Process Mining: Making Sense of Processes Hidden in Big Event Data

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Some Movies ...

http://www.youtube.com/watch?v=mVvc6NUeoHo

http://www.youtube.com/watch?v=7oat7MatU_U

http://www.youtube.com/watch?v=nKy2Sx2WYRE

Positioning Process Mining

2

On the different roles of (process) models ...

process model

event log

Play-Out (Classical use of models)

A B C D A E DA E DA B C DA B C DA C B DA C B DA E DA C B DA E DA C B DA C B D

event log

process model

ABCD AED AED ACBD ABCD ACBD AED ACBD

Example Process Discovery (Vestia, Dutch housing agency, 208 cases, 5987 events)

PAGE 8

Example Process Discovery (ASML, test process lithography systems, 154966 events)

Example Process Discovery (AMC, 627 gynecological oncology patients, 24331 events)

Replay can detect problems

Replay can extract timing information

Performance Analysis Using Replay (WOZ objections Dutch municipality, 745 objections, 9583 event, f= 0.988)

- conformance checking to diagnose deviations
- squeezing reality into the model to do model-based analysis

L	~	0		1		f	
Т	a		//		//	J	
	a	c	b	d	au	\gg	h
Γ	t1	t4	t3	t5	t7		t10

Example: BPI Challenge 2012

(Dutch financial institute, doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f)

Work of Arya Adriansyah (Replay project)

Activity "W_Wijzigen contractgegevens" is the bottleneck, but it occured rarely (only 4 times)

Desire Lines in Big Data

Moore's Law

Date of introduction

STORAGE: FROM HIGHWAY ROBBERY TO RUNAWAY BARGAIN

\$ per megabyte

A simple calculation

• Starting point 2010:

- Harddisk 1 Terabyte = 10¹² bytes
- **Digital Universe 1.2 Zettabyte = 1.2*10²¹ bytes** (estimate in IDC's annual report, "The Digital Universe Decade Are You Ready?" May 2010)
- Disk needs to grow $2^{30.16} = 1.2^* 10^9 = 1.2^* 10^{21} / 10^{12}$ times its current size.
- Assuming D=1.56 this takes 30.16*1.56 = 47.05 years.
- Hence, in 2060 your laptop can contain all of today's digital universe (internet, computer files, transaction logs, movies, photos, music, books, databases, etc.)!

From Data to Actionable Knowledge

Process Mining

- Process discovery: "What is really happening?"
- Conformance checking: "Do we do what was agreed upon?"
- Performance analysis: "Where are the bottlenecks?"
- Process prediction: "Will this case be late?"
- Process improvement: "How to redesign this process?"
- Etc.

Process Mining

Starting point: event log

case id	event id		properties									
		timestamp	activity	resource	cost							
1	35654423 35654424 35654425 35654426 35654427	30-12-2010:11.02 31-12-2010:10.06 05-01-2011:15.12 06-01-2011:11.18 07-01-2011:14.24	register request examine thoroughly check ticket decide reject request	Pete Sue Mike Sara Pete	50 400 100 200 200	···· ····						
2	35654483 35654485	30-12-2010:11.32 30-12-2010:12.12	register request check ticket	Mike	50 100							
	35654487 35654488 35654489	30-12-2010:14.16 05-01-2011:11.22 08-01-2011:12.05	examine casually decide pay compensation	ca	ase id	ev	vent id		properties			
3	35654521 35654522	1 30-12-2010:14.32 2 30-12-2010:15.06	register request examine casually check ticket decide reinitiate request examine thoroughly check ticket decide					timestamp	activity	resource	cost	
	35654524 35654525 35654526 35654527 35654530 35654531 25654532	30-12-2010:16.34 06-01-2011:09.18 06-01-2011:12.18 06-01-2011:13.06 08-01-2011:11.43 09-01-2011:09.55			1	356 356 356	554423 554424 554425	30-12-2010:11.02 31-12-2010:10.06 05-01-2011:15.12	register request examine thoroughly check ticket	Pete Sue Mike	50 400 100	···· ···
4	35654641 35654643 35654644	06-01-2011:15.02 07-01-2011:12.06 08-01-2011:14 43	register request check ticket	1_		356	554426 554427	07-01-2011:11.18	reject request	Pete	200	
	35654645 35654647	645 09-01-2011:12.02 647 12-01-2011:15.44	decide reject request		2	356	554483 554485	30-12-2010:11.32	register request	Mike Mike	50 100	
5	35654711 35654712 35654714 35654715 35654716 35654718	06-01-2011:09.02 07-01-2011:10.16 08-01-2011:11.22 10-01-2011:13.28 11-01-2011:16.18 14-01-2011:14 33	register request examine casually check ticket decide reinitiate request check ticket examine casually decide reinitiate request examine casually check ticket decide reject request		2	356 356 356	654487 654488 654489	30-12-2010:14.16 05-01-2011:11.22 08-01-2011:12.05	examine casually decide pay compensation	Pete Sara Ellen	400 200 200	
	35654719 16-01-2011:15.5 35654720 19-01-2011:11.1 35654721 20-01-2011:12.4 35654722 21-01-2011:109.0 35654724 21-01-2011:11.3 35654725 23-01-2011:11.3 35654726 24-01-2011:14.5	16-01-2011:15.50 19-01-2011:11.18 20-01-2011:11.18 21-01-2011:12.48 21-01-2011:09.06 21-01-2011:11.34 23-01-2011:13.12 24-01-2011:14.56		Sara Sara Sue Pete Sara Mike	200 200 400 100 200 200	· · · · · · · · · · · ·			•			
6	35654871 35654873 35654874 35654875 35654877	06-01-2011:15.02 06-01-2011:16.06 07-01-2011:16.22 07-01-2011:16.52 16-01-2011:11.47	register request examine casually check ticket decide pay compensation	Mike Ellen Mike Sara Mike	50 400 100 200 200	···· ··· ···		XE	ES, MXML, SA	-MXML,	CSV,	etc

Simplified event log

properties				
timestamp	activity	resource	case id	trace
30-12-2010:11.02 31-12-2010:10.06 505-01-2011:15.12 506-01-2011:11.18 707-01-2011:14.24	register request examine thoroughly check ticket decide reject request	Pete Sue Mike Sara Pete	1	$\langle a, b, d, e, h \rangle$
30-12-2010:11.32 30-12-2010:12.12 30-12-2010:12.12 30-12-2010:14.16 05-01-2011:11.22 08-01-2011:12.05	register request check ticket examine casually decide pay compensation	Mike Mike Pete Sara Ellen	2 3 4	$ \begin{array}{l} \langle a, a, c, e, g \rangle \\ \langle a, c, d, e, f, b, d, e, g \rangle \\ \langle a, d, b, e, h \rangle \end{array} $
30-12-2010:14.32 2 30-12-2010:15.06 3 30-12-2010:16.34 5 06-01-2011:09.18 5 06-01-2011:12.18 7 06-01-2011:13.06 0 8-01-2011:11.43 09-01-2011:09.55 5 15-01-2011:10.45	register request examine casually check ticket decide reinitiate request examine thoroughly check ticket decide pay compensation	Pete Mike Ellen Sara Sara Sean Pete Sara Ellen	5 6 	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
06-01-2011:15.02 07-01-2011:12.06 08-01-2011:14.43 09-01-2011:12.02 12-01-2011:15.44	register request check ticket examine thoroughly decide reject request	Pete Mike 1 Sean 4 Sara 2 Ellen 2	50 100 400 200 200	a – register reguest
06-01-2011:09.02 07-01-2011:10.16 08-01-2011:11.22 10-01-2011:13.28 11-01-2011:13.28 14-01-2011:16.18 14-01-2011:14.33 16-01-2011:15.50 19-01-2011:11.18 20-01-2011:12.48 21-01-2011:12.48 21-01-2011:11.34 23-01-2011:13.12 24-01-2011:13.12 06-01-2011:15.02 06-01-2011:16.02 07-01-2011:16.52 16-01-2011:16.52	register request examine casually check ticket decide reinitiate request check ticket examine casually decide reinitiate request examine casually check ticket decide reject request register request register request examine casually check ticket decide gister request	Ellen Mike 2 Pete 1 Sara 2 Ellen 1 Mike 2 Sara 2 Sara 2 Sue 2 Pete 1 Sara 2 Mike 2 Mike 2 Mike 1 Sara 2 Mike 1 Sara 2 Mike 2	50 400 100 200 100 200 100 200 200 200 200 200 200 200 50 400 200 50 200 200 200 200 200 200 200 200 200 200	b = examine thoroughly, c = examine casually, d = check ticket, e = decide, f = reinitiate request, g = pay compensation, and h = reject request
	timestamp 30-12-2010:11.02 31-12-2010:11.02 31-12-2011:10.06 05-01-2011:15.12 05-01-2011:11.18 07-01-2011:11.22 30-12-2010:11.32 30-12-2010:11.32 30-12-2010:11.32 30-12-2010:11.22 030-12-2010:14.16 30-12-2010:14.32 20-12-2010:14.32 20-12-2010:15.06 30-12-2010:16.34 506-01-2011:10.91.8 506-01-2011:13.06 08-01-2011:13.06 08-01-2011:13.06 08-01-2011:10.45 106-01-2011:10.45 06-01-2011:10.45 06-01-2011:10.45 08-01-2011:12.06 408-01-2011:10.45 106-01-2011:12.02 712-01-2011:15.02 307-01-2011:10.16 408-01-2011:10.16 408-01-2011:10.16 408-01-2011:10.16 408-01-2011:10.16 10-01-2011:10.90.02 207-01-2011:11.28 511-01-2011:11.28 511-01-2011:11.32 21-01-2011:11.32	properties timestamp activity 30-12-2010:11.02 register request 31-12-2010:11.02 register request 31-12-2011:11.18 decide 06-01-2011:11.18 decide 07-01-2011:11.18 decide 30-12-2010:11.22 check ticket 30-12-2010:11.21 check ticket 30-12-2010:11.22 decide 07-01-2011:11.20 pay compensation 30-12-2010:14.32 register request 30-12-2010:15.06 examine casually 05-01-2011:12.05 pay compensation 1012-2010:16.34 check ticket 06-01-2011:10.45 pay compensation 08-01-2011:10.45 pay compensation 08-01-2011:10.45 pay compensation 06-01-2011:11.43 check ticket 09-01-2011:10.45 pay compensation 106-01-2011:12.02 register request 07-01-2011:12.02 register request 07-01-2011:12.02 register request 07-01-2011:12.02 register request 106-01-2011:12.02 register re	propertiestimestampactivityresource $30-12-2010:11.02register requestPete31-12-2010:10.06examine thoroughlySue05-01-2011:15.12check ticketMike06-01-2011:11.18decideSara07-01-2011:14.24reject requestPete30-12-2010:11.32register requestMike30-12-2010:12.12check ticketMike30-12-2010:12.12check ticketMike08-01-2011:11.20pay compensationEllen30-12-2010:14.16examine casuallyPete30-12-2010:15.06examine casuallyMike30-12-2010:15.06examine casuallyMike30-12-2010:16.34check ticketEllen06-01-2011:12.18reinitiate requestSara06-01-2011:11.43check ticketPete09-01-2011:10.45pay compensationEllen106-01-2011:10.45pay compensationEllen106-01-2011:10.45pay compensationEllen106-01-2011:11.43check ticketPete30-12.2011:14.44examine thoroughlySean507-01.2011:12.02register requestPete307-01-2011:12.02check ticketMike106-01-2011:15.02register requestPete307-01-2011:12.04reject requestEllen106-01-2011:13.28decideSara51-01-2011:11.22check ticketPete10-01-2011:11.24reject requestSara$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Extension: Adding perspectives to model based on event log

We applied ProM in >100 organizations

- Municipalities (e.g., Alkmaar, Heusden, Harderwijk, etc.)
- Government agencies (e.g., Rijkswaterstaat, Centraal Justitieel Incasso Bureau, Justice department)
- Insurance related agencies (e.g., UWV)
- Banks (e.g., ING Bank)
- Hospitals (e.g., AMC hospital, Catharina hospital)
- Multinationals (e.g., DSM, Deloitte)
- High-tech system manufacturers and their customers
 (e.g., Philips Healthcare, ASML, Ricoh, Thales)
- Media companies (e.g. Winkwaves)

All supported by ...

- Open-source (L-GPL), cf. www.processmining.org
- Plug-in architecture
- Plug-ins cover the whole process mining spectrum and also support classical forms of process analysis

Process Models

Petri nets

Reachability graph

How many states?

WF-nets and soundness

Event-Driven Process Chains (EPCs)

Representational bias matters, but ...

...the visual representation is less relevant!

The representational bias determinates the search space, but can be decoupled from the visualization.

Process discovery

Process Discovery Techniques (small selection)

automata-base	distribute d learning	distributed genetic mining			
heuristic	lan mining	language-based regions			
	partial-order based mining	state-based regions			
genetic mining stoc fuzzy mining	pattern-based mining	LTL mining			
	chastic task graphs	neural networks			
	mining block structures	hidden Markov models			
α algorithm	multi-phase mining c	onformal process graph			
α# alg	orithm ILP n	ninina			
	x++ algorithm				

Language identification in the limit (Mark Gold 1967)

PAGE 50

Learning is not easy ...

Why is process discovery such a difficult problem?

- There are no negative examples (i.e., a log shows what has happened but does not show what could not happen).
- Due to concurrency, loops, and choices the search space has a complex structure and the log typically contains only a fraction of all possible behaviors.
- There is no clear relation between the size of a model and its behavior (i.e., a smaller model may generate more or less behavior although classical analysis and evaluation methods typically assume some monotonicity property).

Problem

Challenge: four competing quality criteria

Example: one log four models

 N_4 : fitness = +, precision = +, generalization = -, simplicity = -

Model N₁

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
1391	

Model N₂

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
391	

Model N₄

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
1391	

Example of a process discovery technique: Genetic Mining

Characteristics

- requires a lot of computing power, but can be distributed easily,
- can deal with noise, infrequent behavior, duplicate tasks, invisible tasks,
- allows for incremental improvement and combinations with other approaches (heuristics post-optimization, etc.).

Genetic process mining: Overview

Example: crossover

Example: mutation

Process discovery algorithms (small selection)

distributed genetic mining automata-based learning heuristic mining genetic mining stochastic task graphs fuzzy mining mining block structures α algorithm multi-phase mining α# algorithm α ++ algorithm

LTL mining

conformal process graph partial-order based mining **ILP** mining

language-based regions

state-based regions

neural networks

hidden Markov models

- Direct succession: x>y iff for some case x is directly followed by y.
- Causality: x→y iff x>y and not y>x.
- Parallel: x||y iff x>y and y>x
- Choice: x#y iff not x>y and not y>x.

Basic idea used by α Algorithm (1)

(a) sequence pattern: $a \rightarrow b$

Basic idea used by α Algorithm (2)

Basic idea used by α Algorithm (3)

Example Revisited

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

Footprint of L₁

	а	b	С	d	е
а	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
С	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
е	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
Footprint of L₂

$$L_{2} = [\langle a, b, c, d \rangle^{3}, \langle a, c, b, d \rangle^{4}, \langle a, b, c, e, f, b, c, d \rangle^{2}, \langle a, b, c, e, f, c, b, d \rangle, \\ \langle a, c, b, e, f, b, c, d \rangle^{2}, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle]$$

	а	b	С	d	е	f
а	#	\rightarrow	\rightarrow	#	#	#
b	\leftarrow	#		\rightarrow	\rightarrow	\leftarrow
С	\leftarrow		#	\rightarrow	\rightarrow	\leftarrow
d	#	\leftarrow	\leftarrow	#	#	#
e	#	\leftarrow	\leftarrow	#	#	\rightarrow
f	#	\rightarrow	\rightarrow	#	\leftarrow	#

Simple patterns

Algorithm

```
Let L be an event log over T. \alpha(L) is defined as follows.
1. T_1 = \{ t \in T \mid \exists_{\sigma \in I} t \in \sigma \},\
2. T_1 = \{ t \in T \mid \exists_{\sigma \in I} t = first(\sigma) \},
3. T_{\sigma} = \{ t \in T \mid \exists_{\sigma \in I} t = last(\sigma) \},
4. X_1 = \{ (A,B) \mid A \subseteq T_1 \land A \neq \emptyset \land B \subseteq T_1 \land B \neq \emptyset \land
    \forall_{a \in A} \forall_{b \in B} a \rightarrow_{L} b \land \forall_{a_{1,a_{2} \in A}} a_{1} \#_{L} a_{2} \land \forall_{b_{1,b_{2} \in B}} b_{1} \#_{L} b_{2} \},
5. Y_L = \{ (A,B) \in X_L \mid \forall_{(A',B') \in X_I} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B') \},
6. P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{i_L,o_L\},\
7. F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in A \} \}
    Y_{1} \land b \in B \} \cup \{(i_{1},t) | t \in T_{1}\} \cup \{(t,o_{1}) | t \in T_{0}\}, and
8. \alpha(L) = (P_1, T_1, F_1).
```

The α -algorithm

Let L be an event log over T. Then, α (L) is defined as follows:

- 1. $T_L = \{ t \in T \mid \exists_{\sigma \in L} t \in \sigma \},\$ Each activity in L corresponds to a transition in $\alpha(L)$.
- 2. $T_1 = \{ t \in T \mid \exists_{\sigma \in L} t = first(\sigma) \}$ Fix the set of start activities – that is, the first elements of each trace: $\langle t_1, ..., t_n \rangle, ..., \langle t'_1, ..., t'_m \rangle$
- 3. $T_{O} = \{ t \in T \mid \exists_{\sigma \in L} t = last(\sigma) \}$ Fix the set of end activities – that is, elements that appear last at a trace : $\langle t_{1}, ..., t_{n} \rangle, ..., \langle t'_{1}, ..., t'_{m} \rangle$

Intuition next steps: Find places

Step 4: Calculate pairs (A, B)
Step 5: Delete nonmaximal pairs (A, B)
Step 6: Determine places p_(A, B) from pairs (A, B)

4.
$$X_{L} = \{ (A,B) \mid A \subseteq T_{L} \land A \neq \emptyset \land B \subseteq T_{L} \land B \neq \emptyset$$

 $\land \forall_{a \in A} \forall_{b \in B} a \rightarrow_{L} b$
 $\land \forall_{a1,a2 \in A} a_{1} \#_{L} a_{2}$
 $\land \forall_{b1,b2 \in B} b_{1} \#_{L} b_{2} \},$

Find pairs (A, B) of sets of activities such that every element $a \in A$ and every element $b \in B$ are causally related (i.e., $a \rightarrow_L b$), all elements in A are independent $(a_1 \#_L a_2)$, and all elements in B are independent $(b_1 \#_L b_2)$.

Places as footprints

	a_1	a_2	 a_m	b_1	b_2	 b_n
a_1	#	#	 #	\rightarrow	\rightarrow	 \rightarrow
a_2	#	#	 #	\rightarrow	\rightarrow	 \rightarrow
a_m	#	#	 #	\rightarrow	\rightarrow	 \rightarrow
b_1	\leftarrow	\leftarrow	 \leftarrow	#	#	 #
b_2	←	\leftarrow	 \leftarrow	#	#	 #
b_n	\leftarrow	\leftarrow	 \leftarrow	#	#	 #

5.
$$Y_L = \{ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B') \}$$

Delete from set X_L all pairs (A, B) that are not maximal!

6. $P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{i_L,o_L\},\$

Determine the place set: Each element (A, B) of Y_L is a place. To ensure the workflow structure, add a source place i_L and a target place o_L

7. $F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \}$ $\cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \}$ $\cup \{ (i_L,t) \mid t \in T_l \} \cup \{ (t,o_L) \mid t \in T_O \}$

Determine the flow relation: Connect each place $p_{(A,B)}$ with each element a of its set A of source transitions and with each element of its set B of target transitions. In addition, draw an arc from the source place i_L to each start transition $t \in T_I$ and an arc from each end transition $t \in T_O$ to the sink place o_L .

8. $\alpha(L) = (P_L, T_L, F_L)$

 $L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$

	a	b	С	d	е	b
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}	
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$	$ \bigcirc a \qquad p1 \qquad e \qquad p3 \qquad d \qquad $
С	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$	start end
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}	p2 c p4
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$	

$$\begin{split} X_{L_1} = \{(\{a\},\{b\}),(\{a\},\{c\}),(\{a\},\{e\}),(\{a\},\{b,e\}),(\{a\},\{c,e\}),\\ (\{b\},\{d\}),(\{c\},\{d\}),(\{e\},\{d\}),(\{b,e\},\{d\}),(\{c,e\},\{d\})\} \end{split}$$

 $Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}$

Another event log L₃

$$L_{3} = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle, \langle a, b, d, c, e, g \rangle^{2}, \langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle]$$

	а	b	С	d	е	f	8
а	#	\rightarrow	#	#	#	#	#
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#
С	#	\leftarrow	#		\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	\leftarrow	#	#

Model for L₃

	а	b	С	d	е	f	g
a	#	\rightarrow	#	#	#	#	#
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#
С	#	\leftarrow	#		\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
е	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
8	#	#	#	#	\leftarrow	#	#

 $L_{3} = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle,$ $\langle a, b, d, c, e, g \rangle^{2},$ $\langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle]$

Another event log L₄

 $L_4 = \left[\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22} \right]$

Event log L₅

$$L_{5} = [\langle a, b, e, f \rangle^{2}, \langle a, b, e, c, d, b, f \rangle^{3}, \langle a, b, c, e, d, b, f \rangle^{2}, \\ \langle a, b, c, d, e, b, f \rangle^{4}, \langle a, e, b, c, d, b, f \rangle^{3}]$$

	а	b	С	d	е	f
а	#	\rightarrow	#	#	\rightarrow	#
b	\leftarrow	#	\rightarrow	\leftarrow		\rightarrow
С	#	\leftarrow	#	\rightarrow		#
d	#	\rightarrow	\leftarrow	#		#
e	\leftarrow				#	\rightarrow
f	#	\leftarrow	#	#	\leftarrow	#

 $T_L = \{a, b, c, d, e, f\}$ $T_I = \{a\}$ $T_I = \{f\}$ $(\{d\},\{b\}),(\{e\},\{f\}),(\{a,d\},\{b\}),(\{b\},\{c,f\})\}$ $Y_L = \{(\{a\}, \{e\}), (\{c\}, \{d\}), (\{e\}, \{f\}), (\{a, d\}, \{b\}), (\{b\}, \{c, f\})\}$ $P_L = \{p_{(\{a\},\{e\})}, p_{(\{c\},\{d\})}, p_{(\{e\},\{f\})}, p_{(\{a,d\},\{b\})}, p_{(\{b\},\{c,f\})}, i_L, o_L\}\}$ $F_L = \{(a, p_{\{a\}, \{e\}}), (p_{\{a\}, \{e\}}), e), (c, p_{\{c\}, \{d\}}), (p_{\{c\}, \{d\}}), d), (p_{\{c\}, \{d\}}), d), (p_{\{c\}, \{d\}}), d\}\}$ $(e, p_{(\{e\},\{f\})}), (p_{(\{e\},\{f\})}, f), (a, p_{(\{a,d\},\{b\})}), (d, p_{(\{a,d\},\{b\})}), (d$ $(p_{(\{a,d\},\{b\})},b),(b,p_{(\{b\},\{c,f\})}),(p_{(\{b\},\{c,f\})},c),(p_{(\{b\},\{c,f\})},f),$ $(i_L, a), (f, o_L)$ $\alpha(L) = (P_L, T_L, F_L)$

Discovered model

 $\begin{aligned} X_L &= \{(\{a\}, \{b\}), (\{a\}, \{e\}), (\{b\}, \{c\}), (\{b\}, \{f\}), (\{c\}, \{d\}), \\ &\quad (\{d\}, \{b\}), (\{e\}, \{f\}), (\{a, d\}, \{b\}), (\{b\}, \{c, f\})\} \\ Y_L &= \{(\{a\}, \{e\}), (\{c\}, \{d\}), (\{e\}, \{f\}), (\{a, d\}, \{b\}), (\{b\}, \{c, f\})\} \end{aligned}$

Limitation of α algorithm: Implicit places

$$L_{6} = [\langle a, c, e, g \rangle^{2}, \langle a, e, c, g \rangle^{3}, \langle b, d, f, g \rangle^{2}, \langle b, f, d, g \rangle^{4}]$$

Limitation of α algorithm: Loops of length 1

$$L_{7} = [\langle a, c \rangle^{2}, \langle a, b, c \rangle^{3}, \langle a, b, b, c \rangle^{2}, \langle a, b, b, b, b, c \rangle^{1}]$$

$$\textcircled{b}$$

$$\textcircled{a \rightarrow b} \\ \textcircled{a \rightarrow c} \\ \textcircled{b \rightarrow c} \\ \textcircled{b \rightarrow c} \\ \rule{0ex}{3ex}{berve}$$

desired model

Limitation of α algorithm: Loops of length 2

$$L_8 = [\langle a, b, d \rangle^3, \langle a, b, c, b, d \rangle^2, \langle a, b, c, b, c, b, d \rangle]$$

desired model

Limitation of α algorithm: Nonlocal dependencies

 $L_9 = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}]$

Not discovered!

$$L_4 = [\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22}]$$

Difficult constructs for α algorithm

Rediscovering process models

The rediscovery problem: Is the discovered model N' equivalent to the original model N?

Challenge: Finding the right representational bias

There is no WF-net with unique visible labels that exhibits this behavior.

Another example

 $L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$

There is no WFnet with unique visible labels that exhibits this behavior.

Challenge: noise and incompleteness

- To discover a suitable process model it is assumed that the event log contains a representative sample of behavior.
- Two related phenomena:
 - Noise: the event log contains rare and infrequent behavior not representative for the typical behavior of the process.
 - Incompleteness: the event log contains too few events to be able to discover some of the underlying control-flow structures.

More on incompleteness

To illustrate the relevance of completeness, consider a process consisting of 10 activities that can be executed in parallel and a corresponding log that contains information about 10,000 cases. The total number of possible interleavings in the model with 10 concurrent activities is 10! = 3,628,800. Hence, it is impossible that each interleaving is present in the log as there are fewer cases (10,000) than potential traces (3,628,800). Even if there are 3,628,800 cases in the log, it is extremely unlikely that all possible variations are present. To motivate this consider the following analogy. In a group of 365 people it is very unlikely that everyone has a different birthdate. The probability is $365!/365^{365} \approx 1.454955 \times 10^{-157} \approx 0$, i.e., incredibly small. The number of atoms in the universe is often estimated to be approximately 10^{79} [129].

Balance four forces

Challenge: Balancing Between Underfitting and Overfitting

Flower model

What is the best model?

What is the best model?

What is the best model?

α algorithm is just a starting point ...

automata-base	distributed distributed	d genetic mining
heuristic	lang mining	uage-based regions
	partial-order based mining	state-based regions
genetic mining	pattern-based mining	LTL mining
sto	chastic task graphs	neural networks
fuzzy mining	mining block structures	hidden Markov models
α algorithm	multi-phase mining co	nformal process graph
α# alg	orithm ILP mi	nina
	x++ algorithm	

Conformance checking

Four models, one log

frequency	reference	trace
455	σ_1	$\langle a, c, d, e, h \rangle$
191	σ_2	$\langle a, b, d, e, g \rangle$
177	σ_3	$\langle a, d, c, e, h angle$
144	σ_4	$\langle a,b,d,e,h angle$
111	σ_5	$\langle a, c, d, e, g \rangle$
82	σ_6	$\langle a, d, c, e, g \rangle$
56	σ_7	$\langle a, d, b, e, h angle$
47	σ_8	$\langle a, c, d, e, f, d, b, e, h \rangle$
38	σ_9	$\langle a, d, b, e, g \rangle$
33	σ_{10}	$\langle a, c, d, e, f, b, d, e, h \rangle$
14	σ_{11}	$\langle a, c, d, e, f, b, d, e, g \rangle$
11	σ_{12}	$\langle a, c, d, e, f, d, b, e, g \rangle$
9	σ_{13}	$\langle a, d, c, e, f, c, d, e, h \rangle$
8	σ_{14}	$\langle a, d, c, e, f, d, b, e, h \rangle$
5	σ_{15}	$\langle a, d, c, e, f, b, d, e, g \rangle$
3	σ_{16}	$\langle a, c, d, e, f, b, d, e, f, d, b, e, g \rangle$
2	σ_{17}	$\langle a, d, c, e, f, d, b, e, g \rangle$
2	σ_{18}	$\langle a, d, c, e, f, b, d, e, f, b, d, e, g \rangle$
1	σ_{19}	$\langle a, d, c, e, f, d, b, e, f, b, d, e, h \rangle$
1	σ_{20}	$\langle a, d, b, e, f, b, d, e, f, d, b, e, g \rangle$
1	σ_{21}	$\langle a,d,c,e,f,d,b,e,f,c,d,e,f,d,b,e,g \rangle$

frequency reference trace

455	σ_1	$\langle a, c, d, e, h \rangle$
191	σ_2	$\langle a, b, d, e, g \rangle$
177	σ_3	$\langle a, d, c, e, h \rangle$
144	σ_4	$\langle a,b,d,e,h angle$
111	σ_5	$\langle a, c, d, e, g \rangle$
82	σ_6	$\langle a, d, c, e, g \rangle$
56	σ_7	$\langle a, d, b, e, h \rangle$
47	σ_8	$\langle a, c, d, e, f, d, b, e, h \rangle$
38	σ_9	$\langle a, d, b, e, g \rangle$
33	σ_{10}	$\langle a, c, d, e, f, b, d, e, h \rangle$
14	σ_{11}	$\langle a, c, d, e, f, b, d, e, g \rangle$
11	σ_{12}	$\langle a, c, d, e, f, d, b, e, g \rangle$
9	σ_{13}	$\langle a, d, c, e, f, c, d, e, h \rangle$
8	σ_{14}	$\langle a, d, c, e, f, d, b, e, h \rangle$
_		

Replaying (1/7) σ_1 on N₁

$$\sigma_1 = \langle a, c, d, e, h \rangle$$

p = produced c = consumed $m = missing \le c$ $r = remaining \le p$

Replaying (2/7) σ_1 on N₁

 $\sigma_1 = \langle a, c, d, e, h \rangle$

p' = p+2 c' = c+1

Replaying (3/7) σ_1 on N₁

p' = p+1 c' = c+1

Replaying (4/7) σ_1 on N₁

p' = p+1 c' = c+1

PAGE 117

Replaying (5/7) σ_1 on N_1

p' = p+1 c' = c+2

Replaying (6/7) σ_1 on N₁

p' = p+1 c' = c+1

Replaying (7/7) σ_1 on N_1

 $\sigma_1 = \langle a, c, d, e, h \rangle$

PAGE 120

Replaying (1/7) σ_3 on N₂

 $\sigma_3 = \langle a, d, c, e, h \rangle$

p = produced c = consumed $m = missing \le c$ $r = remaining \le p$

Replaying (2/7) σ_3 on N_2

 $\sigma_3 = \langle a, d, c, e, h \rangle$

Replaying (3/7) σ_3 on N₂

 $\sigma_3 = \langle a, d, c, e, h \rangle$

Replaying (4/7) σ_3 on N₂

 $\sigma_3 = \langle a, d, c, e, h \rangle$

Replaying (5/7) σ_3 on N_2

 $\sigma_3 = \langle a, d, c, e, h \rangle$

Replaying (6/7) σ_3 on N_2

 $\sigma_3 = \langle a, d, c, e, h \rangle$

Replaying (7/7) σ_3 on N_2

 $\sigma_3 = \langle a, d, c, e, h \rangle$

Problems:

- m = 1 : d was forced to occur without being enabled
- r = 1 : output of c was not used by d

Computing fitness at trace level

Computing fitness at the log level

$$fitness(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right)$$
$$\frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)$$

frequency	reference	e trace
455	σ_1	$\langle a, c, d, e, h \rangle$
191	σ_2	$\langle a, b, d, e, g \rangle$
177	σ_3	$\langle a, d, c, e, h \rangle$
144	σ_4	$\langle a, b, d, e, h \rangle$
111	σ_5	$\langle a, c, d, e, g \rangle$
82	σ_6	$\langle a, d, c, e, g \rangle$
56	σ_7	$\langle a, d, b, e, h \rangle$
47	σ_8	$\langle a, c, d, e, f, d, b, e, h \rangle$
38	σ_9	$\langle a, d, b, e, g \rangle$
33	σ_{10}	$\langle a, c, d, e, f, b, d, e, h \rangle$
14	σ_{11}	$\langle a, c, d, e, f, b, d, e, g \rangle$
11	σ_{12}	$\langle a, c, d, e, f, d, b, e, g \rangle$
9	σ_{13}	$\langle a, d, c, e, f, c, d, e, h \rangle$
8	σ_{14}	$\langle a, d, c, e, f, d, b, e, h \rangle$
5	σ_{15}	$\langle a, d, c, e, f, b, d, e, g \rangle$
3	σ_{16}	$\langle a, c, d, e, f, b, d, e, f, d, b, e, g \rangle$
2	σ_{17}	$\langle a, d, c, e, f, d, b, e, g \rangle$
2	σ_{18}	$\langle a, d, c, e, f, b, d, e, f, b, d, e, g \rangle$
1	σ_{19}	$\langle a,d,c,e,f,d,b,e,f,b,d,e,h \rangle$
1	σ_{20}	$\langle a,d,b,e,f,b,d,e,f,d,b,e,g \rangle$
1	σ_{21}	$\langle a,d,c,e,f,d,b,e,f,c,d,e,f,d,b,e,g \rangle$

Example values

frequency re	eference trace
--------------	----------------

455	σ_1	$\langle a, c, d, e, h \rangle$
191	σ	$\langle a, b, d, e, g \rangle$
177	σ3	$\langle a,d,c,e,h \rangle$
144	σ_4	$\langle a, b, d, e, h \rangle$
111	σ_5	$\langle a, c, d, e, g \rangle$
82	σ_6	$\langle a, d, c, e, g \rangle$
56	σ_7	$\langle a, d, b, e, h \rangle$
47	σ_8	$\langle a, c, d, e, f, d, b, e, h \rangle$
38	σ_9	$\langle a, d, b, e, g \rangle$
33	σ_{10}	$\langle a, c, d, e, f, b, d, e, h \rangle$
14	σ_{11}	$\langle a, c, d, e, f, b, d, e, g \rangle$
11	σ_{12}	$\langle a, c, d, e, f, d, b, e, g \rangle$
9	σ_{13}	$\langle a, d, c, e, f, c, d, e, h \rangle$
8	σ_{14}	$\langle a, d, c, e, f, d, b, e, h \rangle$
5	σ_{15}	$\langle a, d, c, e, f, b, d, e, g \rangle$
3	σ_{16}	$\langle a, c, d, e, f, b, d, e, f, d, b, e, g \rangle$
2	σ_{17}	$\langle a, d, c, e, f, d, b, e, g \rangle$
2	σ_{18}	$\langle a, d, c, e, f, b, d, e, f, b, d, e, g \rangle$
1	σ_{19}	$\langle a, d, c, e, f, d, b, e, f, b, d, e, h \rangle$
1	σ_{20}	$\langle a,d,b,e,f,b,d,e,f,d,b,e,g \rangle$
1	σ_{21}	$\langle a, d, c, e, f, d, b, e, f, c, d, e, f, d, b, e, g \rangle$

$$fitness(L_{full}, N_1) = 1$$

$$fitness(L_{full}, N_2) = 0.9504$$

$$fitness(L_{full}, N_3) = 0.8797$$

$$fitness(L_{full}, N_4) = 1$$

Diagnostics

$(fitness(L_{full}, N_3) = 0.8797)$

Challenges related to conformance checking

- Not as simple as it seems!
- In case of duplicate tasks (two transition with the same label) or silent tasks (τ labeled transitions), multiple paths need to be considered (state space analysis, heuristics, or optimization).
- More general formulation of the problem with costs associated to skipping/inserting particular tasks, see ProM latest conformance checker (A* algorithm).
- Computing the most likely alignment is needed for other types of process mining (time analysis, measuring precision, social network analysis, etc.).

How can process mining help?

- Detect bottlenecks
- Detect deviations
- Performance measurement
 Suggest improved
 - Suggest improvements Decision support (e.g., recommendation and prediction)

- Provide mirror
- Highlight important
 problems
- Avoid ICT failures
- Avoid management by PowerPoint
 From "politics" to
 - "analytics"

Example of a Lasagna process: WMO process of a Dutch municipality

Each line corresponds to one of the 528 requests that were handled in the period from 4-1-2009 until 28-2-2010. In total there are 5498 events represented as dots. The mean time needed to handled a case is approximately 25 days.

WMO process (Wet Maatschappelijke Ondersteuning)

- WMO refers to the social support act that came into force in The Netherlands on January 1st, 2007.
- The aim of this act is to assist people with disabilities and impairments. Under the act, local authorities are required to give support to those who need it, e.g., household help, providing wheelchairs and scootmobiles, and adaptations to homes.
- There are different processes for the different kinds of help. We focus on the process for handling requests for household help.
- In a period of about one year, 528 requests for household WMO support were received.
- These 528 requests generated 5498 events.

C-net discovered using heuristic miner (1/3)

C-net discovered using heuristic miner (2/3)

C-net discovered using heuristic miner (3/3)

Conformance check WMO process (1/3)

Conformance check WMO process (2/3)

Conformance check WMO process (3/3)

The fitness of the discovered process is 0.99521667. Of the 528 cases, 496 cases fit perfectly whereas for 32 cases there are missing or remaining tokens.

Bottleneck analysis WMO process (1/3)

Bottleneck analysis WMO process (2/3)

Bottleneck analysis WMO process (3/3)

Two additional Lasagna processes

RWS ("Rijkswaterstaat") process

WOZ ("Waardering Onroerende Zaken") process

RWS Process

- The Dutch national public works department, called "Rijkswaterstaat" (RWS), has twelve provincial offices. We analyzed the handling of invoices in one of these offices.
- The office employs about 1,000 civil servants and is primarily responsible for the construction and maintenance of the road and water infrastructure in its province.
- To perform its functions, the RWS office subcontracts various parties such as road construction companies, cleaning companies, and environmental bureaus. Also, it purchases services and products to support its construction, maintenance, and administrative activities.

C-net discovered using heuristic miner

PAGE 148

Social network constructed based on handovers of work

Each of the 271 nodes corresponds to a civil servant. Two civil servants are connected if one executed an activity causally following an activity executed by the other civil servant

Social network consisting of civil servants that executed more than 2000 activities in a 9 month period.

The darker arcs indicate the strongest relationships in the social network. Nodes having the same color belong to the same clique.

WOZ process

- Event log containing information about 745 objections against the so-called WOZ ("Waardering Onroerende Zaken") valuation.
- Dutch municipalities need to estimate the value of houses and apartments. The WOZ value is used as a basis for determining the real-estate property tax.
- The higher the WOZ value, the more tax the owner needs to pay. Therefore, there are many objections (i.e., appeals) of citizens that assert that the WOZ value is too high.
- "WOZ process" discovered for another municipality (i.e., different from the one for which we analyzed the WMO process).

Discovered process model

The log contains events related to 745 objections against the so-called WOZ valuation. These 745 objections generated 9583 events. There are 13 activities. For 12 of these activities both start and complete events are recorded. Hence, the WF-net has 25 transitions.

Conformance checker: (fitness is 0.98876214)

Performance analysis

Resource-activity matrix (four groups discovered)

user	a_1	a_2	<i>a</i> ₃	a_4	a_5	<i>a</i> ₆	<i>a</i> 7	a_8	<i>a</i> 9	a_{10}	a_{11}	a_{12}	a_{13}
user 1	0	0	51	0	0	0	0	0	0	0	0	0	0
user 2	1	2	0	0	2	0	0	0	0	38	0	69	0
user 3	0	9	0	0	0	0	0	0	0	0	0	0	0
user 4	2	0	0	0	0	0	0	0	0	0	0	0	0
user 5	117	0	4	0	3	0	0	0	0	1	0	20	6
user 6	172	6	14	0	7	3	0	0	1	2	0	48	53
user 7	1	41	8	14	275	8	8	865	55	180	0	128	5
user 8	2	868	7	6	105	0	0	79	266	441	0	844	3
user 9	90	0	2	0	1	2	0	0	1	2	0	27	28
user 10	0	0	0	899	0	0	0	0	0	0	0	0	1019
user 11	336	1	3	1	4	2	0	0	0	1	0	18	23
user 12	1	645	13	21	419	3	0	3	217	281	1	334	9
user 13	0	1	0	0	0	0	0	0	0	0	0	0	0
user 14	0	0	0	0	0	0	0	0	0	1	0	0	0
user 15	0	0	0	0	0	0	0	2	2	0	0	2	0
user 16	1	3	3	2	1	0	0	1	2	3	1	0	0
user 17	0	4	0	0	0	0	0	0	0	0	0	0	0
user 18	9	0	0	0	0	0	0	0	0	0	0	0	0
user 19	13	1	0	0	1	0	0	0	0	0	0	4	0
user 20	0	0	0	21	0	0	0	0	0	0	0	0	258

Example of a Spaghetti process

Spaghetti process describing the diagnosis and treatment of 2765 patients in a Dutch hospital. The process model was constructed based on an event log containing 114,592 events. There are 619 different activities (taking event types into account) executed by 266 different individuals (doctors, nurses, etc.).

Fragment 18 activities of the 619 activities (2.9%)

Another example (event log of Dutch housing agency)

Business process maps

to the 7th Millennium BC. Since then cartographers have improved their skills and techniques to create maps thereby addressing problems such as clearly representing desired traits, eliminating irrelevant details, reducing complexity, and improving understandability.

Business process movies

Navigation

- Whereas a TomTom device is continuously showing the expected arrival time, users of today's information systems are often left clueless about likely outcomes of the cases they are working on.
- Car navigation systems provide directions and guidance without controlling the driver. The driver is still in control, but, given a goal (e.g. to get from A to B as fast as possible), the navigation system recommends the next action to be taken.
- Operational support provides TomTom functionality for business processes.

Relating the process mining framework to cartography and navigation

600+ plug-ins available covering the whole process mining spectrum

Download from: www.processmining.org

Commercial Alternatives

- Disco (Fluxicon)
- Perceptive Process Mining (before Futura Reflect and BPM|one)
- ARIS Process Performance
 Manager
- QPR ProcessAnalyzer
- Interstage Process Discovery (Fujitsu)
- Discovery Analyst (StereoLOGIC)
- XMAnalyzer (XMPro)

The Sexiest Job of the 21st century (thanks to Moore's Law)

Harvard **Business**

Conclusion

- Process leave traces in event logs. So, if you are interested in processes, use them!
- Process mining: challenging and highly relevant.
- Process discovery challenge
 - balancing between different objectives
 - only example behavior
- Conformance checking challenge
 - finding the most likely trace
 - dealing with silent/duplicate steps
- Relation to Google Maps and TomTom
- Eldorado for exciting research!

Wil M. P. van der Aalst **Process Mining** Discovery, Conformance and Enhancement of Business Processes

More and more information about business processes is recorded by information systems in the form of so-called "event logs". Despite the omnipresence of such data, most organizations diagnose problems based on fiction rather than facts. Process mining is an emerging discipline based on process model-driven approaches and data mining. It not only allows organizations to fully benefit from the information stored in their systems, but it can also be used to check the conformance of processes, detect bottlenecks, and predict execution problems.

Wil van der Aalst delivers the first book on process mining. It aims to be self-contained while covering the entire process mining spectrum from process discovery to operational support. In Part I, the author provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Part II focuses on process discovery as the most important process mining task. Part III moves beyond discovering the control flow of processes and highlights conformance checking, and organizational and time perspectives. Part IV guides the reader in successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM. Finally, Part V takes a step back, reflecting on the material presented and the key open challenges.

Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.

Features and Benefits:

- First book on process mining, bridging the gap between business process modeling and business intelligence.
- Written by one of the most influential and most-cited computer scientists and the best-known BPM researcher.
- Self-contained and comprehensive overview for a broad audience in academia and industry.
- The reader can put process mining into practice immediately due to the applicability of the techniques and the availability of the open-source process mining software ProM.

Process Mining

Wil M. P. van der Aalst

Discovery, Conformance and Enhancement of Business Processes

🖄 Springer

www.processmining.org

ISBN 978-3-642-19344-6

Computer Science

www.win.tue.nl/ieeetfpm/

