
Vincent Lemaire

Data Stream Processing
and Analytics

Thank to Alexis Bondu, EDF

2

Outline

• Introduction on data-streams

• Part 1 : Querying

• Part 2 : Unsupervised Learning

• Part 3 : Supervised Learning

• Conclusion

3

Outline

• Introduction on data-streams

• Part 1 : Querying

• Part 2 : Unsupervised Learning

• Part 3 : Supervised Learning

• Conclusion

4

Big Data – what does that mean?

5

Big Data Analytics ?

 Big Data Analytics : Extracting Meaningful and Actionable

Information from a Massive Source

 Let’s avoid

– Triviality, Tautology: a series of self-reinforcing statements that cannot

be disproved because they depend on the assumption that they are

already correct

– Thinking that noise is an information

 Let’s try to have

– Translation: capacity to transfer in concrete terms the discovery

(actionable information)

– TTM: Time To Market, ability to have quickly information on every

customers (Who, What, Where, When)

6

Big Data vs. Fast Data

 Big Data :

– Static data

– Storage : distributed on several computers

– Query & Analysis : distributed and parallel processing

– Specific tools : Very Large Database (ex : Hadoop)

 Fast Data :

– Data in motion

– Storage : none (only buffer in memory)

– Query & Analysis : processing on the fly (and parallel)

– Specific Tools : CEP (Complex Event Processing)

More than 10 To

More than 1000 operations / sec

7

Application Areas

 Finance: High frequency trading

– Find correlations between the prices of stocks within the historical
data;

– Evaluate the stationarity of these correlations over the time;

– Give more weight to recent data.

 Banking : Detection of frauds with credit cards

– Automatiocally monitor a large amount of transactions;

– Detects patterns of events that indicate a likelihood of fraud;

– Stop the processing and send an alert for a human adjudication.

 Medicine: Health monitoring

– Perform automatic medical analysis to reduce workload on nurses;

– Analyze measurements of devices to detect early signs of disease.;

– Help doctors to make a diagnosis in real time.

 Smart Cities & Smart grid :

– Optimization of public transportation;

– Management of the local production of electricity;

– Flattening of the evening peak of consumption.

7

8

An example of data stream

Input data stream

A tuple :

(1,1);(1,2);(2,2);(1,3)

All tuples can be coded by 4 couples of

integers

Online

processing :

Rotate and

combine tuples

in a compact

way

9

Specific constrains of stream-processing

 A data stream continuously emits tuples

 The order of tuples is not controlled

 The emission rate of tuples is not controlled

 Stream processing is an on-line process

In the end, the quality of the processing is the

adjusting variable

What is a data stream ?

What is a tuple ?

• A small piece of information in motion

• Composed by several variables

• All tuples share the same structure (i.e. the variables)

10

How to manage the time?

• A timestamp is associated with each tuple :

– Explicit timestamp : defined as a variable within the structure of the data stream

– Implicit timestamp : assigned by the system when tuples are processed

• Two ways of representing the time :

– Logical time : only the order of processed tuples is considered

– Physical time : characterizes the time when the tuple was emitted

• Buffer issues :

– The tuples are not necessarily received in the order

– How long a missing tuple can be waited ?

11

Complex Events Processing (CEP)

Operator

 An operator implements a query or a more complex analysis

 An operator processes data in motion with a low latency

 Several operators run at the same time, parallelized on several CPUs and/or Computers

 The graph of operators is defined before the processing of data-streams

 Connectors allows to interact with: external data streams, static data in SGBD,

visualization tools.

Operator

Operator

Operator Operator

E-mail

Twitter

RSS

Stocks

XML

Visualization

Database

Input data stream Output data stream

12

Complex Events Processing (CEP)

Main features:
• High frequency processing

• Parallel computing

• Fault-tolerant

• Robust to imperfect and asynchronous data

• Extensible (implementation of new operators)

Notable products:
• StreamBase (Tibco)
• InfoSphere Streams (IBM)
• STORM (Open source – Twitter)
• KINESIS (Amazon)
• SQLstream

• Apama

 12

13

Outline

• Introduction on data-streams

• Part 1 : Querying

• Part 2 : Unsupervised Learning

• Part 3 : Supervised Learning

• Conclusion

14

Time-window

• A query is performed on a finite part of the past
tuples

Futur Current time Past

• Fixed window : “June 2000”

• Sliding window : “last week”

• Landmark window : “since 1 January 2000”

Define a time-window:

t1

t2

t3

Sliding window

t1

t2

t3

Jumping window

t1

t2

t3

Tumbling window

Update interval:

• A result is produced at each update

• The type of window depends on the update interval

15

• Most of the CEP provide a SQL-like language

• Few CEP provide a user-friendly interface

• Each software publisher propose its own language (not standardized)

• Main features :

– Define the structure of the connection of the data streams

– Define time-windows on data streams

– Extend the SQL language (able to run SQL queries on relational data bases)

– Run queries on data streams within time-windows

• Additional functions :

– Statistics (min, max, mean, standard deviation … etc)

– Math (trigonometry, logarithm, exponential … etc)

– String (regular expression, trim, substring … etc)

– Date (getDayType, getSecond, now … etc)

SQL-like language

16

SQL-like language

CREATE INPUT STREAM InputStream(

 Compteur string(12),

 Type string(12),

 Souscription int,

 C_index int,

 Date timestamp

);

CREATE WINDOW OneMinuteWindow(SIZE

60

ADVANCE 60 ON Date);

Geek zone A simple example with StreamBase :

17

SQL-like language

CREATE OUTPUT STREAM OuputStream;

SELECT firstval(Compteur) AS Compteur,

 lastval(C_index) – firstval(C_index) AS

Conso

 openval(Date) AS StartTime

 closeval(Date) AS EndTime

FROM InputStream[OneMinuteWindow]

INTO OutputStream;

A simple example with StreamBase : Geek zone

18

SQL-like language

User-friendly interface A simple example with StreamBase :

19

Outline

• Introduction on data-streams

• Part 1 : Querying

• Part 2 : Unsupervised Learning

• Part 3 : Supervised Learning

• Conclusion

20

Online vs. Batch mode

 An entire dataset is available

 The examples can be processed several times

 Weak constrain on the computing time

 The distribution of data does not change over time

What is unsupervised learning ?

• Mining data in order to find new knowledge

• No idea about the expected result

• Tuples are emitted one by one

• Tuples are processed on the fly due to their high

rate

• Real-time computing (low latency)

• The distribution of tuples changes over time (drift)

Batch mode :

Online processing :

20

21

Summarizing data streams

Why we need to summarize data streams ?

• The number of tuples in infinite …

• Their emission rate is potentially very high …

• The hardware resources are limited (CPU, RAM & I/O)

What is a summary ?

• A compact representation of the past tuples

• With a controlled memory space , accuracy and
latency

• Which allows to query (or analyze) the history of the
stream, in an approximated way

The objective is to maximize the accuracy of the

queries, given technical constrains (stream rate,

CPU, RAM & I/O)

22

Two types of summary

Specific summaries : dedicated to a single query (or few)

• Flajolet-Martin Sketch : approximates the number of unique objects in a stream;

• Bloom Filter : efficiently tests if an element is a member of a predefine set;

• Count-Sketch : efficiently finds the k most frequent elements of a set;

• Count-Min Sketch : enumerates the number of elements with a particular value,

or within an interval of values.

Generic summaries : allow a large range of queries on any past

period
• StreamSamp : based on successive windowing and sampling;

• CluStream : based on micro-clustering;

• DenStream : based on evolving micro-clustering;

Detailed in this talk

23

Flajolet-Martin Sketch [1]
approximates the number of unique objects in a stream

• S is a collection of N elements : S = {s1, s2 …. sN}

• Two elements of S may be identical

• S includes only F distinct elements

• The objective is to efficiently estimate F in terms of:

– Time complexity

– Space complexity

– Probabilistic guarantee

Problem statement:

How many

24

Hash function : h(.)

• Associates an element si with a random binary value

• h(.) is a deterministic function

• w is the length of binary values (number of bits)

• w is an integer such that

• Random values are uniformly drawn within

FNw 2

0,2w -1é
ë

ù
û

Intuition :

Given a large set of random binary values,

 of them begin with “1”

 of them begin with “11”

 of them begin with “111”

 of them begin with k “1”

1
2

1
4

1
8

1
2k

1

1

1 1

1

1

10010110

00100011

10001010

01011011

00011001

01010011

Flajolet-Martin Sketch [1]

25

Example : h(si) = 01001111011010 t(h(si)) = 01000000000000

 t(.) is the function which keeps only the first “1” (counting
from left), other bits are set to “0”

Location of the first “1” within h(.)
10000000

00100000

10000000

01000000

00010000

01000000

 B is the fusion of all the binary words t(h(si))
 by using the OR operator denoted by

B = Å
i=1

N

t(h(si))

Fusion of binary words :

Å

B = 11110000

R is the rank of the first “0” (counting from left) within B.

That is a random variable related with F !

R = MAX
N
t(h(si))

é

ëê
ù

ûú
+1

R = 5

Flajolet-Martin Sketch [1]

26

FM Sketch
A single-pass algorithm :

h(a) = 01001111011010 t(h(a)) = 01000000000000

B = 00000000000000

Input data

stream

R = 0

Flajolet-Martin Sketch [1]

27

FM Sketch
A single-pass algorithm :

h(a) = 01001111011010 t(h(a)) = 01000000000000

B = 01000000000000

Input data

stream

h(b) = 10001010011011 t(h(b)) = 10000000000000

R = 2

Flajolet-Martin Sketch [1]

28

FM Sketch
A single-pass algorithm :

h(a) = 01001111011010 t(h(a)) = 01000000000000

B = 11000000000000

Input data

stream

h(b) = 10001010011011 t(h(b)) = 10000000000000

R = 2

h(a) = 01001111011010 t(h(a)) = 01000000000000

Flajolet-Martin Sketch [1]

29

FM Sketch
A single-pass algorithm :

h(a) = 01001111011010 t(h(a)) = 01000000000000

B = 11000000000000

Input data

stream

h(b) = 10001010011011 t(h(b)) = 10000000000000

R = 2

h(a) = 01001111011010 t(h(a)) = 01000000000000

h(c) = 00010110010110 t(h(c)) = 00010000000000

Flajolet-Martin Sketch [1]

30

FM Sketch
A single-pass algorithm :

h(a) = 01001111011010 t(h(a)) = 01000000000000

B = 11010000000000

Input data

stream

h(b) = 10001010011011 t(h(b)) = 10000000000000

R = 4

h(a) = 01001111011010 t(h(a)) = 01000000000000

h(c) = 00010110010110 t(h(c)) = 00010000000000

h(b) = 10001010011011 t(h(b)) = 10000000000000

Flajolet-Martin Sketch [1]

31

FM Sketch
A single-pass algorithm :

h(a) = 01001111011010 t(h(a)) = 01000000000000

B = 11010000000000

Input data

stream

h(b) = 10001010011011 t(h(b)) = 10000000000000

R = 4

h(a) = 01001111011010 t(h(a)) = 01000000000000

h(c) = 00010110010110 t(h(c)) = 00010000000000

h(b) = 10001010011011 t(h(b)) = 10000000000000

• This single-pass algorithm is adapted to data streams

• Few pieces of information need to be stored in the RAM

• R is a random variable such that :

FRE 2log)(

Flajolet-Martin Sketch [1]

32

How to estimate E(R) ?

Input data

stream

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch

Bm = 11010000000000

Rm = 4

Collection of m Sketch

Deterministic

rooting of h(si)

• The first bits of h(si) are used to affect each element to a sketch

if m = 16, the 4 first bits of h(si) represent the ID of the corresponding Sketch

h(s1) = 0011001000101 -> 0011 = 3 -> s1 is affected to the 3th sketch

• Each Sketch counts approximately F/m distinct elements

Flajolet-Martin Sketch [1]

33

How to estimate E(R) ?

Input data

stream

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch
FM Sketch

FM Sketch

Bm =

11010000000000

Rm =

4

Collection of m Sketch

Deterministic

rooting of h(si)



)(2 RE

m

F



 

m

i

mR
mm

F 1

1

2
Stochastic average

Flajolet-Martin Sketch [1]

34

Two types of summary

Specific summaries : dedicated to a single query (or few)

• Flajolet-Martin Sketch : approximates the number of unique objects in a stream;

• Bloom Filter : efficiently tests if an element is a member of a predefine set;

• Count-Sketch : efficiently finds the k most frequent elements of a set;

• Count-Min Sketch : enumerates the number of elements with a particular value,

or within an interval of values.

Generic summaries : allow a large range of queries on any past

period
• StreamSamp : based on successive windowing and sampling;

• CluStream : based on micro-clustering;

• DenStream : based on evolving micro-clustering;

Detailed in this talk

35

Sampling based summaries

Objectives of a generic summary :

• Summarizes the entire history of the data stream

• Requires a bounded memory space

• Allows a large range of queries, including supervised and unsupervised analysis

Summarize by sampling the tuples :

• The sampling technics are adapted to incremental processing

• A limited number of tuples are stored

• The stored tuples constitute a representative sample

• The recent past can be favored in terms of accuracy (i.e. sampling rate)

36

Sampling based summaries

Reservoir sampling [2]

• The reservoir is a uniform sampling;

• The sampling rate decreases over time;

• The probability that tuples are included in the reservoir is : k / Nb_Emitted_Tuples

Time

Tuple

1 Tuple

2

Tuple

k

…
…

…

…
..

t t +1

New tuple Reservoir

Selection of the

tuple to delete
(uniform sampling)

Insert

37

Sampling based summaries

Tuple 1

Tuple 2

Tuple 3

Tuple 4

Sample 1

Order 0 Order 1 Order 2

Input data

stream

a

Uniform

sampling

StreamSamp [3]

38

Sampling based summaries

Tuple 5

Tuple 6

Tuple 7

Tuple 8

Sample 2

Order 0 Order 1 Order 2

Input data

stream

a

Tuple 1

Tuple 3

Tuple 4

Sample 1

Tuple 2

Uniform

sampling

StreamSamp [3]

39

Sampling based summaries

Tuple 9

Tuple 10

Tuple 11

Tuple 12

Sample 3

Order 0 Order 1 Order 2

Input data

stream

a

Tuple 5

Tuple 7

Tuple 8

Sample 2

Tuple 6

Tuple 1

Tuple 2

Tuple 3

Tuple 4

Sample 1

a

2

Fusion

Uniform

sampling

Tuple 2

Tuple 3

Tuple 5

Tuple 8

Sample 1-

2

StreamSamp [3]

40

Sampling based summaries

Tuple 13

Tuple 14

Tuple 15

Tuple 16

Sample 4

Order 0 Order 1 Order 2

Input data

stream

a

Tuple 9

Tuple 11

Tuple 12

Sample 3

Tuple 10

Uniform

sampling

Tuple 2

Tuple 3

Tuple 5

Tuple 8

Sample 1-

2

StreamSamp [3]

41

Sampling based summaries

Tuple 17

Tuple 18

Tuple 19

Tuple 20

Sample 5

Order 0 Order 1 Order 2

Input data

stream

a

Uniform

sampling

Tuple 2

Tuple 3

Tuple 5

Tuple 8

Sample 1-

2

Tuple 13

Tuple 15

Tuple 16

Sample 4

Tuple 14

Tuple 9

Tuple 10

Tuple 11

Tuple 12

Sample 3

StreamSamp [3]

42

Sampling based summaries

Tuple 17

Tuple 18

Tuple 19

Tuple 20

Sample 5

Order 0 Order 1 Order 2

Input data

stream

a

Uniform

sampling

Tuple 2

Tuple 3

Tuple 5

Tuple 8

Sample 1-

2 Tuple 13

Tuple 15

Tuple 16

Sample 4

Tuple 14

Tuple 9

Tuple 10

Tuple 11

Tuple 12

Sample 3

a

2

Fusion

Tuple 9

Tuple 11

Tuple 14

Tuple 16

Sample 3-

4

StreamSamp [3]

43

Sampling based summaries

Order 0 Order 1 Order 2

Input data

stream

a

Uniform

sampling

a

2

Fusion

a

4

Fusion

StreamSamp [3]

44

Sampling based summaries

• A sample gathers k uniformly drawn tuples

• A collection of samples gathers h samples

• Each collection has an order o

• The sampling rate of samples is equal to
a

2o

Time

(Present) (Past)

Order

0

Order

1
Order

2

StreamSamp [3]

45

Sampling based summaries

Time
Order

0
Order

1

Order

2

How to exploit this summary offline ?

Fusion of all samples

Weighting of tuples to keep

their representativeness

Wtuple =
2o

a

Use of any Datamining approach able to

process a weighted training set

StreamSamp [3]

46

Two types of summary

Specific summaries : dedicated to a single query (or few)

• Flajolet-Martin Sketch : approximates the number of unique objects in a stream;

• Bloom Filter : efficiently tests if an element is a member of a predefine set;

• Count-Sketch : efficiently finds the k most frequent elements of a set;

• Count-Min Sketch : enumerates the number of elements with a particular value,

or within an interval of values.

Generic summaries : allow a large range of queries on any past

period
• StreamSamp : based on successive windowing and sampling;

• CluStream : based on micro-clustering;

• DenStream : based on evolving micro-clustering;

47

Micro-clustering based summaries

What is a micro-clustering ?

• Micro-clusters (MC) are small groups of tuples,

• MC are represented by features which locally describe the density of tuples,

• DenStream : Micro-clustering approache handle evolving data,

• MC are maintained in RAM memory within a bounded memory space

• MC summarize the density of the input data stream, while giving more

importance to the recent past.

47

48

DenStream [4]

• Density based micro-clustering

• Weighting of the tuples over time

Micro-clustering based summaries

49

Var 1

Var 2

Initialization of the micro-

clusters with DBscan

MC(cj,rj,wj)

Parameters :
- Minimum weight of Mc

- Maximum variance of Mc

- Fading factor

Micro-clustering based summaries

DenStream [4]

50

Var 1

Var 2

Received tuple

Micro-clustering based summaries

DenStream [4]

51

Var 2

Fading of the micro-clusters

Micro-clustering based summaries

DenStream [4]

52

Var 1

Var 2

Closest Micro-

cluster

DenStream [4]

Micro-clustering based summaries

53

Var 1

Var 2

Test on the

new variance

DenStream [4]

Micro-clustering based summaries

54

Var 1

Var 2

Here, the new variance is greater

than the maximum variance

DenStream [4]

Micro-clustering based summaries

55

Var 1

Var 2

An “outlier”

 micro-cluster is created

DenStream [4]

Micro-clustering based summaries

56

Var 1

Var 2

Received tuple

DenStream [4]

Micro-clustering based summaries

57

Var 1

Var 2

Fading of the micro-clusters

DenStream [4]

Micro-clustering based summaries

58

Var 1

Var 2

Closest micro-

cluster

DenStream [4]

Micro-clustering based summaries

59

Var 1

Var 2

Test on the

new variance

DenStream [4]

Micro-clustering based summaries

60

Var 1

Var 2

Here, the new variance is less than

the maximum variance

DenStream [4]

Micro-clustering based summaries

61

Var 1

Var 2

1) The tuple is assigned to

the micro-cluster

2) The weight, the variance

and the mean are updated

DenStream [4]

Micro-clustering based summaries

62

Var 1

Var 2

Received tuple

DenStream [4]

Micro-clustering based summaries

63

Var 1

Var 2

Fading of the micro-clusters

DenStream [4]

Micro-clustering based summaries

64

Var 1

Var 2

Closest Micro-

cluster

DenStream [4]

Micro-clustering based summaries

65

Var 1

Var 2

Test on the new variance,

which is too important

DenStream [4]

Micro-clustering based summaries

66

Var 1

Var 2

Closest “outlier”

Micro-cluster

DenStream [4]

Micro-clustering based summaries

67

Var 1

Var 2

Test on the

new variance

DenStream [4]

Micro-clustering based summaries

68

Var 1

Var 2

In this case, the tuple is assigned to

the “outlier” micro-cluster

DenStream [4]

Micro-clustering based summaries

69

Var 1

Var 2

The weight of the “outlier” micro-cluster

is greater than the minimum weight

DenStream [4]

Micro-clustering based summaries

70

Var 1

Var 2

The “outlier” micro-cluster

becomes a regular micro-

cluster

DenStream [4]

Micro-clustering based summaries

71

How to exploit this summary to estimate the density of the data stream ?

… the example of the Parzen widows estimator [5] …

DenStream [4]

Micro-clustering based summaries

72

Adapted Parzen window [5] :

• W : total weight of the data stream

• C : number of micro-clusters

• wj : weight of the j-th micro-cluster

• rj : standard deviation of the j-th micro-cluster

• : smoothing parameter

d

➡Law of total

variance

Hypothesis : each tuple represents a set of none-

observed tuples, with a fixed effective and a

standard deviation equal to d

DenStream [4]

Micro-clustering based summaries

73

Conclusion

Main ideas to retain :

• Summaries allow to process data streams with very high emission rate,

• By using limited hardware resources (CPU, RAM).

• In most cases, a trade off must be reached between the accuracy and the available

memory.

• There are two types of summary (specific and generic)

• Limitation : most of generic summaries involves user parameters.

74

References

[1] Flajolet, P. et G. Martin (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System
Sciences 31(2), 182–209

[2] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1) :37– 57, 1985.

[3] B. Csernel, F. Clerot, and G. He ́brail. Streamsamp : Datastream clustering over tilted windows through sampling. In ECML
PKDD 2006 Workshop on Knowledge Discovery from Data Streams, 2006.

[4] Feng Cao, F., M. Ester, W. Qian, and A. Zhou (2006). Density-based clustering over an evolving data stream with noise. In
SIAM Conference on Data Mining, pp. 328–339.

[5] A. Bondu, B. Grossin, M.L. Picard. Density estimation on data streams : an application to Change Detection.

In EGC (Extraction et Gestion de la connaissance) 2010.

 Related documents :

Thesis of Gasbi, N. Extension et interrogation des résumés de flux de données, 2011

75

Outline

• Introduction on data-streams

• Part 1 : Querying

• Part 2 : Unsupervised Learning

• Part 3 : Supervised Learning

• Conclusion

76

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

77

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

78

From Batch mode to Online Learning

 Categorical target variable -> Classifier

 Numeric target variable -> Regression

 Time series -> Forecasting

What is supervised learning ?

• Output : prediction of a target variable for new observations

• Data : a supervised model is learned from labeled examples

• Objective : learn regularities from the training set and

generalize it (with parsimony)

Several types of supervised models :

In this talk …

79

Var 1 Var 2 … Clas

s

O 12 … A

Y 98 … B

Y 4 … A

Training set

Classifi

er

Var 1

Var 2

Var k
…

…

Class

A / B

A learning algorithm exploits the training set to automatically adjust the

classifier

From Batch mode to Online Learning

80

 An entire dataset is available

 The examples can be processed several times

 Weak constrain on the computing time

 The distribution of data does not change

Batch mode learning :

• Can be interrupted before its end

• Returns a valid classifier at any time

• Is expected to find better and better classifier

• Relevant for time-critical application

Any time learning algorithm :

From Batch mode to Online Learning

81

 Only a single pass on the training examples is required.

 The classifier is updated at each example.

 Avoid the exhaustive storage of the examples in the RAM.

 Relevant for time-critical applications and for progressively
recorded data.

Incremental learning algorithm :

• The training set is substituted by an input data stream

• The classifier is continually updated over time,

• By exploiting the current tuple,

• With a very low latency.

• The distribution of data can change over time (concept drift)

Online learning algorithm :

From Batch mode to Online Learning

82

Machine Learning: What are the pros and cons of

offline vs. online learning?

Try to find answers to:
(which is which)

• Computationally much faster and more space efficient

• Usually easier to implement

• A more general framework.

• More difficult to maintain in production.

• More difficult to evaluate online

• Usually more difficult to get "right".

• More difficult to evaluate in an offline setting, too.

• Faster and cheaper

• …

From Batch mode to Online Learning

83

Focus today - Supervised classifier

 Try to find answers to:

– Can the examples be stored in memory?

– Which is the availability of the examples: any presents? In stream ? Visible only

once?

– Is the concept stationary?

– Does the algorithm have to be anytime? (time critical)

– What is the available time to update the model?

– …

 The answers to these questions will give indications to select the algorithms

adapted to the situation and to know if one need an incremental algorithm,

even a specific algorithm for data stream.

From Batch mode to Online Learning

84

 STREAM MINING IS

REQUIRED… SOMETIMES

FROM BATCH MODE TO ONLINE LEARNING

85

but…

Do not make the confusion!

 Between Online Learning

 and Online Deployment

A lot of advantages and

drawback for both – but offline

learning used 99% of the time

From Batch mode to Online Learning

86

“Incremental / online learning”: a new topic?

The first learning algorithms were all incremental:

• Perceptron [Rosenblatt, 1957-1962]

• CHECKER [Samuel, 1959]

• ARCH [Winston, 1970]

• Version Space [Mitchell, 1978, 1982], ...

However, most existing learning algorithms are not!

From Batch mode to Online Learning

87

Why not use the classic algorithms?

Domingos, P., & Hulten, G. (2000). Mining

high-speed data streams. SIGKDD

Classic decision

tree learners

assume all training

data can be

simultaneously

stored in main

memory

From Batch mode to Online Learning

88

Stream - supervised classification: what changes?

 Properties

– Receives examples one-by-one

– discards the example after processing it.

– Produce a hypothesis after each example is processed

– i.e. produces a series of hypotheses

– No distinct phases for learning and operation

– i.e. produced hypotheses can be used in classification

– Allowed to store other parameters than model parameters
(e.g. learning rate)

– Is a real time system

– Constraints: time, memory, …

– What is affected: hypotheses prediction accuracy

– Can never stop

– No i. i. d

From Batch mode to Online Learning

89

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

90

Implementation of on-line classifiers

Online

Classifier X

Input stream :

explicative variables

Ŷ

Output stream :

predicted labels

91

Online

Classifier X
Ŷ

Update

Y
Second input

stream : Real labels

Comparison of real

and predicted

labels

Implementation of on-line classifiers

92

Online

Classifier X

Y

Ŷ

Update

Evaluation

Perf

Time

Implementation of on-line classifiers

93

Online

Classifier X

Y

Ŷ

Update

Evaluation

Perf

Time

In practice, this input

stream may be delayed

A on-line classifier predicts the class label of tuples before receiving the true label …

Implementation of on-line classifiers

94

Online

Classifier

Example : online advertising targeting

User

Ad

• Input tuples : couples “User – Ad”

P(|)

• Out tuples : estimated probability that a User clicks on an Ad

Implementation of on-line classifiers

95

Online

Classifier

Example : online advertising targeting

User

Ad

P(|)

Browser Sending the Ad

AgrMax(Ads)

Waiting for a click

Implementation of on-line classifiers

96

Online

Classifier

Example : online advertising targeting

User

Ad

P(|)

Browser Sending the Ad

Waiting for a click After a fixed

delay

Update

Real labels

$
If clicked

Implementation of on-line classifiers

97

 Two streams exist

 Two drift detection have to be managed

Labeled Data stream

Unlabeled data stream Predicted labels

Training

Deployment

models

over the

time

f:XC

X1 X2 X3 X4 X5 …

0 1 1 0 0 …

X1 X2 X3 X4 X5 …

? ? ? ? ? ?
X1 X2 X3 X4 X5 …

1 0 1 1 0 …

Implementation of on-line classifiers

98

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

99

Online

Classifier X

Y

Ŷ

Update

The stream of labeled tuples is split

Evaluation on the recent past

t t - k

Sliding window

Use of standard evaluation criteria

(Accuracy, BER, Lift curve, AUC … etc.)

Unbiased evaluation

A – Holdout Evaluation

Evaluation of on-line classifiers

100

Online

Classifier X

Y

Ŷ

2 - Update

B – Prequential Evaluation

1 - Update

On-line

Evaluation





n

1i

ii)ŷ,y(LS

From the beginning of the stream

On the recent past

(buffer on a sliding window)

Each labeled tuples is used twice

Evaluation of on-line classifiers

101

C – Kappa Statistic

• p0: prequential accuracy of the classifier

• pc: probability that a random classifier makes a correct prediction.

Κ = (p0 − pc)/(1 − pc)

• K = 1 if the classifier is always correct

• K = 0 if the predictions coincide with the correct ones as often as

those of the random classifier

Evaluation of on-line classifiers

102

RAM Hours

A server RAM hour is the amount of RAM allocated to a server multiplied by the number of hours the server has been

deployed.

Example: One 2 GB server deployed for 1 hour = 2 server RAM hours.

Evaluation of on-line classifiers

103

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

104

full example memory Store all examples

• allows for efficient restructuring

• good accuracy

• huge storage needed

Examples: ID5, ID5R, ITI

no example memory Only store statistical information in the nodes

• loss of accuracy (depending on the information stored or again huge storage

needed)

• relatively low storage space

Examples: ID4

partial example memory Only store selected examples

• trade of between storage space and accuracy

Examples: FLORA, AQ-PM

Taxonomy of classifier for data stream

105

Full Memory

Weighting

Aging

Partial Memory

Windowing

Fixed Size Windows

Weighting

Aging

Adaptive Size Window

Weighting

Aging

"No memory"

Data Management

Detection

Monitoring of performances

Monitoring of properties of the

classification model

Monitoring of properties of the

data

Adaptation

Blind methods

'Informed methods'

Model Management

Number

Granularity

Weights

It is necessary to adapt the classifier

to the application context

Taxonomy of classifier for data stream

106

Vincent Lemaire - (c) Orange Labs - EPAT 2014

Incremental Algorithm (no stream)

 Decision Tree

– ID4 (Schlimmer - ML’86)

– ID5/ITI (Utgoff – ML’97)

– SPRINT (Shaffer - VLDB’96)

– …

 Naive Bayes

– Incremental (for the standard NB)

– Learn fastly with a low variance (Domingos – ML’97)

– Can be combined with decision tree: NBTree (Kohavi – KDD’96)

Taxonomy of classifier for data stream

107

Incremental Algorithm (no stream)

 Neural Networks

– IOLIN (Cohen - TDM’04)

– learn++ (Polikar - IJCNN’02),…

 Support Vector Machine

– TSVM (Transductive SVM – Klinkenberg IJCAI’01),

– PSVM (Proximal SVM – Mangasarian KDD’01),…

– LASVM (Bordes 2005)

 Rules based systems

– AQ15 (Michalski - AAAI’86), AQ-PM (Maloof/Michalski - ML’00)

– STAGGER (Schlimmer - ML’86)

– FLORA (Widmer - ML’96)

Taxonomy of classifier for data stream

108

Incremental Algorithm (for stream)

 Rules

– FACIL (Ferrer-Troyano – SAC’04,05,06)

 Ensemble

– SEA (Street - KDD’01) based on C4.5

 K-nn

– ANNCAD (Law – LNCS‘05).

– IBLS-Stream (Shaker et al – Evolving Systems” journal 2012)

 SVM

– CVM (Tsang – JMLR’06)

Taxonomy of classifier for data stream

109

Incremental Algorithm (for stream)

 Decision Tree – the only ones used ?

– Domingos : VFDT (KDD’00), CVFDT (KDD’01)

– Gama : VFDTc (KDD’03), UFFT (SAC’04)

– Kirkby : Ensemble d’Hoeffding Trees (KDD’09)

– del Campo-Avila : IADEM (LNCS’06)

Taxonomy of classifier for data stream

110

Properties of a efficient algorithm

• low and constant duration to learn from the examples;

• read only once the examples in their order of arrival;

• use of a quantity of memory fixed “a priori;”

• production of a model close to the “offline model”

• (anytime)

• concept drift management

(0) Domingos, P. et G. Hulten (2001). Catching up with the data : Research issues in mining data streams. In

Workshop on Research Issues in Data Mining and Knowledge Discovery.

(1) Fayyad, U. M., G. Piatetsky-Shapiro, P. Smyth, et R. Uthurusamy (1996). Advances in Knowledge

Discovery and Data Mining. Menlo Park, CA, USA : American Association for Artificial Intelligence

(2) Hulten, G., L. Spencer, et P. Domingos (2001). Mining time-changing data streams. In Proceedings of the

seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 97–106. ACM

New York, NY, USA.

(3) Stonebraker, M., U. Çetintemel, et S. Zdonik (2005). The 8 requirements of real-time stream processing.

ACM SIGMOD Record 34(4), 42–47.

Taxonomy of classifier for data stream

111

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

112

Definitions

 A classification problem is defined as:

– N is a set of training examples of the form (x, y)

– x is a vector of d attributes

– y is a discrete class label

 Goal: To produce from the examples a model y=f(x) that

predict the classes y for future examples x with high accuracy

Incremental Decision Tree

113

Decision Tree Learning

 One of the most effective and widely-
used classification methods

 Induce models in the form of
decision trees

– Each node contains a test on the
attribute

– Each branch from a node corresponds
to a possible outcome of the test

– Each leaf contains a class prediction

– A decision tree is learned by recursively
replacing leaves by test nodes, starting
at the root

Age<30?

Car Type=
Sports Car?

No

Yes

Yes

Yes No

No

Incremental Decision Tree

114

Incremental Decision Tree

How an incremental decision trees is learned ?

 Single pass algorithm,

 With a low latency,

 Which avoids the exhaustive storage of training examples in the RAM.

 The drift is not managed

Var 1 Var 2 … Clas

s

O 12 … A

Y 98 … B

Y 4 … A

Training examples are processed one by one

X

Input stream : labeled examples

Y

The example of the Hoeffding Trees [D]

115

• Online decision tree:

– a bound…

– a split criterion

– summaries in the leaves

– a local model

The 4 elements of an online tree

Incremental Decision Tree

116

• Online decision tree:

– a bound: How many examples before cutting an attribute ?

– a split criterion: Which attribute and which cut point ?

– summaries in the leaves; How to manage high speed data streams ?

– a local model: How to improve the classifier ?

The 4 elements of an online tree

Incremental Decision Tree

117

The 4 elements of an online tree

• Online decision tree:

– a bound…

– a split criterion

– summaries in the leaves

– a local model

Incremental Decision Tree

118

Key ideas :

The best attribute at a node is found by exploiting a small subset of the labeled

examples that pass through that node :

• The first examples are exploited to choose the root attribute

• Then, the other examples are passed down to the corresponding leaves

• The attributes to be split are recursively chosen …

 The Hoeffding bound answers the question : How many examples are required
to split an attribute ?

Age<30?

Input stream

Sub-stream (Yes) Sub-stream (No)

Car Type=
Sports Car?

Status =
Married?

The example of the Hoeffding Trees [D]

Incremental Decision Tree

119

Hoeffding Bound

 Consider a random variable a whose range is R

 Suppose we have n observations of a

 Mean:

 Hoeffding bound states:

 With probability 1- , the true mean of a is at least

 where

n

R

2

)/1ln(2 
 


_

a

_

a

Incremental Decision Tree

120

How many examples are enough?

 Let G(Xi) be the heuristic measure used to choose test attributes (e.g.
Information Gain, Gini Index)

 Xa : the attribute with the highest attribute evaluation value after seeing
n examples.

 Xb : the attribute with the second highest split evaluation function value
after seeing n examples.

 Given a desired , if after seeing n examples at
a node,

– Hoeffding bound guarantees the true , with
probability 1-.

– This node can be split using Xa, the succeeding examples will be passed
to the new leaves.

0 GG

n

R

2

)/1ln(2 
 

)()(ba XGXGG

Incremental Decision Tree

121

The algorithm

Input stream

DG >e
• Find the two best attributes

• Check the condition

If not satisfied

Age<30?

• Create a new test at the current

node

• Split the stream of examples

• Create 2 new leaves

If satisfied

Car Type=
Sports Car?

Status =
Married?

• Recursively run the algorithm on

new leaves

The example of the Hoeffding Trees [D]

This algorithm has been adapted in order to manage concept drift [E]

 By maintaining an incremental tree on a sliding windows

 Which allows to forget the old tuples

 A collection of alternative sub-trees is maintained in memory and used in case of

drift

Incremental Decision Tree

122

An example of Hoeffding Tree : VFDT (Very Fast

Decision Tree)

 A decision-tree learning system based on the Hoeffding tree

algorithm

 Split on the current best attribute (δ), if the difference is less

than a user-specified threshold (T)

– Wasteful to decide between identical attributes

 Compute G and check for split periodically (nmin)

 Memory management

– Memory dominated by sufficient statistics

“Mining High-Speed Data Streams”, KDD 2000.

 Pedro Domingos, Geoff Hulten

Incremental Decision Tree

123

Experiment Results (VFDT vs. C4.5)

 Compared VFDT and C4.5 (Quinlan, 1993)

 Same memory limit for both (40 MB)

– 100k examples for C4.5

 VFDT settings: δ= 10-7, T=5%, nmin=200

 Domains: 2 classes, 100 binary attributes

 Fifteen synthetic trees 2.2k – 500k leaves

 Noise from 0% to 30%

Incremental Decision Tree

124

Experiment Results

Accuracy as a function of the number of training examples

Incremental Decision Tree

125

Experiment Results

Tree size as a function of number of training examples

Incremental Decision Tree

126

An example of Hoeffding Tree in case of concept

drift : CVFDT

 CVFDT (Concept-adapting Very Fast Decision Tree learner)

– Extend VFDT

– Maintain VFDT’s speed and accuracy

– Detect and respond to changes in the example-generating

process

 See the Part “Concept Drift” of this talk

Incremental Decision Tree

127

The 4 elements of an online tree

• Online decision tree:

– a bound…

– a split criterion

– summaries in the leaves

– a local model

Incremental Decision Tree

128

Differents Split Criterion

 Used to transform a leaf into a node

– determine at the same time on

– which attribute to cut and

– on which value (cut point).

 Uses the information contained in the summaries:

– not on all data

– a definitive action

 Batch algorithm used:

– Gain ratio using entropie (C4.5)

– Gini (CART)

– MODL Level

Incremental Decision Tree

129

A criterion for attribute selection

 Which is the best attribute?

– The one which will result in the smallest tree

– Heuristic: choose the attribute that produces the “purest” nodes

 Popular impurity criterion: information gain

– Information gain increases with the average purity of the subsets

that an attribute produces

– Information gain uses entropy H(p)

 Strategy: choose attribute that results in greatest information

gain

Incremental Decision Tree

130

Which attribute to select?

Incremental Decision Tree

131

Consider entropy H(p)

pure, 100% yes

not pure at all, 40% yes

pure, 100% yes

not pure at all, 40% yes

allmost 1 bit of information required

to distinguish yes and no

Incremental Decision Tree

132

Entropy

Entropy: H(p) = – plog(p) – (1–p)log(1–p)

H(0) = 0 pure node, distribution is skewed
H(1) = 0 pure node, distribution is skewed

H(0.5) = 1 mixed node, equal distribution

log(p) is the 2-log

of p

nnn ppppppppp logloglog),,,entropy(221121  

Incremental Decision Tree

133

Example: attribute “Outlook”

 “Outlook” = “Sunny”:

 “Outlook” = “Overcast”:

 “Outlook” = “Rainy”:

 Expected information for “Outlook”:

bits 971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3] 

bits 0)0log(0)1log(10)entropy(1,)info([4,0] 

bits 971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2] 

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2] 

bits 693.0

Note: log(0) is
not defined, but
we evaluate
0*log(0) as
zero

Incremental Decision Tree

134

Computing the information gain

 Information gain:

(information before split) – (information after split)

 Information gain for attributes from weather data:

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" 

bits 247.0

bits 247.0)Outlook"gain(" 

bits 029.0)e"Temperaturgain(" 

bits 152.0)Humidity"gain(" 

bits 048.0)Windy"gain(" 

Incremental Decision Tree

135

Continuing to split

bits 571.0)e"Temperaturgain(" 

bits 971.0)Humidity"gain(" 

bits 020.0)Windy"gain(" 

Incremental Decision Tree

136

The final decision tree

 Note: not all leaves need to be pure; sometimes identical instances have

different classes

 Splitting stops when data can’t be split any further

Incremental Decision Tree

137

Highly-branching attributes

 Problematic: attributes with a large number of values (extreme

case: customer ID)

 Subsets are more likely to be pure if there is a large number of

values

– Information gain is biased towards choosing attributes with a

large number of values

– This may result in overfitting (selection of an attribute that is non-

optimal for prediction)

Incremental Decision Tree

138

Gain ratio

 Gain ratio: a modification of the information gain that reduces its bias on

high-branch attributes

 Gain ratio should be

– Large when data is evenly spread

– Small when all data belong to one branch

 Gain ratio takes number and size of branches into account when choosing

an attribute

– It corrects the information gain by taking the intrinsic information of a split

into account (i.e. how much info do we need to tell which branch an

instance belongs to)

Incremental Decision Tree

139

The 4 elements of an online tree

• Online decision tree:

– a bound…

– a split criterion

– summaries in the leaves

– a local model

Incremental Decision Tree

140

Summaries in the leaves

 Numerical attributes

– Exhaustive counts [Gama2003]

– Partition Incremental Discretization [Gama2006]

– VFML: intervals defined by first values and used as cut points

[Domingos]

– Gaussian approximation [Pfahringer2008]

– Quantiles based summary [GK2001]

 Categorical attributes

– for each categorical variable and for each value the number of

occurrences is stored (but CMS could be used)

Incremental Decision Tree

141

The 4 elements of an online tree

• Online decision tree:

– a bound…

– a split criterion

– summaries in the leaves

– a local model

Incremental Decision Tree

142

Local model

 Purpose: improve the quality of the tree

(especially at the beginning of training)

 A good local model for online decision trees has to:

– consume a small amount of memory

– be fast to build

– be fast to return a prediction

 A study on the speed (in number of examples) of different

classifiers show that

  naive Bayes classifier has these properties

VFDT -> VFDTc

Incremental Decision Tree

143

Local model: naive Bayes classifier

 to predict the class it requires an estimation of the class

conditional density, for every attribute j, P(Vj|C):

Incremental Decision Tree

144

Experimentations: Influence of the local model

Incremental Decision Tree

145

Experimentations: Influence of the local model

Incremental Decision Tree

146

The 4 elements of an online tree

• Online decision tree:

– a bound…

– a split criterion

– summaries in the leaves

– a local model

Note : Summaries are used by

the split criterion and the local

model.

Idea : Try to have these 3

‘coherent’

Incremental Decision Tree

147

2 EXAMPLES
HOEFFDING TREE, NAÏVE BAYES

148

Bayes’ Rule

)()|()()|(),(CPCXPXPXCPXCP 

)(

)()|(
)|(

XP

CPCXP
XCP 

Incremental Naïve Bayes

149

Naive Bayes Classifiers

Task: Classify a new instance D based on a tuple

of attribute values into one

of the classes cj  C
nxxxD ,,, 21 

),,,|(argmax 21 nj
Cc

MAP xxxcPc
j






),,,(

)()|,,,(
argmax

21

21

n

jjn

Cc xxxP

cPcxxxP

j 







)()|,,,(argmax 21 jjn
Cc

cPcxxxP
j






Incremental Naïve Bayes

150

Naïve Bayes Classifier:

Naïve Bayes Assumption

 P(cj)

– Can be estimated from the frequency of classes
in the training examples.

Naïve Bayes Conditional Independence Assumption:

 Assume that the probability of observing the
conjunction of attributes is equal to the product
of the individual probabilities P(xi|cj).

Incremental Naïve Bayes

151

Principe : hypothèse d’indépendance conditionnelle des variables

explicatives entre elles

Point fort : prédicteur très simple à calculer à partir des estimations

univariées et des probabilités a priori des modalités cible

Limites :

- dégradation des performances lorsque les variables sont redondantes

- peu interprétable pour un grand nombre de variables

 



 






J

j

K

k

j

n

kj

K

k

n

k
n

NB

CxpCP

CxpCYP

xXCYP

1 1

1

)()(

)()(

)(

Incremental Naïve Bayes

152

• Each instance, xk, is a vector of values (numerical or categorical)

• However, when the Xi are continuous we must choose some other

way to represent the distributions P(Xi | Y).

• discretization / grouping respectively for numerical / categorical

variables

• using a discretization method and a grouping method.

 



 






J

j

K

k

j

n

kj

K

k

n

k
n

NB

CxpCP

CxpCYP

xXCYP

1 1

1

)()(

)()(

)(

Incremental Naïve Bayes

153

Well performing methods

for supervised discretization

 MDLP: find the best intervals based on

the entropy. The best number of interval

is found using a MDL approach.
Fayyad U, Irani K. Multi-interval discretization of continuous-valued attributes for
classification learning. Proceedings of the International Joint Conference on Uncertainty in

AI. 1993

 MODL: based on Bayesian formalism and MDL principle. This

method aims to find the best discretization parameters

(intervals number, intervals boundaries, classes distribution

within an interval) in a Bayesian way.
Boullé M. MODL: A Bayes optimal discretization method for continuous attributes.

Machine Learning. 2006.

Discretization

Batch Incremental

Fixed size

data
Stream

Incremental Naïve Bayes

154

Related works – DBMS community

Online statistics

Goal: find the best execution plan

 Reservoir (kind of « reservoir sampling ») +

« EqualFrequency histogram »
Gibbons P, Matias Y, Poosala V. Fast incremental maintenance of approximate
histograms. ACM Transactions on Database. 2002

 Quantiles: many quantiles lists are maintained. If memory

become full some lists are merged to recover it.
Manku GS, Rajagopalan S, Lindsay BG. Approximate medians and other quantiles in one
pass and with limited memory. SIGMOD’98

 Quantiles: a data structure is used to maintain online ranks and

errors. This method has strong error garantee on the quantiles
Greenwald M, Khanna S. Space-efficient online computation of quantile summaries.
SIGMOD’01

Discretization

Batch Incremental

Fixed size

data
Stream

Incremental Naïve Bayes

155

Related works – Data mining

Incremental discretization

 IFFD : Incremental Flexible Frequency

Discretization. Keep all the data and adapt

interval sizes between a minimum and a maximum
Lu J, Yang Y, Webb G. Incremental discretization for naive-bayes classifier. Advanced

Data Mining and Applications. 2006

 PID: two levels discretization

level 1: mix between “EqualFreq” and “EqualWidth”

level 2: all batch methods
Gama J, Pinto C. Discretization from data streams: applications to histograms and data
mining. Proceedings of the 2006 ACM symposium on Applied Computing. 2006.

 Gaussian approximation: approximate the data distribution

with a Gaussian per class: μ and σ parameters are kept online.

Very low memory footprint.
Pfahringer B, Holmes G, Kirkby R. Handling numeric attributes in hoeffding trees.

Advances in Knowledge Discovery and Data Mining. 2008.

Discretization

Batch Incremental

Fixed size

data
Stream

Incremental Naïve Bayes

156

Methods comparison

Method
Global

/ local
Multi variate Parametric Supervised

Online /

stream

Equal Width Global No Yes No No

Equal Freq Global No Yes No No

Greenwald

Khanna
Global No Yes No Yes

K-means

clustering

Global and

local
Yes Yes No Yes / No

PID (Layer 1) Global No Yes No Yes

MDLP / MODL
Global and

local
No No Yes No

IFFD Global No Yes No Yes / No

Gaussian Global No Yes No Yes

3 criteria were proposed by: Dougherty J, Kohavi R, Sahami M.

Supervised and unsupervised discretization of continuous features. ML1995.

Incremental Naïve Bayes

157

Online Discretization: Gaussian approximation

Incremental Naïve Bayes

158

Online Discretization: A two levels discretization

 Level 1: Greenwald et Khanna - GK (or another method

adapted to streams) based on a quantile summary

 global / not supervised / parametric / online

 Level 2: MODL or MDLP

methods based on the entropy for intervals quality and on MDL

principle to stop finding new intervals

 global / supervised / without parameters

 Both levels are based on order statistics

Incremental Naïve Bayes

159

Averaging of Naïve Bayes Classifier

Incremental Naïve Bayes

160

Averaging of Naïve Bayes Classifier

Incremental Naïve Bayes

Littérature : les poids sont obtenus suite à un moyennage de modèles

qui correspondent à des sélections de variables différentes (Hoeting et

al., 1999) (Boullé, 2007)

161

Wj? Intuition

on paper board

Incremental Naïve Bayes

162

Benefits of Averaging of Naïve Bayes Classifier

Same results conclusion

on the large scale learning

challenge

Methods to

compute the

weights

No weights

Incremental Naïve Bayes

163

Requirements of ‘Online’ Averaging of Naïve

Bayes Classifier

The “classic” averaging of naïve Bayes classifier

requires the storage of all the data
(a data table allowing the link between the instances and their labels)

Incremental Naïve Bayes

164

Cost function





N

n

nn

w

SNB

D
wfxyPwCR N

1

)())(log()(

régularisation log-vraisemblance

négative

poids de la régularisation

On cherchera la pondération w qui minimise la log-vraisemblance régularisée

Incremental Naïve Bayes

165

Régularisation de la log-vraisemblance :





K

k

p

kwwf
1

)(

parcimonie

• p > 1 : convexe mais non parcimonieux

• p <= 1 : non convexe mais parcimonieux

21, XX

0.5

Non parcimonieux

1

1.41 1

parcimonieux
21

2

2

2

1

ww

ww





5.021  ww 1;0 21  ww

Exemple : deux variables identiques

Incremental Naïve Bayes

166

Averaging of Naïve Bayes Classifier – Performances

Incremental Naïve Bayes

167

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

168

• The input stream is not stationary

• The distribution of data changes over time

• Two strategies : adaptive learning or drift detection

• Several types of concept drift :

What does it means ?

Virtual drift [B]

(or covariate shift)
Concept drift [A]

P(x,y) = P(x) . P(y|x)

Original

data

Concept drift

169

What kinds of drift can be expected [C]?

Abrupt

Gradual

Incremental

Reoccuring

On-line adaptive learning

Drift detection & models

management

Concept drift

Drift detection

170

Some specific constrains to manage :

• Adapt to concept drift asap

• Distinguish noise from changes (Robust to noise, Adaptive
to changes)

• Recognizing and reacting to reoccurring contexts

• Adapting with limited hardware resources (CPU, RAM, I/O)

Concept drift

171

Manage Drift?

Context i Context j

• Either detect and :

1) Retrain the model

2) Adapt the current model

3) Adapt statistics (summaries) on which the model is

based

4) Work with a sequence of

• models

• summaries

• or detect anything but train (learn) fastly

• a single models

• an ensemble of models)

Concept drift

172

Desired Properties of a System To Handle Concept Drift

• Adapt to concept drift asap

• Distinguish noise from changes

– robust to noise, but adaptive to changes

• Recognizing and reacting to reoccurring contexts

• Adapting with limited resources

– time and memory

Concept drift

173

Adaptive learning strategies

change detection and

a follow up reaction
adapting at every step

Concept drift

174

Adaptive learning strategies

Concept drift

175

Adaptive learning strategies

Concept drift

176

Adaptive learning strategies

Concept drift

177

Adaptive learning strategies

Concept drift

178

Which approach to use?

• changes occur over time

• we need models that evolve over time

• choice of technique depends on

– what type of change is expected

– user goals/ applications

Concept drift

179

Drift detection

Fixed Classifier

(applied online) X Ŷ

Drift

Detection

X
Y

If detected
• Train a new classifier on

the recent past

• Adapt the size of the

history

Replace the classifier

General schema :

Concept drift

180

Drift Detection

How to detect the drift ?

Based on the online evaluation :

• Main idea : if the performance of the classifier changes, that means a drift is

occurring ...

• For instance : if the error rate increases, the size of the sliding windows decreases

and the classifier is retrained [F].

• Limitation : the user has to define a threshold

classifier X

Y

Ŷ

Update

Evaluation

Perf

Time

Learning

Algorithm

If detected

Drift detection

Concept drift

181

How to detect the drift ?

• Main idea : if the distributions of the “current window” and the “reference window”

are significantly different, that means a drift is occurring ….

Reference
window Current window

tim
e

Based on the distribution of tuples :

Drift detection

Concept drift

182

How to detect the drift ?

Based on the distribution of tuples :

• In [G] the author uses statistical tests in order to compare the both distributions

• Welch test – Mean values are the same ?

• Kolmogorov Smirnov test – Both samples of tuples come from the same distribution ?

• A classifier can be exploited to discriminate tuples belonging to both windows [H]

• If the quality of the classifier is good, that means a drift is occurring …

• Explicative variables : X

• Target variable : W (the window)

Detection of covariate shift : P(X)

• In [I] a classifier is exploited, the class value is considered as an additional input variable

• Explicative variables : X and Y

• Target variable : W (the window)

Detection of concept shift : P(Y|X)

?
=

Drift detection

Concept drift

183

More details … see

184

Parameters – The devil inside

Concept drift

185

No drift assumption?

Do not use online learning !

Concept drift

186

Outline

1. From Batch mode to Online Learning

2. Implementation of on-line classifiers

3. Evaluation of on-line classifiers

4. Taxonomy of classifier for data stream

5. Two examples

6. Concept drift

7. Make at simplest

187

Make at simplest!
(the first thing to test, the baseline)

Full Memory

Weighting

Aging

Partial Memory

Windowing

Fixed Size Windows

Weighting

Aging

Adaptive Size Window

Weighting

Aging

"No memory"

Data Management

Detection

Monitoring of performances

Monitoring of properties of the

classification model

Monitoring of properties of the

data

Adaptation

Blind methods

'Informed methods'

Model Management

Number

Granularity

Weights

188

A classifier trained with few examples but often!

 Which classifier ?

• Generative classifiers are better than discriminant classifiers when

the number of examples is low and there is only one classifier

(Bouchard 2004)

• Ensemble of classifiers are very good (Bauer 1999)

• Bagging of discriminative classifiers supplants a single generative

classifier (and with a low variance) (Breiman 1996)

• Methods "very" regularized "are very (too) strong (Cucker 2008)

Make at simplest

189

A classifier trained with few examples but often!

 Which classifier ?

– a random forest (based on « "Learning with few examples: an empirical study on

leading classifiers ", Christophe Salperwyck and Vincent Lemaire, in International Joint

Conference on Neural Networks (IJCNN July 2011)»)

– using 4096 examples

Stream (Waveform)

RF40 RF40 RF40

Make at simplest

http://perso.rd.francetelecom.fr/lemaire/publis/ijcnn_2_2011_camera_ready.pdf
http://perso.rd.francetelecom.fr/lemaire/publis/ijcnn_2_2011_camera_ready.pdf

190

Waveform

VFDT

74

75

76

77

78

79

80

81

82

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 1E+07

VFDT

Make at simplest

191

Waveform

73

75

77

79

81

83

85

0 500000 1000000 1500000 2000000 2500000 3000000

RF40-4096 VFDT

Make at simplest

192

Waveform

72

74

76

78

80

82

84

86

0 5 10 15 20 25 30 35

VFDTc (NB) RF40-4096 VFDT

Make at simplest

193

Alternative problem settings

Make at simplest

194

Alternative problem settings

Multi-armed bandits explore and exploit online set of decisions, while

minimizing the cumulated regret between the chosen decisions and

the optimal decision.

Originally, Multi-armed bandits have been used in pharmacology to

choose the best drug while minimizing the number of tests.

Today, they tend to replace A/B testing for web site optimization

(Google analytics), they are used for ad-serving optimization.

Make at simplest

195

When ?
Partial information (multi classes problem)

total information

partial information

no drift

drift

on line off line

Make at simplest

196

just before the end

More Real-World Challenges for Data Stream Mining

Data stream research

challenges positioned

in the CRISP cycle.

"Open Challenges for Data Stream Mining Research", - submited to SIGKDD Explorations (Special Issue on Big Data)

197

Conclusion
Main ideas to retain :

• Online learning algorithm are designed in accordance with specific constrains

– One pass

– Low latency

– Adaptive … etc

• In practice the true labels are delayed : an online classifier predicts the labels before observe it

• The evaluation of the classifiers is specific to data streams processing

• The distribution of the tuples may change over time :

– Some approaches detect the drifts, and then update the classifier (abrupt drift)

– Other approaches progressively adapt the classifier (incremental drift)

• In practice, the type of expected drift must be known in order to choose an appropriate

approach

• The distinction between noise and drifts can be viewed as a plasticity / stability dilemma

