c)) = 00010000000000      

  
h(b) = 10001010011011         t(h(b)) = 10000000000000      

  

Flajolet-Martin Sketch [1] 
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FM Sketch 
A single-pass algorithm : 

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  

B = 11010000000000      

  

Input data 

stream 

h(b) = 10001010011011         t(h(b)) = 10000000000000      

  

R = 4 

  

h(a) = 01001111011010         t(h(a)) = 01000000000000      

  
h(c) = 00010110010110         t(h(c)) = 00010000000000      

  
h(b) = 10001010011011         t(h(b)) = 10000000000000      

  

• This single-pass algorithm is adapted to data streams 

• Few pieces of information need to be stored in the RAM 

• R is a random variable such that : 

  

FRE 2log)( 

Flajolet-Martin Sketch [1] 
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How to estimate E(R) ? 

Input data 

stream 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 

Bm = 11010000000000      

  

Rm = 4 

  

Collection of m Sketch 

Deterministic 

rooting of h(si)   

• The first bits of h(si) are used to affect each element to a sketch 

if m = 16, the 4 first bits of h(si) represent the ID of the corresponding Sketch 

h(s1) = 0011001000101  -> 0011 = 3 -> s1 is affected to the 3th sketch 

• Each Sketch counts approximately F/m distinct elements 

Flajolet-Martin Sketch [1] 
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How to estimate E(R) ? 

Input data 

stream 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 
FM Sketch 

FM Sketch 

Bm = 

11010000000000      

  

Rm = 

4 

  

Collection of m Sketch 

Deterministic 

rooting of h(si)   



)(2 RE

m

F



 

m

i

mR
mm

F 1

1

2
Stochastic average 

Flajolet-Martin Sketch [1] 
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Two types of summary 

Specific summaries :  dedicated to a single query (or few)   

• Flajolet-Martin Sketch : approximates the number of unique objects in a stream;  

• Bloom Filter : efficiently tests if an element is a member of a predefine set; 

• Count-Sketch : efficiently finds the k most frequent elements of a set; 

• Count-Min Sketch :  enumerates the number of elements with a particular value, 

or within an interval of values.  

Generic summaries : allow a large range of queries on any past 

period  
• StreamSamp : based on successive windowing and sampling;  

• CluStream : based on micro-clustering; 

• DenStream : based on evolving micro-clustering; 

  

Detailed in this talk  
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Sampling based summaries 

Objectives of a generic summary : 

• Summarizes the entire history of the data stream 

• Requires a bounded memory space 

• Allows a large range of queries, including supervised and unsupervised analysis 

  

Summarize by sampling the tuples : 

• The sampling technics are adapted to incremental processing 

• A limited number of tuples are stored 

• The stored tuples constitute a representative sample 

• The recent past can be favored in terms of accuracy (i.e. sampling rate) 

  



36 

Sampling based summaries 

Reservoir sampling [2] 

• The reservoir is a uniform sampling; 

• The sampling rate decreases over time; 

• The probability that tuples are included in the reservoir is : k / Nb_Emitted_Tuples   

Time 

Tuple 

1 Tuple 

2 

Tuple 

k 

…
…

…

…
.. 

t t +1 

New tuple Reservoir 

Selection of the 

tuple to delete  
(uniform sampling) 

Insert 
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Sampling based summaries 

Tuple 1 

Tuple 2 

Tuple 3 

Tuple 4 

Sample 1 

Order 0 Order 1 Order 2 

Input data 

stream 

a

Uniform 

sampling 

StreamSamp [3] 
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Sampling based summaries 

Tuple 5 

Tuple 6 

Tuple 7 

Tuple 8 

Sample 2 

Order 0 Order 1 Order 2 

Input data 

stream 

a

Tuple 1 

Tuple 3 

Tuple 4 

Sample 1 

Tuple 2 

Uniform 

sampling 

StreamSamp [3] 
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Sampling based summaries 

Tuple 9 

Tuple 10 

Tuple 11 

Tuple 12 

Sample 3 

Order 0 Order 1 Order 2 

Input data 

stream 

a

Tuple 5 

Tuple 7 

Tuple 8 

Sample 2 

Tuple 6 

Tuple 1 

Tuple 2 

Tuple 3 

Tuple 4 

Sample 1 

a

2

Fusion 

Uniform 

sampling 

Tuple 2 

Tuple 3 

Tuple 5 

Tuple 8 

Sample 1-

2 

StreamSamp [3] 
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Sampling based summaries 

Tuple 13 

Tuple 14 

Tuple 15 

Tuple 16 

Sample 4 

Order 0 Order 1 Order 2 

Input data 

stream 

a

Tuple 9 

Tuple 11 

Tuple 12 

Sample 3 

Tuple 10 

Uniform 

sampling 

Tuple 2 

Tuple 3 

Tuple 5 

Tuple 8 

Sample 1-

2 

StreamSamp [3] 
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Sampling based summaries 

Tuple 17 

Tuple 18 

Tuple 19 

Tuple 20 

Sample 5 

Order 0 Order 1 Order 2 

Input data 

stream 

a

Uniform 

sampling 

Tuple 2 

Tuple 3 

Tuple 5 

Tuple 8 

Sample 1-

2 

Tuple 13 

Tuple 15 

Tuple 16 

Sample 4 

Tuple 14 

Tuple 9 

Tuple 10 

Tuple 11 

Tuple 12 

Sample 3 

StreamSamp [3] 
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Sampling based summaries 

Tuple 17 

Tuple 18 

Tuple 19 

Tuple 20 

Sample 5 

Order 0 Order 1 Order 2 

Input data 

stream 

a

Uniform 

sampling 

Tuple 2 

Tuple 3 

Tuple 5 

Tuple 8 

Sample 1-

2 Tuple 13 

Tuple 15 

Tuple 16 

Sample 4 

Tuple 14 

Tuple 9 

Tuple 10 

Tuple 11 

Tuple 12 

Sample 3 

a

2

Fusion 

Tuple 9 

Tuple 11 

Tuple 14 

Tuple 16 

Sample 3-

4 

StreamSamp [3] 
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Sampling based summaries 

Order 0 Order 1 Order 2 

Input data 

stream 

a

Uniform 

sampling 

a

2

Fusion 

a

4

Fusion 

StreamSamp [3] 
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Sampling based summaries 

• A sample gathers k uniformly drawn tuples 

 

• A collection of samples gathers h samples 

 

• Each collection has an order o 

 

• The sampling rate of samples is equal to   
a

2o

Time 

(Present) (Past) 

Order 

0 

Order 

1 
Order 

2 

StreamSamp [3] 
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Sampling based summaries 

Time 
Order 

0 
Order 

1 

Order 

2 

How to exploit this summary offline ?  

Fusion of all samples 

Weighting of tuples to keep 

their representativeness   

Wtuple =
2o

a

Use of any Datamining approach able to 

process a weighted training set  

StreamSamp [3] 
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Two types of summary 

Specific summaries :  dedicated to a single query (or few)   

• Flajolet-Martin Sketch : approximates the number of unique objects in a stream;  

• Bloom Filter : efficiently tests if an element is a member of a predefine set; 

• Count-Sketch : efficiently finds the k most frequent elements of a set; 

• Count-Min Sketch :  enumerates the number of elements with a particular value, 

or within an interval of values.  

Generic summaries : allow a large range of queries on any past 

period  
• StreamSamp : based on successive windowing and sampling;  

• CluStream : based on micro-clustering; 

• DenStream : based on evolving micro-clustering; 
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Micro-clustering based summaries 

What is a micro-clustering ?  

• Micro-clusters (MC) are small groups of tuples,   

• MC are represented by features which locally describe the density of tuples, 

• DenStream : Micro-clustering approache handle evolving data, 

• MC are maintained in RAM memory within a bounded memory space 

• MC summarize the density of the input data stream, while giving more 

importance to the recent past.  

47 
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DenStream [4] 

• Density based micro-clustering  

• Weighting of the tuples over time   

Micro-clustering based summaries 
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Var 1 

Var 2 

Initialization of the micro-

clusters with DBscan 

MC(cj,rj,wj) 

Parameters : 
- Minimum weight of Mc 

- Maximum variance of Mc 

- Fading factor  

Micro-clustering based summaries 

DenStream [4] 
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Var 1 

Var 2 

Received tuple 

Micro-clustering based summaries 

DenStream [4] 
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Var 2 

Fading of the micro-clusters 

Micro-clustering based summaries 

DenStream [4] 
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Var 1 

Var 2 

Closest Micro-

cluster 

 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Test on the 

new variance 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Here, the new variance is greater 

than the maximum variance 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

An “outlier” 

 micro-cluster is created 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Received tuple 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Fading of the micro-clusters 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Closest micro-

cluster 

 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Test on the 

new variance 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Here, the new variance is less than 

the maximum variance 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

1) The tuple is assigned to 

the micro-cluster 

2) The weight, the variance 

and the mean are updated 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Received tuple 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Fading of the micro-clusters 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Closest Micro-

cluster 

 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Test on the new variance, 

which is too important  

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Closest “outlier” 

Micro-cluster 

 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

Test on the 

new variance 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

In this case, the tuple is assigned to 

the “outlier” micro-cluster 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

The weight of the “outlier”  micro-cluster 

is greater than the minimum weight 

DenStream [4] 

Micro-clustering based summaries 
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Var 1 

Var 2 

The “outlier” micro-cluster 

becomes a regular micro-

cluster  

DenStream [4] 

Micro-clustering based summaries 
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How to exploit this summary to estimate the density of the data stream ?  

… the example of the Parzen widows estimator [5] … 

DenStream [4] 

Micro-clustering based summaries 
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Adapted Parzen window [5] :  

• W : total weight of the data stream  

• C : number of micro-clusters 

• wj : weight of the j-th micro-cluster 

• rj : standard deviation of the j-th micro-cluster 

•     : smoothing parameter   

  
d

➡Law of total 

variance 

Hypothesis : each tuple represents a set of none-

observed tuples, with a fixed effective and a 

standard deviation equal to d

DenStream [4] 

Micro-clustering based summaries 
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Conclusion 

Main ideas to retain : 

 

• Summaries allow to process data streams with very high emission rate,  

• By using limited hardware resources (CPU, RAM).  

• In most cases, a trade off must be reached between the accuracy and the available 

memory. 

• There are two types of summary (specific and generic) 

• Limitation : most of generic summaries involves user parameters.  
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1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 
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5. Two examples 

6. Concept drift  

7. Make at simplest 
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Outline 

1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 

3. Evaluation of on-line classifiers 

4. Taxonomy of classifier for data stream  

5. Two examples 

6. Concept drift  

7. Make at simplest 
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From Batch mode to Online Learning 

 Categorical target variable -> Classifier    

 Numeric target variable ->  Regression 

 Time series -> Forecasting 

 

 

 

 

What is supervised learning ? 

• Output : prediction of a target variable for new observations    

• Data : a supervised model is learned from labeled examples 

• Objective : learn regularities from the training set and 

generalize it (with parsimony)   

Several types of supervised models : 

In this talk … 
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Var 1 Var 2 … Clas

s 

O 12 … A 

Y 98 … B 

Y 4 … A 

Training set 

Classifi

er 

Var 1 

Var 2 

Var k 
…

…
 

Class 

A / B 

A learning algorithm exploits the training set to automatically adjust the 

classifier 

From Batch mode to Online Learning 
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 An entire dataset is available   

 The examples can be processed several times  

 Weak constrain on the computing time 

 The distribution of data does not change  

 

 

Batch mode learning : 

• Can be interrupted before its end 

• Returns a valid classifier at any time 

• Is expected to find better and better classifier  

• Relevant for  time-critical application 

 

 

 

Any time learning algorithm : 

From Batch mode to Online Learning 
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 Only a single pass on the training examples is required.   

 The classifier is updated at each example.  

 Avoid the exhaustive storage of the examples in the RAM.  

 Relevant for time-critical applications and for  progressively 
recorded data. 

 

 

 

Incremental learning algorithm : 

• The training set is substituted by an input data stream 

• The classifier is continually updated over time, 

• By exploiting the current tuple, 

• With a very low latency. 

• The distribution of data can change over time (concept drift) 

 

 

 

 

Online learning algorithm : 

From Batch mode to Online Learning 
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Machine Learning: What are the pros and cons of 

offline vs. online learning? 

 

Try to find answers to: 
(which is which) 

 
• Computationally much faster and more space efficient 

• Usually easier to implement 

• A more general framework. 

• More difficult to maintain in production. 

• More difficult to evaluate online 

• Usually more difficult to get "right". 

• More difficult to evaluate in an offline setting, too.  

• Faster and cheaper 

• … 

 

 

 

From Batch mode to Online Learning 
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Focus today - Supervised classifier 

 Try to find answers to: 

– Can the examples be stored in memory? 

– Which is the availability of the examples: any presents? In stream ? Visible only 

once? 

– Is the concept stationary? 

– Does the algorithm have to be anytime? (time critical) 

– What is the available time to update the model? 

– … 

 

 The answers to these questions will give indications to select the algorithms 

adapted to the situation and to know if one need an incremental algorithm, 

even a specific algorithm for data stream. 

From Batch mode to Online Learning 
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 STREAM MINING IS 

REQUIRED… SOMETIMES 

FROM BATCH MODE TO ONLINE LEARNING 
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but… 

 

Do not make the confusion! 

 

 Between Online Learning 

 

 and Online Deployment 

A lot of advantages and 

drawback for both – but offline 

learning used 99% of the time 

From Batch mode to Online Learning 
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“Incremental / online learning”: a new topic? 

The first learning algorithms were all incremental: 

 

• Perceptron [Rosenblatt, 1957-1962] 

• CHECKER [Samuel, 1959] 

• ARCH [Winston, 1970] 

• Version Space [Mitchell, 1978, 1982], ... 

 

 

However, most existing learning algorithms are not! 

From Batch mode to Online Learning 
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Why not use the classic algorithms? 

Domingos, P., & Hulten, G. (2000). Mining 

high-speed data streams. SIGKDD 

Classic decision 

tree learners 

assume all training 

data can be 

simultaneously 

stored in main 

memory 

From Batch mode to Online Learning 
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Stream - supervised classification: what changes? 

 Properties 

– Receives examples one-by-one 

– discards the example after processing it. 

– Produce a hypothesis after each example is processed  

– i.e. produces a series of hypotheses 

– No distinct phases for learning and operation  

– i.e. produced hypotheses can be used in classification 

– Allowed to store other parameters than model parameters 
(e.g. learning rate) 

– Is a real time system 

– Constraints: time, memory, … 

– What is affected: hypotheses prediction accuracy 

– Can never stop 

– No i. i. d 

 

From Batch mode to Online Learning 
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Outline 

1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 

3. Evaluation of on-line classifiers 

4. Taxonomy of classifier for data stream  

5. Two examples 

6. Concept drift  

7. Make at simplest 
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Implementation of on-line classifiers 

Online 

Classifier X

Input stream : 

explicative variables 

Ŷ

Output stream : 

predicted labels 
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Online 

Classifier X
Ŷ

Update 

Y
Second input 

stream : Real labels 

Comparison of real 

and predicted 

labels 

Implementation of on-line classifiers 
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Online 

Classifier X

Y

Ŷ

Update 

Evaluation 

Perf 

Time 

Implementation of on-line classifiers 
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Online 

Classifier X

Y

Ŷ

Update 

Evaluation 

Perf 

Time 

In practice, this input 

stream may be delayed 

A on-line classifier predicts the class label of tuples before receiving the true label …  

Implementation of on-line classifiers 
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Online 

Classifier 

Example : online advertising targeting 

User 

Ad 

• Input tuples : couples “User – Ad” 

P(     |           ) 

• Out tuples : estimated probability that a User clicks on an Ad 

Implementation of on-line classifiers 
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Online 

Classifier 

Example : online advertising targeting 

User 

Ad 

P(     |           ) 

Browser Sending the Ad 

AgrMax(Ads)  

Waiting for a click  

Implementation of on-line classifiers 



96 

Online 

Classifier 

Example : online advertising targeting 

User 

Ad 

P(     |           ) 

Browser Sending the Ad 

Waiting for a click  After a fixed 

delay 

Update 

Real labels 

$ 
If clicked 

Implementation of on-line classifiers 
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 Two streams exist 

 Two drift detection have to be managed 

 

 

Labeled Data stream 

Unlabeled data stream Predicted labels 

Training 

Deployment 

models 

over the 

time 

f:XC 

X1 X2 X3 X4 X5 … 

0 1 1 0 0 … 

X1 X2 X3 X4 X5 … 

? ? ? ? ? ? 
X1 X2 X3 X4 X5 … 

1 0 1 1 0 … 

Implementation of on-line classifiers 
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Outline 

1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 

3. Evaluation of on-line classifiers 

4. Taxonomy of classifier for data stream  

5. Two examples 

6. Concept drift  

7. Make at simplest 
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Online 

Classifier X

Y

Ŷ

Update 

The stream of labeled tuples is split 

Evaluation on the recent past 

t t - k 

Sliding window 

Use of standard evaluation criteria 

(Accuracy, BER, Lift curve, AUC … etc.)  

Unbiased evaluation   

A – Holdout Evaluation 

Evaluation of on-line classifiers 
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Online 

Classifier X

Y

Ŷ

2 - Update  

B – Prequential Evaluation 

1 - Update  

On-line 

Evaluation 





n

1i

ii )ŷ,y(LS

From the beginning of the stream 

On the recent past 

(buffer on a sliding window) 

Each labeled tuples is used twice  

Evaluation of on-line classifiers 
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C – Kappa Statistic 

• p0: prequential accuracy of the classifier 

 

• pc: probability that a random classifier makes a correct prediction. 

 

 

Κ  = (p0 − pc)/(1 − pc) 

 

 

• K = 1 if the classifier is always correct 

 

• K = 0 if the predictions coincide with the correct ones as often as 

those of the random classifier 

Evaluation of on-line classifiers 
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RAM Hours 

A server RAM hour is the amount of RAM allocated to a server multiplied by the number of hours the server has been 

deployed. 

 

Example: One 2 GB server deployed for 1 hour = 2 server RAM hours.  

Evaluation of on-line classifiers 
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Outline 

1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 

3. Evaluation of on-line classifiers 

4. Taxonomy of classifier for data stream  

5. Two examples 

6. Concept drift  

7. Make at simplest 
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full example memory Store all examples 

•  allows for efficient restructuring 

•  good accuracy 

•  huge storage needed 

Examples: ID5, ID5R, ITI 

 

no example memory Only store statistical information in the nodes 

•  loss of accuracy (depending on the information stored or again huge storage 

needed) 

•  relatively low storage space 

Examples: ID4 

 

partial example memory Only store selected examples 

•  trade of between storage space and accuracy 

Examples: FLORA, AQ-PM 

Taxonomy of classifier for data stream  
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Full Memory 

Weighting 

Aging 

Partial Memory  

Windowing 

Fixed Size Windows  

Weighting 

Aging 

Adaptive Size Window 

Weighting 

Aging 

"No memory" 

 

Data Management 

Detection 

Monitoring of performances 

Monitoring of properties of the 

classification model 

Monitoring of properties of the 

data 

Adaptation 

Blind methods 

'Informed methods' 

Model Management 

Number 

Granularity 

Weights 

It is necessary to adapt the classifier 

to the application context 

Taxonomy of classifier for data stream  
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Vincent Lemaire - (c) Orange Labs - EPAT 2014 

Incremental Algorithm (no stream) 

 Decision Tree 

– ID4 (Schlimmer - ML’86) 

– ID5/ITI (Utgoff – ML’97) 

– SPRINT (Shaffer - VLDB’96) 

– … 

 Naive Bayes 

– Incremental (for the standard NB) 

– Learn fastly with a low variance (Domingos – ML’97) 

– Can be combined with decision tree: NBTree (Kohavi – KDD’96) 

Taxonomy of classifier for data stream  
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Incremental Algorithm (no stream) 

 Neural Networks 

– IOLIN (Cohen - TDM’04) 

– learn++ (Polikar - IJCNN’02),… 

 Support Vector Machine 

– TSVM (Transductive SVM –  Klinkenberg IJCAI’01),  

– PSVM (Proximal SVM – Mangasarian KDD’01),… 

– LASVM (Bordes 2005) 

 Rules based systems 

– AQ15 (Michalski - AAAI’86), AQ-PM (Maloof/Michalski - ML’00) 

– STAGGER (Schlimmer - ML’86) 

– FLORA (Widmer - ML’96) 

Taxonomy of classifier for data stream  
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Incremental Algorithm (for stream) 

 Rules 

– FACIL (Ferrer-Troyano – SAC’04,05,06) 

 Ensemble  

– SEA (Street - KDD’01) based on C4.5 

 K-nn 

– ANNCAD (Law – LNCS‘05). 

– IBLS-Stream (Shaker et al – Evolving Systems” journal 2012) 

 SVM 

– CVM (Tsang – JMLR’06) 

 

Taxonomy of classifier for data stream  
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Incremental Algorithm (for stream) 

 Decision Tree – the only ones used ? 

– Domingos : VFDT (KDD’00), CVFDT (KDD’01) 

– Gama : VFDTc (KDD’03), UFFT (SAC’04) 

– Kirkby : Ensemble d’Hoeffding Trees (KDD’09) 

– del Campo-Avila : IADEM (LNCS’06) 

Taxonomy of classifier for data stream  



110 

Properties of a efficient algorithm 

 

• low and constant duration to learn from the examples; 

• read  only once the examples in their order of arrival; 

• use of a quantity of memory fixed “a priori;” 

• production of a model close to the “offline model” 

• (anytime) 

• concept drift management 

(0) Domingos, P. et G. Hulten (2001). Catching up with the data : Research issues in mining data streams. In 

Workshop on Research Issues in Data Mining and Knowledge Discovery. 

(1) Fayyad, U. M., G. Piatetsky-Shapiro, P. Smyth, et R. Uthurusamy (1996). Advances in Knowledge 

Discovery and Data Mining. Menlo Park, CA, USA : American Association for Artificial Intelligence 

(2) Hulten, G., L. Spencer, et P. Domingos (2001). Mining time-changing data streams. In Proceedings of the 

seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 97–106. ACM 

New York, NY, USA. 

(3) Stonebraker, M., U. Çetintemel, et S. Zdonik (2005). The 8 requirements of real-time stream processing. 

ACM SIGMOD Record 34(4), 42–47. 

Taxonomy of classifier for data stream  
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Outline 

1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 

3. Evaluation of on-line classifiers 

4. Taxonomy of classifier for data stream  

5. Two examples 

6. Concept drift  

7. Make at simplest 
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Definitions 

 A classification problem is defined as: 

– N is a set of training examples of the form (x, y) 

– x is a vector of d attributes 

– y is a discrete class label 

 Goal: To produce from the examples a model y=f(x) that 

predict the classes y for future examples x with high accuracy 

Incremental Decision Tree 
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Decision Tree Learning 

 One of the most effective and widely-
used classification methods 

 Induce models in the form of 
decision trees 

– Each node contains a test on the 
attribute 

– Each branch from a node corresponds 
to a possible outcome of the test 

– Each leaf contains a class prediction 

– A decision tree is learned by recursively 
replacing leaves by test nodes, starting 
at the root 

Age<30? 

Car Type= 
Sports Car? 

No 

Yes 

Yes 

Yes No 

No 

Incremental Decision Tree 
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Incremental Decision Tree 

How an incremental decision trees is learned ? 

 Single pass algorithm, 

 With a low latency,  

 Which avoids the exhaustive storage of training examples in the RAM. 

 The drift is not managed  

 

Var 1 Var 2 … Clas

s 

O 12 … A 

Y 98 … B 

Y 4 … A 

Training examples are processed one by one 

X

Input stream : labeled examples  

Y

The example of the Hoeffding Trees [D] 
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• Online decision tree: 

– a bound… 

– a split criterion 

– summaries in the leaves 

– a local model 

The 4 elements of an online tree 

Incremental Decision Tree 
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• Online decision tree: 

– a bound: How many examples before cutting an attribute ? 

– a split criterion: Which attribute and which cut point ? 

– summaries in the leaves; How to manage high speed data streams ? 

– a local model: How to improve the classifier ?  

The 4 elements of an online tree 

Incremental Decision Tree 
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The 4 elements of an online tree 

• Online decision tree: 

– a bound… 

– a split criterion 

– summaries in the leaves 

– a local model 

Incremental Decision Tree 
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Key ideas : 

The best attribute at a node is found by exploiting a small subset of the labeled 

examples that pass through that node : 

• The first examples are exploited to choose the root attribute 

• Then, the other examples are passed down to the corresponding leaves 

• The attributes to be split are recursively chosen … 

 

 The Hoeffding bound answers the question : How many examples are required 
to split an attribute ?  

Age<30? 

Input stream 

Sub-stream (Yes) Sub-stream (No) 

Car Type= 
Sports Car? 

Status = 
Married? 

The example of the Hoeffding Trees [D] 

Incremental Decision Tree 
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Hoeffding Bound 

 Consider a random variable a whose range is R 

 Suppose we have n observations of a 

 Mean:  

 Hoeffding bound states: 

 With probability 1- , the true mean of a is at least 

          where  

n

R

2

)/1ln(2 
 


_

a

_

a

Incremental Decision Tree 
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How many examples are enough? 

 Let G(Xi) be the heuristic measure used to choose test attributes (e.g. 
Information Gain, Gini Index) 

 Xa : the attribute with the highest attribute evaluation value after seeing 
n examples. 

 Xb : the attribute with the second highest split evaluation function value 
after seeing n examples. 

 Given a desired , if                                       after seeing n examples at 
a node,  

– Hoeffding bound guarantees the true                                , with 
probability 1-. 

– This node can be split using Xa, the succeeding examples will be passed 
to the new leaves. 

0 GG

n

R

2

)/1ln(2 
 

 )()( ba XGXGG

Incremental Decision Tree 
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The algorithm   

Input stream 

DG >e
• Find the two best attributes 

• Check the condition  

If not satisfied 

Age<30? 

• Create a new test at the current 

node 

• Split the stream of examples 

• Create 2 new leaves 

If satisfied 

Car Type= 
Sports Car? 

Status = 
Married? 

• Recursively run the algorithm on 

new leaves  

 

The example of the Hoeffding Trees [D] 

This algorithm has been adapted in order to manage concept drift [E] 

 By maintaining an incremental tree on a sliding windows 

 Which allows to forget the old tuples 

 A collection of alternative sub-trees is maintained in memory and used in case of 

drift 

 

Incremental Decision Tree 
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An example of Hoeffding Tree : VFDT (Very Fast 

Decision Tree) 

 A decision-tree learning system based on the Hoeffding tree 

algorithm 

 Split on the current best attribute (δ), if the difference is less 

than a user-specified threshold (T) 

– Wasteful to decide between identical attributes 

 Compute G and check for split periodically (nmin) 

 Memory management 

– Memory dominated by sufficient statistics 

“Mining High-Speed Data Streams”, KDD 2000. 

      Pedro Domingos, Geoff Hulten 

Incremental Decision Tree 
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Experiment Results (VFDT vs. C4.5) 

 Compared VFDT and C4.5 (Quinlan, 1993) 

 Same memory limit for both (40 MB) 

– 100k examples for C4.5 

 VFDT settings: δ= 10-7, T=5%, nmin=200 

 Domains: 2 classes, 100 binary attributes 

 Fifteen synthetic trees 2.2k – 500k leaves 

 Noise from 0% to 30% 

Incremental Decision Tree 
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Experiment Results 

Accuracy as a function of the number of training examples 

Incremental Decision Tree 
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Experiment Results 

Tree size as a function of number of training examples 

Incremental Decision Tree 
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An example of Hoeffding Tree in case of concept 

drift : CVFDT 

 CVFDT (Concept-adapting Very Fast Decision Tree learner) 

– Extend VFDT 

– Maintain VFDT’s speed and accuracy 

– Detect and respond to changes in the example-generating 

process 

 

 See the Part “Concept Drift” of this talk 

Incremental Decision Tree 
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The 4 elements of an online tree 

• Online decision tree: 

– a bound… 

– a split criterion 

– summaries in the leaves 

– a local model 

Incremental Decision Tree 
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Differents Split Criterion 

 Used to transform a leaf into a node 

– determine at the same time on  

– which attribute to cut and  

– on which value (cut point). 

 

 Uses the information contained in the summaries: 

– not on all data 

– a definitive action  

 

 Batch algorithm used: 

– Gain ratio using entropie (C4.5) 

– Gini (CART) 

– MODL Level 

 

Incremental Decision Tree 
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A criterion for attribute selection 

 Which is the best attribute? 

– The one which will result in the smallest tree 

– Heuristic: choose the attribute that produces the “purest” nodes 

 Popular impurity criterion: information gain 

– Information gain increases with the average purity of the subsets 

that an attribute produces 

– Information gain uses entropy H(p) 

 Strategy: choose attribute that results in greatest information 

gain 

Incremental Decision Tree 
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Which attribute to select? 

Incremental Decision Tree 
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Consider entropy H(p) 

pure, 100% yes 

not pure at all, 40% yes 

pure, 100% yes 

not pure at all, 40% yes 

allmost 1 bit of information required 

to distinguish yes and no 

Incremental Decision Tree 
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Entropy 

Entropy: H(p) = – plog(p) – (1–p)log(1–p) 

 

H(0) = 0  pure node, distribution is skewed 
H(1) = 0  pure node, distribution is skewed 

H(0.5) = 1 mixed node, equal distribution 

log(p) is the 2-log 

of p 

nnn ppppppppp logloglog),,,entropy( 221121  

Incremental Decision Tree 
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Example: attribute “Outlook”  

 “Outlook” = “Sunny”: 

 

 

 “Outlook” = “Overcast”: 

 

 

 “Outlook” = “Rainy”: 

 

 

 Expected information for “Outlook”: 

bits 971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3] 

bits 0)0log(0)1log(10)entropy(1,)info([4,0] 

bits 971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2] 

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2] 

bits 693.0

Note: log(0) is 
not defined, but 
we evaluate 
0*log(0) as 
zero 

Incremental Decision Tree 
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Computing the information gain 

 Information gain:  

(information before split) – (information after split) 

 

 

 

 Information gain for attributes from weather data: 

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" 

bits 247.0

bits 247.0)Outlook"gain(" 

bits 029.0)e"Temperaturgain(" 

bits 152.0)Humidity"gain(" 

bits 048.0)Windy"gain(" 

Incremental Decision Tree 
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Continuing to split 

bits 571.0)e"Temperaturgain(" 

bits 971.0)Humidity"gain(" 

bits 020.0)Windy"gain(" 

Incremental Decision Tree 



136 

The final decision tree 

 Note: not all leaves need to be pure; sometimes identical instances have 

different classes 

 Splitting stops when data can’t be split any further 

Incremental Decision Tree 
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Highly-branching attributes 

 Problematic: attributes with a large number of values (extreme 

case: customer ID) 

 Subsets are more likely to be pure if there is a large number of 

values 

– Information gain is biased towards choosing attributes with a 

large number of values 

– This may result in overfitting (selection of an attribute that is non-

optimal for prediction) 

 

Incremental Decision Tree 
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Gain ratio 

 Gain ratio: a modification of the information gain that reduces its bias on 

high-branch attributes 

 Gain ratio should be  

– Large when data is evenly spread 

– Small when all data belong to one branch 

 Gain ratio takes number and size of branches into account when choosing 

an attribute 

– It corrects the information gain by taking the intrinsic information of a split 

into account (i.e. how much info do we need to tell which branch an 

instance belongs to) 

Incremental Decision Tree 
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The 4 elements of an online tree 

• Online decision tree: 

– a bound… 

– a split criterion 

– summaries in the leaves 

– a local model 

Incremental Decision Tree 
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Summaries in the leaves 

 Numerical attributes 

– Exhaustive counts  [Gama2003] 

– Partition Incremental Discretization [Gama2006] 

– VFML: intervals defined by first values and used as cut points 

[Domingos] 

– Gaussian approximation [Pfahringer2008] 

– Quantiles based summary [GK2001] 

 

 Categorical attributes 

– for each categorical variable and for each value the number of 

occurrences is stored (but CMS could be used) 

 

Incremental Decision Tree 
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The 4 elements of an online tree 

• Online decision tree: 

– a bound… 

– a split criterion 

– summaries in the leaves 

– a local model 

Incremental Decision Tree 
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Local model 

 Purpose: improve the quality of the tree 

(especially at the beginning of training) 

 A good local model for online decision trees has to: 

– consume a small amount of memory 

– be fast to build 

– be fast to return a prediction 

 

 A study on the speed (in number of examples) of different 

classifiers show that 

  naive Bayes classifier has these properties 

VFDT -> VFDTc 

Incremental Decision Tree 
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Local model: naive Bayes classifier 

 to predict the class it requires an estimation of the class 

conditional density, for every attribute j, P(Vj|C): 

   

Incremental Decision Tree 
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Experimentations: Influence of the local model 

Incremental Decision Tree 
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Experimentations: Influence of the local model 

Incremental Decision Tree 
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The 4 elements of an online tree 

• Online decision tree: 

– a bound… 

– a split criterion 

– summaries in the leaves 

– a local model 

Note : Summaries are used by 

the split criterion and the local 

model. 

 

Idea : Try to have these 3 

‘coherent’ 

 

Incremental Decision Tree 



147 

2 EXAMPLES 
HOEFFDING TREE, NAÏVE BAYES 
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Bayes’ Rule 

)()|()()|(),( CPCXPXPXCPXCP 

)(

)()|(
)|(

XP

CPCXP
XCP 

Incremental Naïve Bayes 
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Naive Bayes Classifiers 

Task: Classify a new instance D based on a tuple 

of attribute values                                  into one 

of the classes cj  C 
nxxxD ,,, 21 

),,,|(argmax 21 nj
Cc

MAP xxxcPc
j






),,,(

)()|,,,(
argmax

21

21

n

jjn

Cc xxxP

cPcxxxP

j 







)()|,,,(argmax 21 jjn
Cc

cPcxxxP
j






Incremental Naïve Bayes 
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Naïve Bayes Classifier:  

Naïve Bayes Assumption 

 P(cj) 

– Can be estimated from the frequency of classes 
in the training examples. 

Naïve Bayes Conditional Independence Assumption: 

 Assume that the probability of observing the 
conjunction of attributes is equal to the product 
of the individual probabilities P(xi|cj). 

Incremental Naïve Bayes 
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Principe : hypothèse d’indépendance conditionnelle des variables  

explicatives entre elles 

 

Point fort : prédicteur très simple à calculer à partir des estimations  

univariées et des probabilités a priori des modalités cible 

 

Limites :  

- dégradation des performances lorsque les variables sont  redondantes 

- peu interprétable pour un grand nombre de variables 

 



 






J

j

K

k

j

n

kj

K

k

n

k
n

NB

CxpCP

CxpCYP

xXCYP

1 1

1

)()(

)()(

)(

Incremental Naïve Bayes 
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• Each instance, xk, is a vector of values (numerical or categorical)  

•  However, when the Xi are continuous we must choose some other 

way to represent the distributions P(Xi | Y). 

• discretization / grouping respectively for numerical / categorical 

variables 

• using a discretization method and a grouping method. 
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Well performing methods  

for supervised discretization 

 MDLP: find the best intervals based on  

the entropy. The best number of interval 

is found using a MDL approach.  
Fayyad U, Irani K. Multi-interval discretization of continuous-valued attributes for 
classification learning. Proceedings of the International Joint Conference on Uncertainty in 

AI. 1993 

 

 MODL: based on Bayesian formalism and MDL principle. This 

method aims to find the best discretization parameters 

(intervals number, intervals boundaries, classes distribution 

within an interval) in a Bayesian way. 
Boullé M. MODL: A Bayes optimal discretization method for continuous attributes. 

Machine Learning. 2006. 

Discretization 

Batch Incremental 

Fixed size  

data 
Stream 

Incremental Naïve Bayes 
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Related works – DBMS community 

Online statistics 

Goal: find the best execution plan 

 Reservoir (kind of « reservoir sampling ») +  

« EqualFrequency histogram » 
Gibbons P, Matias Y, Poosala V. Fast incremental maintenance of approximate 
histograms. ACM Transactions on Database. 2002 

 Quantiles: many quantiles lists are maintained. If memory 

become full some lists are merged to recover it.  
Manku GS, Rajagopalan S, Lindsay BG. Approximate medians and other quantiles in one 
pass and with limited memory. SIGMOD’98 

 Quantiles: a data structure is used to maintain online ranks and 

errors. This method has strong error garantee on the quantiles 
Greenwald M, Khanna S. Space-efficient online computation of quantile summaries. 
SIGMOD’01 

Discretization 

Batch Incremental 

Fixed size  

data 
Stream 

Incremental Naïve Bayes 
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Related works – Data mining  

Incremental discretization 

 IFFD : Incremental Flexible Frequency  

Discretization. Keep all the data and adapt  

interval sizes between a minimum and a maximum 
Lu J, Yang Y, Webb G. Incremental discretization for naive-bayes classifier. Advanced 

Data Mining and Applications. 2006 

 PID: two levels discretization 

level 1: mix between “EqualFreq” and “EqualWidth” 

level 2: all batch methods 
Gama J, Pinto C. Discretization from data streams: applications to histograms and data 
mining. Proceedings of the 2006 ACM symposium on Applied Computing. 2006. 

 Gaussian approximation: approximate the data distribution 

with a Gaussian per class: μ and σ parameters are kept online.  

Very low memory footprint. 
Pfahringer B, Holmes G, Kirkby R. Handling numeric attributes in hoeffding trees. 

Advances in Knowledge Discovery and Data Mining. 2008. 

Discretization 

Batch Incremental 

Fixed size  

data 
Stream 

Incremental Naïve Bayes 
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Methods comparison 

Method 
Global  

/ local 
Multi variate Parametric  Supervised 

Online / 

stream 

Equal Width Global No Yes No No 

Equal Freq Global No Yes No No 

Greenwald 

Khanna 
Global No Yes No Yes 

K-means 

clustering 

Global and 

local  
Yes Yes No Yes / No 

PID (Layer 1) Global No Yes No Yes  

MDLP / MODL 
Global and 

local 
No No Yes No 

IFFD Global No Yes No Yes / No 

Gaussian Global No Yes No Yes 

3 criteria were proposed by: Dougherty J, Kohavi R, Sahami M.  

Supervised and unsupervised discretization of continuous features. ML1995. 

Incremental Naïve Bayes 
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Online Discretization: Gaussian approximation 

Incremental Naïve Bayes 
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Online Discretization: A two levels discretization 

 

 

 Level 1: Greenwald et Khanna - GK (or another method 

adapted to streams) based on a quantile summary 

 global / not supervised / parametric / online 

 

 Level 2: MODL or MDLP 

methods based on the entropy for intervals quality and on MDL 

principle to stop finding new intervals 

 global / supervised / without parameters 

 

 Both levels are based on order statistics 

 

Incremental Naïve Bayes 
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Averaging of Naïve Bayes Classifier 

Incremental Naïve Bayes 
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Averaging of Naïve Bayes Classifier 

Incremental Naïve Bayes 

Littérature : les poids sont obtenus suite à un moyennage de modèles 

qui correspondent à des sélections de variables différentes (Hoeting et 

al., 1999) (Boullé, 2007) 
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Wj? Intuition 

on paper board 

Incremental Naïve Bayes 



162 

Benefits of Averaging of Naïve Bayes Classifier 

Same results conclusion 

on the large scale learning 

challenge 

Methods to 

compute the 

weights 

No weights 

Incremental Naïve Bayes 
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Requirements of ‘Online’ Averaging of Naïve 

Bayes Classifier 

The “classic” averaging of naïve Bayes classifier 

requires the storage of all the data 
(a data table allowing the link between the instances and their labels) 

Incremental Naïve Bayes 
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Cost function 



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régularisation log-vraisemblance 

négative 

poids de la régularisation 

 

On cherchera la pondération w qui minimise la log-vraisemblance régularisée 

Incremental Naïve Bayes 
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Régularisation de la log-vraisemblance : 

 





K

k

p

kwwf
1

)(

parcimonie 

• p > 1 : convexe mais non parcimonieux     

• p <= 1 : non convexe mais parcimonieux 

 

21, XX

0.5 

Non parcimonieux 
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1.41 1 

parcimonieux 
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



5.021  ww 1;0 21  ww

Exemple :             deux variables identiques 
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Averaging of Naïve Bayes Classifier – Performances 

Incremental Naïve Bayes 
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Outline 

1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 

3. Evaluation of on-line classifiers 

4. Taxonomy of classifier for data stream  

5. Two examples 

6. Concept drift  

7. Make at simplest 
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• The input stream is not stationary  

• The distribution of data changes over time 

• Two strategies : adaptive learning or drift detection 

• Several types of concept drift :   

What does it means ? 

Virtual drift [B] 

(or covariate shift) 
Concept drift [A] 

P(x,y) = P(x) . P(y|x) 

Original 

data 

Concept drift 
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What kinds of drift can be expected [C]? 

Abrupt 

Gradual 

Incremental 

Reoccuring 

On-line adaptive learning 

Drift detection & models 

management 

Concept drift 

Drift detection 
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Some specific constrains to manage : 

• Adapt to concept drift asap 

 

• Distinguish noise from changes (Robust to noise, Adaptive 
to changes) 

 

• Recognizing and reacting to reoccurring contexts 

 

• Adapting with limited hardware resources (CPU, RAM, I/O) 

Concept drift 
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Manage Drift? 

Context i Context j 

• Either detect and : 

1) Retrain the model 

2) Adapt the current model 

3) Adapt statistics (summaries) on which the model is 

based 

4) Work with a sequence of  

• models 

• summaries 

• or detect anything but train (learn) fastly 

• a single models 

• an ensemble of models) 

Concept drift 



172 

Desired Properties of a System To Handle Concept Drift 

 

• Adapt to concept drift asap 

 

• Distinguish noise from changes 

– robust to noise, but adaptive to changes 

 

• Recognizing and reacting to reoccurring contexts 

 

• Adapting with limited resources 

– time and memory 

Concept drift 
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Adaptive learning strategies 

change detection and 

a follow up reaction 
adapting at every step 

Concept drift 



174 

Adaptive learning strategies 

Concept drift 
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Adaptive learning strategies 

Concept drift 
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Adaptive learning strategies 

Concept drift 
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Adaptive learning strategies 

Concept drift 
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Which approach to use? 

 

• changes occur over time 

• we need models that evolve over time 

• choice of technique depends on 

– what type of change is expected 

– user goals/ applications 

Concept drift 
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Drift detection 

Fixed Classifier 

(applied online) X Ŷ

Drift 

Detection 

 

X
Y

If detected 
• Train a new classifier on 

the recent past 

• Adapt the size of the 

history  

Replace the classifier 

General schema :    

Concept drift 
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Drift Detection 

 

 

 

How to detect the drift ?    

Based on the online evaluation : 

 

• Main idea : if the performance of the classifier changes, that means a drift is 

occurring ...  

• For instance : if the error rate increases, the size of the sliding windows decreases 

and the classifier is retrained [F]. 

• Limitation : the user has to define a threshold 

classifier X

Y

Ŷ

Update 

Evaluation 

Perf 

Time 

Learning  

Algorithm 

 

If detected 

Drift detection 

Concept drift 
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How to detect the drift ?    

 

 

• Main idea : if the distributions of the “current window” and the “reference window” 

are significantly different, that means a drift is occurring …. 

Reference 
window Current window 

tim
e 

Based on the distribution of tuples : 

Drift detection 

Concept drift 
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How to detect the drift ?    

Based on the distribution of tuples : 

 

• In [G] the author uses statistical tests in order to compare the both distributions 

• Welch test – Mean values are the same ? 

• Kolmogorov Smirnov test – Both samples of tuples come from the same distribution ?  

•  A classifier can be exploited to discriminate tuples belonging to both windows [H] 

• If the quality of the classifier is good, that means a drift is occurring …  

• Explicative variables : X 

• Target variable : W (the window) 

 

 

Detection of covariate shift : P(X) 

 

• In [I] a classifier is exploited, the class value is considered as an additional input variable   

• Explicative variables : X and Y 

• Target variable : W (the window) 

Detection of concept shift : P(Y|X) 

? 
= 

Drift detection 

Concept drift 
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More details … see 
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Parameters – The devil inside 

Concept drift 
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No drift assumption? 

Do not use online learning ! 

Concept drift 
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Outline 

1. From Batch mode to Online Learning 

2. Implementation of on-line classifiers 

3. Evaluation of on-line classifiers 

4. Taxonomy of classifier for data stream  

5. Two examples 

6. Concept drift  

7. Make at simplest 
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Make at simplest! 
(the first thing to test, the baseline) 

Full Memory 

Weighting 

Aging 

Partial Memory  

Windowing 

Fixed Size Windows  

Weighting 

Aging 

Adaptive Size Window 

Weighting 

Aging 

"No memory" 

 

Data Management 

Detection 

Monitoring of performances 

Monitoring of properties of the 

classification model 

Monitoring of properties of the 

data 

Adaptation 

Blind methods 

'Informed methods' 

Model Management 

Number 

Granularity 

Weights 
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A classifier trained with few examples but often! 

 Which classifier ? 

• Generative classifiers are better than discriminant classifiers when 

the number of examples is low and there is only one classifier 

(Bouchard 2004) 

• Ensemble of classifiers are very good (Bauer 1999) 

• Bagging of discriminative classifiers supplants a single generative 

classifier (and with a low variance) (Breiman 1996) 

• Methods "very" regularized "are very (too) strong (Cucker 2008) 

 

Make at simplest 
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A classifier trained with few examples but  often! 

 Which classifier ? 

– a random forest (based on «  "Learning with few examples: an empirical study on 

leading classifiers ", Christophe Salperwyck and Vincent Lemaire, in  International Joint 

Conference on Neural Networks (IJCNN July 2011)») 

– using 4096 examples 

 

 

Stream (Waveform) 

RF40 RF40 RF40 

Make at simplest 

http://perso.rd.francetelecom.fr/lemaire/publis/ijcnn_2_2011_camera_ready.pdf
http://perso.rd.francetelecom.fr/lemaire/publis/ijcnn_2_2011_camera_ready.pdf
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Waveform 

VFDT

74

75

76

77

78

79

80

81

82

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 1E+07

VFDT

Make at simplest 
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Waveform 
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Make at simplest 
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Waveform 
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Make at simplest 
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Alternative problem settings 

Make at simplest 
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Alternative problem settings 

Multi-armed bandits explore and exploit online set of decisions, while 

minimizing the cumulated regret between the chosen decisions and 

the optimal decision. 

 

Originally, Multi-armed bandits have been used in pharmacology to 

choose the best drug while minimizing the number of tests. 

 

Today, they tend to replace A/B testing for web site optimization 

(Google analytics), they are used for ad-serving optimization.  

Make at simplest 
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When ? 
Partial information (multi classes problem) 

total information 

partial information 

no drift 

drift 

on line off line 

Make at simplest 
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just before the end 

More Real-World Challenges for Data Stream Mining 

Data stream research 

challenges positioned 

in the CRISP cycle. 

"Open Challenges for Data Stream Mining Research", - submited to SIGKDD Explorations (Special Issue on Big Data) 
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Conclusion 
Main ideas to retain : 

 

• Online learning algorithm are designed in accordance with specific constrains 

– One pass  

– Low latency  

– Adaptive … etc 

 

• In practice the true labels are delayed : an online classifier predicts the labels before observe it  

• The evaluation of the classifiers is specific to data streams processing 

• The distribution of the tuples may change over time : 

– Some approaches detect the drifts, and then update the classifier (abrupt drift) 

– Other approaches progressively adapt the classifier (incremental drift)   

 

• In practice, the type of expected drift must be known in order to choose an appropriate 

approach 

• The distinction between noise and drifts can be viewed as a plasticity / stability dilemma 

 


