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Outline

» Background: Query Processing Fundamentals
— Relational Algebra
— Query Optimization Basics

» Background: Parallel Databases Primer
— Pipelined vs. Data Parallelism
— Data partitioning

 Stratosphere / Flink — Big Data meets Parallel Databases
— Architecture
— Programming API
— lterations

o After the Coffee break

— Hands-on: programming on Stratosphere.
*prepare your laptops



QUERY PROCESSING FUNDAMENTALS



Database Engines 101

Database engines provide high-level abstractions for efficient
data management

« Storage
— "“Store {some data} as {X}.”

* Querying
— "Retrieve {something} from {X.}, ..., {X_.} where {some condition}

applies.”

* Transactions
— Ensures a minimal set of operational abstractions (ACID)

— Required mostly in scenarios with concurrent read/write access.
Not discussed today!



Query lifecycle

SELECT Auy, B.z

FROM A, B ) Parsing - - m
WHERE A.x =B.x; i v

Textual program
Optimization /
PP

representation
)
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Logical Plan

Physical Plan
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Execution

| —

l Sort ] Sort
I
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Relational Algebra

Operator
R,S,T,..
1, (R)
o, (R)
RxS

R g S

VA,a(R)
SUT/SUYT

S-T/S~=T

Semantics

Bag / Set
{m(x) | x ER}
{x|x €S, plx)}

{x,y) I xERyES}

{(x,y) | xER,y ES,0(x,y)}

{(x,y) | x €ER, t €S, m,(x) =my(y) }

{G,={y |y ER, muly) =

{{maly), agg(G,)) } | x € R}

(x) } | x

R}

Description

a collection of elements

projects a set of attributes A
filters elements where p is false

all pairs (Cartesian product)
theta-join, cross + filter

equi-join, s, t select the join key
group by

group and compute aggregate agg
bag / set union

bag / set difference



Query Optimization

 Parsed query is represent as a relational algebra
expression

— (abstract) logical plan with well-defined semantics

* The optimizer translates it into a (concrete ) execution

plan (physical plan)

* Multiple degrees of freedom during the compilation
process
— Algebraic rewrites, e.g., join order
— Algorithm selection, e.g., type of join (merge/hash/...)



Algebraic Rewrites

* Makes use of equivalences of relational algebra
operators
— Join operator is associative

— Selections & projections can may commute joins,
sometimes aggregates

RN RN N
X T &~ X S & X R
N TN N
R S T R S T

join commutativity



Algorithm Selection

 Logical operators can be realized in different ways

— Different time / space requirements depending on the concrete
algorithm choice

— Applicability depends on certain “physical properties” of the inputs
(e.g. sorting)

S\T 1 3 1 4 S\T 1 1 3 4

7 (7, 19747, 39117, B=brsp 1 (1,!)—"(1,!7—"(113) (1,4)
s | T, 3, i 2 ey |ey | e | e
1 | T 3, Bkl 3 |31 | BY | GaTe
2| T e, ey R
3 | R e, e a @y @y |63 |6
2 | e e, 82, 4) 7 |on oo e | o

Nested-Loops Join Sort-Merge Join
(S, T sorted on join key)



Optimization Search Space

« Exponential search space
— Can be restricted using heuristics, branch & bound pruning

* Finding the optimal execution plan is non-trivial
— Decision can be cost-based or rule-based

+ Algorithm costs are data-dependent
— Typically dominated by a bottleneck resource (I/O or network)

— Information required to calculate them can be approximated using data
statistics



PARALLEL DATABASES PRIMER



Parallel DB Architectures

« Shared Memory

— Several CPUs share a single memory space and (multiple) disks

— Communication over a single common bus
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Figure 20.1: A shared-memory machine

Source:
Garcia-Molina et al.,
,Database Systems —
The Complete Book.
Second Edition”
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Parallel DB Architectures

 Shared Disk

— Several nodes with multiple CPUs, each node has its private
memory

— Single attached disk (array): Often NAS, SAN, etc...
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Figure 20.2: A shared-disk machine



Parallel DB Architectures

« Shared Nothing

— Each node has it own set of CPUs, memory and disks attached

— Data needs to be partitioned over the nodes

— Data is exchanged through direct node-to-node communication

Figure 20.3: A shared-nothing machine

Source:
Garcia-Molina et al.,
,Database Systems —
The Complete Book.
Second Edition”
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Parallelizing Query Plans

How would you parallelize this query plan?

15



Parallelism in databases

* Inter-query Parallelism: Multiple queries run
in parallel

* Pipeline Parallelism: Multiple parts of the
plan run in parallel

» Data Parallelism: Multiple threads work on
the same operator

Possible to use all at the same time



Pipeline Parallelism

Step 3:
Step 2: Return One thread, return result,
) business as usual...
One thread scans the

table, probes the hash /

tables. Second thread
starts the sort (sorting
sub-lists, merging the

first lists)

Step 1:

Two threads scan one
base table each and
build the hash tables
for the joins.

Maximum degree of parallelism in pipeline parallelism?

17



Data Parallelism

Multiple instances of a sub-
plan are executed on
different computers.

The instances operate on
different splits/partitions of
the data.

At some points, results from
the sub-plans are collected.

For more complex queries,
results are not collected but
re-distributed, for further
parallel processing.

Return
Final Aggregation
Po.int.of data Sub-plan result
shipping collection
r—— =" === =
Group
-7 Agg
e n—
Pre- /
Aggregation el Parallel
e Instances
NL-Join

T2

)

IX-Scan




Data Parallelism

 Data is divided into several partitions

— Most operations don't need a complete view of the datal
* E.g. o (") looks only at a single tuple at a time.

— Partitions can be processed independently and in parallel

* (max) Degree of Parallelism = number of possible
partitions
— For o, (") as high as the number of tuples

« BUT: Some operations possibly need a view of larger
portions of the data:

— E.g. some Grouping/Aggregation operations need all tuples
with the same grouping key, e.g., Median



Data Parallelism Workflow

Client send a SQL query to one of the cluster nodes:
— Node becomes the "coordinator”.

« Coordinator compiles
the query:
— Parsing, Checking, Optimization.

Results
— Parallelization.

Partial
Results

« Sends partial plans to the other
cluster nodes that describes their tasks:

— Coordinator also executes the partial plan on his part of the data.

 Collects partial results and finalizes them (see next slide)
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Data Partitioning

 Partitioning the data means creating multiple disjoint sub-sets
— Example: Sales data, every year gets its own partition.

« For shared-nothing, data must be partitioned across nodes:

— If it were replicated, it would effectively become a shared-disk with the
local disks acting like a cache (must be kept coherent).

 Partitioning with certain characteristics has more advantages:

— Some queries can be limited to operate on certain sets only, if it is
provable that all relevant data (passing the predicates) is in that
partition.

— Partitions can be simply dropped as a whole (data is rolled out) when it
is no longer needed (e.g. discard old sales).



Data Partitioning

Round robin: Each set c[gets a tuple in a round, all sets
have guaranteed equal amount of tuples, no apparent
relationship between tuples in one set.

Hash Partitioned: Define a set of partitioning columns.
Generate a hash value over those columns to decide
the target set. All tuples with equal values in the
partitioning columns are in the same set.

Range Partitioned: Define a set of partitioning
columns and split the domain of those columns into
ran?es. The range determines the target set. All
tuples on one set are in the same range.



Parallel Selection

+ Each node performs the selection on its existing local
partition.
— Selection needs no context.
— Data can be partitioned in a arbitrary way.
— Partial results union-ed afterwards.

42 5 14 o 42 14




Parallel Aggregation

* Re-partition dataset on grouping column set

— Tuples with the same grouping values will end up on the same
machine

— Apply local grouping/aggregation algorithm to each partition in
parallel

* Not possible if the aggregation function requires sorting
— E.g. Median



Parallel Equi-Joins

« A special class of joins suited for parallelization are Equi-Joins.
— Only look at tuple pairs that share the same join key
— Partition relations R and S using the same partitioning scheme over the
join key
— All values of R and S with the same join key end up at the same node
— All joins can be performed locally

* Multiple partitioning strategies possible:
— Co-Located Join
— Directed Join
— Re-Partitioning Join



Co-Located Join

» Data is already partitioned on the join key
— No re-partioning needed
— Local joins work “out of the box”

2 8 10
> (2,2)
2 4 4 {x}

5 3 1
> (5,5) (3,3)
3 5 9 {x}




Directed Join (Broadcast Join)

* One side is fully replicated on each node
— No re-partitioning for the other side needed
— Works best if one side is much smaller than the other

P (2,2)

P (5,5)




Re-Partitioning Join

» Both-sides re-partitioned on the join key
— Fallback strategy for inputs with similar size

2 5 1 2 8 10
> (2,2)
2 3 4 2 4 4 {x}
8 3 10 5 3 1
>4 (5,5) (3,3)
4 5 9 3 5 9 {x}

shuffle



STRATOSPHERE



What is Flink @incubator

* Probable renaming of Stratosphere system
— German for “fast, swift”
* Apache Incubator project

— Proposed by core developers of Stratosphere
project

— Core processing engine developed in the
Stratosphere research project

« Community lives at
dev@flink.incubator.apache.org

* For this talk, | will still use the name
"Stratosphere”




S’rrc:’rosphere

What is Stratosphere €

* General purpose computation engine for
Hadoop data on YARN clusters

— Backed by database-inspired execution and
optimization

— Focusing on making the user’s life easy
— Orders of magnitude faster than Hadoop MapReduce

* www.stratosphere.eu

* Follow @stratosphere_eu



Databases > “Big Data”

e Tables > Tables and unstructured files
— Schema on read

* Parallel > More parallel, commodity, shared clusters

— Mid-query fault tolerance, resource allocation

« SQL > SQL and Java, Scala, Python, you name it

— General object manipulation

« Data warehousing > Logs, ML, Graphs, also DW

— lterative processing, user-defined functions

* Proprietary > Open source
— New project structures (and monetization strategies)



Stratosphere: general-purpose
programming + database execution

Take from Take from
database Technology Add MapReduce technology
4 N a )
|
» Declarativity * lIterations * Scalability
* Query optimization | « Advanced * User-defined
* Robust out-of-core Dataflows functions
* General APlIs « Complex data types
* Schema on read
. J _ /J




Placement in Hadoop stack

* Analyzes HDFS data directly
* Runs on top of YARN @

Big Data looks tiny from

Stratosphere

IN
BATCH ONLINE HPC MPI
YARN (Cluster Resource Management) .
% HDFS2 (Redundant, Reliable Storage)
34




PROGRAMMING MODEL AND APIS



Data sets and operators

Program

B0 -0 9

Operator X Operator Y

Parallel Execution

36



Rich set of operators

Map, Reduce, Join, CoGroup, Union, Iterate,
Delta Iterate, Filter, FlatMap, GroupReduce,

Project, Aggregate, Distinct, Vertex-Update,

Accumulators




WordCount in Java

final ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();

DataSet<String> text = readTextFile (input);

DataSet<Tuple2<String, Integer>> counts= text
.flatMap(new LineSplitter())
.groupBy(0)
.count();

env.execute("Word Count Example");

public static final class LineSplitter extends
FlatMapFunction<String, Tuple2<String, Integer>> {

public void flatMap(String line, Collector<Tuple2<String, Integer>> out) {
for (String word : line.split(" ")) {

out.collect(new Tuple2<String, Integer>(word, 1));
}
}
}

38



WordCount in Scala

val input = TextFile(textInput)

val counts = input

.flatMap { line => line.split(“\\W+”) }

.groupBy { word => word }
.count()

39



SAY "WORD COUNT" ONEMORE
TIME...

memegenerator.net

40



Longer Operator Pipelines

DataSet<Tuple...> large = env.readCsv(...);
DataSet<Tuple...> medium = env.readCsv(...);
DataSet<Tuple...> small = env.readCsv(...);

Y
A
DataSet<Tuple...> joinedl = large }4\
.join(medium)
.where(3).equals(1) /,[Xl\

with(new JoinFunction() { ... });

o |mewum|
DataSet<Tuple...> joined2 = small large

.join(joinedl)
.where(@).equals(2)
with(new JoinFunction() { ... });

DataSet<Tuple...> result = joined2

.groupBy(3)
.max(2);

41



“lterate” operator

I[terate

partial
solution

partial
solution

\
1
1
1
1
1
1
1
1
1
1
1
1
1
T

!

/
4

* Built-in operator to support looping over data

« Applies step function to partial solution until convergence

 Step function can be arbitrary Stratosphere program

« Convergence via fixed number of iterations or custom convergence criterion

42



Using Spargel: The graph API

ExecutionEnvironment env = getExecutionEnvironment();

DataSet<Long> vertexIds = env.readCsv(...);
DataSet<Tuple2<Long, Long>> edges = env.readCsv(...);

DataSet<Tuple2<Long, Long>> vertices = vertexIds.map(new IdAssigner());

DataSet<Tuple2<Long, Long>> result = vertices.runOperation(
VertexCentricIteration.withPlainEdges(

edges, new CCUpdater(), new CCMessager(), 100));

result.print();
env.execute("Connected Components");

Pregel/Giraph-style Graph
Computation

43



STRATOSPHERE INTERNALS



Stratosphere stack

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

( » LI
Java Scala Spargel || Meteor Streaming,
AP J[ AP ][(graphs) seripting) || ~ 20 PYION H - Mahout, .

. * °, .
-------------------------------------------------------------

Stratosphere Optimizer

7
\.

Stratosphere Runtime

4 )
Cluster [ Direct ][ YARN J[ EC2 J
Manager

\_ )

4 )

sonse (2 J[rore (o JLoee )

J




Why optimization ?
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Do you want to hand-tune that?
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Stratosphere optimizer

ava arge eteor
API API (graphs) || (scripting)

Stratosphere Optimizer

Stratosphere Runtime

[Clusmr [ Direct ][ YARN ][ EC2 ]
Manager )

e ()0 o))

There are many ways to execute a
program

What you write is not what is executed

No need to hardcode execution strategies

Optimizer decides:

Pipelines and operator placement
Sort- vs. hash- based execution

Data exchange (partition vs. broadcast)
Data partitioning steps

In-memory caching

47



Effect of optimization

Hash vs. Sort
Partition vs. Broadcast
Caching
Execution Reusing partition/sort
Plan A
Execution
Execution Plan C
Plan B
Run on a sample
on the laptop
Run on large files Run a month later

on the cluster after the data evolved




Optimization Example

val
val

val

val

val

orders = DataSource(...)
items = DataSource(...)
filtered = orders filter { ... }

case class Order(id: Int, priority: Int,

case class Item(id: Int,
case class PricedOrder(id, priority, price)

price: double, )

-

prio = filtered join items where { _.id } isEqualTo { _.id }
map {(o,1i) => PricedOrder(o.id, o.priority, li.price)}

sales = prio groupBy {p => (p.id, p.priority)} aggregate ({_.price},SUM)

(0,1)

Grp/Agg

(0) = (0)

Join

i

(D) Filter

[

Orders

Items

Grp/Agg
Join

A \
Sorg(o’l) sort (0)
partition(0) ‘\
Filter partition(0)
A
Orders Items
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Stratosphere runtime

( | database runtime
[I\Cﬂlla‘;;‘;rer Direct YARN l EC2 | ° Stre a m I n g e n g i n e
[Storage [LFcl’l‘;i'] {HDFS] [ s3 ] [JDBC] O,

— Low-latency queries

» Stateful multi-pass algorithms
— Very efticient for ML/graphs

* Heavily in-memory
— Fast on modern machines

« Qut-of-core gracefully
— Scales beyond main memory



Distributed architecture

Master (Job Manager) waster e
handles job submission, rrm—
scheduling, and w o

metadata Web Interface

Workers (Task Managers)
execute operations

D a t a C a n b e St re a m e d TaskManager : TaskManager
between nodes Datatiode DataNode
All operators start — N
| n - m e m O ry a n d TaskManager | TaskManager |
g ra d U a | |y DataNode DataNode

go out-of-core

4 Worker Nodes



Memory management

Big Data looks tiny from J\Z
G Stratosphere Spark

[ | | | public class WC {
1 | | | public String werd; & Distributed A
public int count; s .
=, ~ i Collection
\\\ BT T - 7
NS ,;’, c
empty .\\~~~ ——”,a’ \ I_ISt[WC] J
page [ [ 77777
Pool of Memory Pages
» Collections of objects
«  Works on pages of bytes * General-purpose
*  Maps objects transparently to these pages serializer (Java / Kryo)
« Full control over memory, out-of-core enabled « Limited control over
 Algorithms work on binary representation memory & less efficient
« Address individual fields (not deserialize whole object) spilling
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Built-in vs. driver-based looping

~———
-
~
-
~ S=~

. I's
2 Client<>
& - -~ d
-— ~a -
@'hadmmp _________ RS
- , S
( ———— 3 Ss<

A Client"
——‘—’—/ <

Loop outside the
system, in driver
program

lterative program

Spark __,_———“”,/ \:::35:: ____________ looks like many
%>M>§->M>g>ﬂ> %m;%sw > independent jobs

G‘ STFOTOSphere Dataflows with
‘ feedback edges

System is iteration-
aware, can optimize
the job
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# Vertices (thousands)

Delta iterations

Cover typical use cases of Pregel-like systems with comparable
performance in a generic platform and developer API.

1400
1200 “
1000
800 -
600 —V—\/\A\ Bulk
400 'A\ Delta
200
. ‘-\,,e-\q___________________________r

0O 2 4 6 8 1012 1416182022 242628 3032 34
Iteration

Computations performed in each iteration for
connected communities of a social graph

6000

5000

4000

3000

2000

1000 -

Twitter Webbase (20)

Runtime (secs)

*Note: Runtime experiment uses
larger graph
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Optimizing iterative programs

Pushing work

Caching Loop-invariant Data
,out of the loop” 8 P

r\:./,\:\_nc\_ OUHIpPoricrics LC:G;./V».‘I ________________________

Maintain state as index

Reduce

Find Minimum
Candidate Id

Forward

Match

Update
Component
Id

Combine
ws Find Minimum
Forward Candidate Id | [, "
. Sort on ash Partitig
Hash Partition Match Forward
on [0] [0:ASC] i
Pipeline J.0|n
Breaker 1 Hash Parhtion Candidate Id
E on [0] With
1 Sort on Neighbor
1 [0:ASC]
| CACHED
Hash Partition | | hdfs:///gr
on [0] E aph/edge
s.tsv
S
1
L oo o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo ]

55



PROJECT STRUCTURE AND ROADMAP



Project stats

 Last major release (v0.5) the result of work of 26
contributors from 12 Universities and companies

* Mentoring organization in Google Summer of
Code 2014

» Used by ResearchGate, evaluated by Spotity,
Deutsche Telekom

apache / incubator-flink @ Watch ~ 9

mirrored from git://git.apache.org/incubator-flink.git

Mirror of Apache Flink

4,543 commits 14 branches 6 releases 41 contributors
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Project structure

* Flink is an Apache Incubator “podling”

* Democratic
— Committers and mentors have binding votes

— No organizational ownership
* Open
— All discussions are public

— Contributions are very welcome

— A goal of incubation is to add committers and
enlarge the community
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Features in the works

Mid-query fault tolerance
Interactive shells

Python AP

Stratosphere streaming

Hadoop MapReduce compatibility
Mahout frontend

Stratosphere on Tez



Stratosphere Streaming

public class StreamedWordCount {

}

public static void main(String[] args) {

}

StreamExecutionEnvironment env =
new StreamExecutionEnvironment();

DataStream<Tuple2<String, Integer>> stream

.readTextFile(”path/to/file”)
.flatMap(new WordCountSplitter())
.partitionBy(9)

.map(new WordCountCounter())
.addSink(new WordCountSink());

env.execute();

5000000

4000000 -

Processed words

1000000 -

= env

Stratosphere vs. Storm

= Stratosphere
— Storm

30000001

2000000}

10000 20000 30000 40000
Time(ms)

Single core performance

50000
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How to get involved

* Developers and users: report bugs,
contribute patches

— Very active and friendly community

» Companies: use the system in-house
— Contact us for a joint project/partnership

» Students: use Stratosphere in your thesis



B|9 Data looks

tiny from

) AL i I s s ’ v . & ‘ l ' D = ‘ P8 TR I et S S S i i e

7ﬁ\ stratosphere.eu

ithub.com/apache/incubator-flink

Fj @stratosphere eu



STRATOSPHERE DEVELOPMENT



Stratosphere Development

* Map-Reduce Basics
» Hands-on: Counting Words on Massive Corpora

* Hands-on: Parallel K-Means Clustering



K-Means Clustering

* Given k, the k-means algorithm consists of
four steps:

— Select initial centroids at random.

— Assign each object to the cluster with the
nearest centroid.

— Compute each centroid as the mean of the
objects assigned to it.

— Repeat previous 2 steps until no change.



K-Means Clustering (cont.
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