A view of Big Data Processing from Stratosphere

Asterios Katsifodimos, TU Berlin asterios.katsifodimos@tu-berlin.de

Outline

- Background: Query Processing Fundamentals
 - Relational Algebra
 - Query Optimization Basics
- Background: Parallel Databases Primer
 - Pipelined vs. Data Parallelism
 - Data partitioning
- Stratosphere / Flink Big Data meets Parallel Databases
 - Architecture
 - Programming API
 - Iterations
- After the Coffee break
 - Hands-on: programming on Stratosphere.
 - *prepare your laptops

Query Processing Fundamentals

Database Engines 101

Database engines provide high-level abstractions for efficient data management

Storage

- "Store (some data) as {X}."

Querying

– "Retrieve (something) from $\{X_1\}, ..., \{X_n\}$ where (some condition) applies."

Transactions

- Ensures a minimal set of operational abstractions (ACID)
- Required mostly in scenarios with concurrent read/write access.
 Not discussed today!

Query lifecycle

Relational Algebra

<u>Operator</u>	<u>Semantics</u>	<u>Description</u>	
R, S, T,	Bag / Set	a collection of elements	
$\pi_{A}(R)$	$\{ \pi_{A}(x) \mid x \in R \}$	projects a set of attributes A	
$\sigma_{p}(R)$	$\{x \mid x \in S, p(x)\}$	filters elements where <i>p</i> is <i>false</i>	
$R \times S$	$\{(x, y) \mid x \in R, y \in S\}$	all pairs (Cartesian product)	
$R \bowtie_{\theta} S$	$\{(x, y) \mid x \in R, y \in S, \theta(x, y)\}$	theta-join, cross + filter	
$R \bowtie_{\mathbf{A}} S$	$\{(x, y) \mid x \in R, t \in S, \pi_A(x) = \pi_A(y)\}$	equi-join , s, t select the join key	
γ _A (R)	$\{ G_x = \{ y \mid y \in R, \pi_A(y) = \pi_A(x) \} \mid x \in R \}$	group by A	
$\gamma_{A, a}(R)$	$\{ \{ \pi_{A}(y), agg(G_x) \} \mid x \in R \}$	group and compute aggregate agg	
S U T/S⊍T		bag / set union	
S-T/S - T		bag / set difference	

Query Optimization

- Parsed query is represent as a relational algebra expression
 - (abstract) logical plan with well-defined semantics
- The optimizer translates it into a (concrete) execution plan (physical plan)
- Multiple degrees of freedom during the compilation process
 - Algebraic rewrites, e.g., join order
 - Algorithm selection, e.g., type of join (merge/hash/...)

Algebraic Rewrites

- Makes use of equivalences of relational algebra operators
 - Join operator is associative
 - Selections & projections can may commute joins, sometimes aggregates

join commutativity

Algorithm Selection

- Logical operators can be realized in different ways
 - Different time / space requirements depending on the concrete algorithm choice
 - Applicability depends on certain "physical properties" of the inputs (e.g. sorting)

S\T	1	3	1	4
7	(7,1)	(7,3)	(7,1)	(7,4)
4	(4,1)	(4,3)	(4,1)	(1,1)
1	(1,1)	(1,3)	(1,1)	(1,4)
4	(4,1)	(4,3)	(4,1)	(4.4)
3	(3,1,	(3,3)	(3,1)	(2,4)
2	(2,1)	(2,3)	(2,1)	(2,4)

Nested-Loops Join

S\T	1	1	3	4
1	(1,2)	(1,1)	(13)	(1,4)
2	(2,1)	(2,1)	(2,3)	(2,4)
3	(3,1)	(3,1)	(3,3)	(3,4)
4	(4,1)	(4,1)	(4,3)	(4.4)
4	(4,1)	(4,1)	(4,3)	(4.4)
7	(7,1)	(7,1)	(7,3)	(7,4)

Sort-Merge Join (S, T sorted on join key)

Optimization Search Space

- Exponential search space
 - Can be restricted using heuristics, branch & bound pruning
- Finding the optimal execution plan is non-trivial
 - Decision can be cost-based or rule-based
- Algorithm costs are data-dependent
 - Typically dominated by a bottleneck resource (I/O or network)
 - Information required to calculate them can be approximated using data statistics

PARALLEL DATABASES PRIMER

Parallel DB Architectures

- Shared Memory
 - Several CPUs share a single memory space and (multiple) disks
 - Communication over a single common bus

Figure 20.1: A shared-memory machine

Source:

Garcia-Molina et al., "Database Systems – The Complete Book. Second Edition"

Parallel DB Architectures

Shared Disk

- Several nodes with multiple CPUs, each node has its private memory
- Single attached disk (array): Often NAS, SAN, etc...

Figure 20.2: A shared-disk machine

Source:

Garcia-Molina et al., "Database Systems – The Complete Book. Second Edition"

Parallel DB Architectures

- Shared Nothing
 - Each node has it own set of CPUs, memory and disks attached
 - Data needs to be partitioned over the nodes
 - Data is exchanged through direct node-to-node communication

Figure 20.3: A shared-nothing machine

Source:

Garcia-Molina et al., "Database Systems – The Complete Book. Second Edition"

Parallelizing Query Plans

How would you parallelize this query plan?

Parallelism in databases

- Inter-query Parallelism: Multiple queries run in parallel
- Pipeline Parallelism: Multiple parts of the plan run in parallel
- Data Parallelism: Multiple threads work on the same operator

Possible to use all at the same time

Pipeline Parallelism

Maximum degree of parallelism in pipeline parallelism?

Data Parallelism

- Multiple instances of a subplan are executed on different computers.
- The instances operate on different splits/partitions of the data.
- At some points, results from the sub-plans are collected.
- For more complex queries, results are not collected but re-distributed, for further parallel processing.

Data Parallelism

- Data is divided into several partitions
 - Most operations don't need a complete view of the data!
 - E.g. $\sigma_p(\cdot)$ looks only at a single tuple at a time.
 - Partitions can be processed independently and in parallel
- (max) Degree of Parallelism = number of possible partitions
 - For $\sigma_{\mathbf{p}}(\cdot)$ as high as the number of tuples
- BUT: Some operations possibly need a view of larger portions of the data:
 - E.g. some Grouping/Aggregation operations need all tuples with the same grouping key, e.g., Median

Data Parallelism Workflow

Client send a SQL query to one of the cluster nodes:

Node becomes the "coordinator".

 Coordinator compiles the query:

- Parsing, Checking, Optimization.

- Parallelization.

 Sends partial plans to the other cluster nodes that describes their tasks:

Coordinator also executes the partial plan on his part of the data.

Collects partial results and finalizes them (see next slide)

Data Partitioning

- Partitioning the data means creating multiple disjoint sub-sets
 - Example: Sales data, every year gets its own partition.
- For shared-nothing, data must be partitioned across nodes:
 - If it were replicated, it would effectively become a shared-disk with the local disks acting like a cache (must be kept coherent).
- Partitioning with certain characteristics has more advantages:
 - Some queries can be limited to operate on certain sets only, if it is provable that all relevant data (passing the predicates) is in that partition.
 - Partitions can be simply dropped as a whole (data is rolled out) when it is no longer needed (e.g. discard old sales).

Data Partitioning

- Round robin: Each set gets a tuple in a round, all sets have guaranteed equal amount of tuples, no apparent relationship between tuples in one set.
- Hash Partitioned: Define a set of partitioning columns. Generate a hash value over those columns to decide the target set. All tuples with equal values in the partitioning columns are in the same set.
- Range Partitioned: Define a set of partitioning columns and split the domain of those columns into ranges. The range determines the target set. All tuples on one set are in the same range.

Parallel Selection

- Each node performs the selection on its existing local partition.
 - Selection needs no context.
 - Data can be partitioned in a arbitrary way.
 - Partial results union-ed afterwards.

Parallel Aggregation

- Re-partition dataset on grouping column set
 - Tuples with the same grouping values will end up on the same machine
 - Apply local grouping/aggregation algorithm to each partition in parallel

- Not possible if the aggregation function requires sorting
 - E.g. Median

Parallel Equi-Joins

- A special class of joins suited for parallelization are Equi-Joins.
 - Only look at tuple pairs that share the same join key
 - Partition relations R and S using the same partitioning scheme over the join key
 - All values of R and S with the same join key end up at the same node
 - All joins can be performed locally
- Multiple partitioning strategies possible:
 - Co-Located Join
 - Directed Join
 - Re-Partitioning Join

Co-Located Join

- Data is already partitioned on the join key
 - No re-partioning needed
 - Local joins work "out of the box"

Directed Join (Broadcast Join)

- One side is fully replicated on each node
 - No re-partitioning for the other side needed
 - Works best if one side is much smaller than the other

Re-Partitioning Join

- Both-sides re-partitioned on the join key
 - Fallback strategy for inputs with similar size

STRATOSPHERE

What is Flink

- Probable renaming of Stratosphere system
 - German for "fast, swift"
- Apache Incubator project
 - Proposed by core developers of Stratosphere project
 - Core processing engine developed in the Stratosphere research project
- Community lives at dev@flink.incubator.apache.org
- For this talk, I will still use the name "Stratosphere"

What is Stratosphere

- General purpose computation engine for Hadoop data on YARN clusters
 - Backed by database-inspired execution and optimization
 - Focusing on making the user's life easy
 - Orders of magnitude faster than Hadoop MapReduce
- www.stratosphere.eu
- Follow @stratosphere_eu

Databases ➤ "Big Data"

- Tables ➤ Tables and unstructured files
 - Schema on read
- Parallel > More parallel, commodity, shared clusters
 - Mid-query fault tolerance, resource allocation
- SQL ➤ SQL and Java, Scala, Python, you name it
 - General object manipulation
- Data warehousing > Logs, ML, Graphs, also DW
 - Iterative processing, user-defined functions
- Proprietary ➤ Open source
 - New project structures (and monetization strategies)

Stratosphere: general-purpose programming + database execution

Take from database Technology

Add

Take from MapReduce technology

- Declarativity
- Query optimization
- Robust out-of-core
- Iterations
- Advanced Dataflows
- General APIs

- Scalability
- User-defined functions
- Complex data types
- Schema on read

Placement in Hadoop stack

- Analyzes HDFS data directly
- Runs on top of YARN

Programming Model and APIs

Data sets and operators

Program

Parallel Execution

Rich set of operators

Map, Reduce, Join, CoGroup, Union, Iterate, Delta Iterate, Filter, FlatMap, GroupReduce, Project, Aggregate, Distinct, Vertex-Update, Accumulators

WordCount in Java

```
final ExecutionEnvironment env =
 ExecutionEnvironment.getExecutionEnvironment();
                                                                                     text
DataSet<String> text = readTextFile (input);
DataSet<Tuple2<String, Integer>> counts= text
  .flatMap(new LineSplitter())
  .groupBy(0)
                                                                                   flatMap
  .count();
env.execute("Word Count Example");
                                                                                   reduce
public static final class LineSplitter extends
 FlatMapFunction<String, Tuple2<String, Integer>> {
 public void flatMap(String line, Collector<Tuple2<String, Integer>> out) {
    for (String word : line.split(" ")) {
      out.collect(new Tuple2<String, Integer>(word, 1));
                                                                                   counts
```

WordCount in Scala

```
val input = TextFile(textInput)

val counts = input
    .flatMap { line => line.split("\\W+") }
    .groupBy { word => word }
    .count()
```


Longer Operator Pipelines

```
DataSet<Tuple...> large = env.readCsv(...);
DataSet<Tuple...> medium = env.readCsv(...);
DataSet<Tuple...> small = env.readCsv(...);
DataSet<Tuple...> joined1 = large
                 .join(medium)
                 .where(3).equals(1)
                 .with(new JoinFunction() { ... });
DataSet<Tuple...> joined2 = small
                 .join(joined1)
                 .where(0).equals(2)
                 .with(new JoinFunction() { ... });
DataSet<Tuple...> result = joined2
                 .groupBy(3)
                 .max(2);
```


"Iterate" operator

- Built-in operator to support looping over data
- Applies step function to partial solution until convergence
- Step function can be arbitrary Stratosphere program
- Convergence via fixed number of iterations or custom convergence criterion

Using Spargel: The graph API

```
ExecutionEnvironment env = getExecutionEnvironment();
DataSet<Long> vertexIds = env.readCsv(...);
DataSet<Tuple2<Long, Long>> edges = env.readCsv(...);
DataSet<Tuple2<Long, Long>> vertices = vertexIds.map(new IdAssigner());
DataSet<Tuple2<Long, Long>> result = vertices.runOperation(
        VertexCentricIteration.withPlainEdges(
                  edges, new CCUpdater(), new CCMessager(), 100));
result.print();
env.execute("Connected Components");
                                         Pregel/Giraph-style Graph
                                         Computation
```

STRATOSPHERE INTERNALS

Stratosphere stack

Why optimization?

Do you want to hand-tune that?

Stratosphere optimizer

- There are many ways to execute a program
- What you write is not what is executed
- No need to hardcode execution strategies
- Optimizer decides:
 - Pipelines and operator placement
 - Sort- vs. hash- based execution
 - Data exchange (partition vs. broadcast)
 - Data partitioning steps
 - In-memory caching

Effect of optimization

Optimization Example

Orders

Items

```
case class Order(id: Int, priority: Int, ...)
                                       case class Item(id: Int, price: double, )
val orders = DataSource(...)
                                       case class PricedOrder(id, priority, price)
val items = DataSource(...)
val filtered = orders filter { ... }
val prio = filtered join items where { .id } isEqualTo { .id }
                      map {(o,li) => PricedOrder(o.id, o.priority, li.price)}
val sales = prio groupBy {p => (p.id, p.priority)} aggregate ({ .price},SUM)
                                                                  Grp/Agg
                  Grp/Agg
            (0,1)
                                                                    Join
          (0) = (0)
                    Join
                                                             sort (0,1)
                                                                          sort (0)
                                                          partition(0)
      (\emptyset)
            Filter
                                                                         partition(0)
                                                         Filter
```

Items

Orders

Stratosphere runtime

- Hybrid MapReduce and MPP database runtime
- Streaming engine
 - Low-latency queries
- Stateful multi-pass algorithms
 - Very efficient for ML/graphs
- Heavily in-memory
 - Fast on modern machines
- Out-of-core gracefully
 - Scales beyond main memory

Distributed architecture

- Master (Job Manager)
 handles job submission,
 scheduling, and
 metadata
- Workers (Task Managers) execute operations
- Data can be streamed between nodes
- All operators start in-memory and gradually go out-of-core

Memory management

- Works on pages of bytes
- Maps objects transparently to these pages
- Full control over memory, out-of-core enabled
- Algorithms work on binary representation
- Address individual fields (not deserialize whole object)

Distributed Collection

List[WC]

- Collections of objects
- General-purpose serializer (Java / Kryo)
- Limited control over memory & less efficient spilling

Built-in vs. driver-based looping

Loop outside the system, in driver program

Iterative program looks like many independent jobs

Dataflows with feedback edges

System is iterationaware, can optimize the job

Delta iterations

Cover typical use cases of Pregel-like systems with comparable performance in a generic platform and developer API.

Computations performed in each iteration for connected communities of a social graph

Runtime (secs)

*Note: Runtime experiment uses larger graph

Optimizing iterative programs

PROJECT STRUCTURE AND ROADMAP

Project stats

- Last major release (v0.5) the result of work of 26 contributors from 12 Universities and companies
- Mentoring organization in Google Summer of Code 2014
- Used by ResearchGate, evaluated by Spotify, Deutsche Telekom

Project structure

- Flink is an Apache Incubator "podling"
- Democratic
 - Committers and mentors have binding votes
 - No organizational ownership
- Open
 - All discussions are public
 - Contributions are very welcome
 - A goal of incubation is to add committers and enlarge the community

Features in the works

- Mid-query fault tolerance
- Interactive shells
- Python API
- Stratosphere streaming
- Hadoop MapReduce compatibility
- Mahout frontend
- Stratosphere on Tez
- •

Stratosphere Streaming


```
public class StreamedWordCount {
  public static void main(String[] args) {
    StreamExecutionEnvironment env =
      new StreamExecutionEnvironment();
    DataStream<Tuple2<String, Integer>> stream = env
      .readTextFile("path/to/file")
      .flatMap(new WordCountSplitter())
      .partitionBy(0)
      .map(new WordCountCounter())
      .addSink(new WordCountSink());
    env.execute();
```


Single core performance

How to get involved

- Developers and users: report bugs, contribute patches
 - Very active and friendly community

- Companies: use the system in-house
 - Contact us for a joint project/partnership

• Students: use Stratosphere in your thesis

BIC Data looks tiny from Stratosphere

stratosphere.eu

github.com/apache/incubator-flink

@stratosphere_eu

Hands-on

STRATOSPHERE DEVELOPMENT

Stratosphere Development

- Map-Reduce Basics
- Hands-on: Counting Words on Massive Corpora
- Hands-on: Parallel K-Means Clustering

K-Means Clustering

- Given *k*, the *k-means* algorithm consists of four steps:
 - Select initial centroids at random.
 - Assign each object to the cluster with the nearest centroid.
 - Compute each centroid as the mean of the objects assigned to it.
 - Repeat previous 2 steps until no change.

K-Means Clustering (cont.)

