

Wolfgang Lehner

Forecasting and Data Imputation Strategies in Database Systems

11.07.2013

data crunching meets number crunching

> The NetFlix Competition

Netflix' star rating system helps determine personalized movie recommendations. Now the company is looking to outside developers to improve those recommendations.

BUSINESS

The \$1 Million Netflix Challenge

FRIDAY, OCTOBER 6, 2006 | BY KATE GREENE

VP Jim Bennett discusses how recommendation systems suggest your next movie and the challenges of building a better one.

🖾 E-mail 🖾 Audio » 🖹 Print

Earlier this week, Netflix, the online movie rental service, announced it will award \$1 million to anyone who can come up with an algorithm that improves the accuracy of its movie recommendation service.

In doing so, the company is putting out a call to researchers who specialize in mac learning--the type of artificial intelligence used to build systems that recommend m books, and movies. The entrant who can increase the accuracy of the Netflix recommendation system, which is called Cinematch, by 10 percent by 2011 will w prize.

Recommendation systems such as those used by Netflix, Amazon, and other Well retailers are based on the principle that if two people enjoy the same product, they likely to have other favorites in common too.

But behind this simple premise is a complex algorithm that incorporates millions of ratings, tens of thousands of items, and ever-changing relationships between user preferences.

> The NetFlix Competition (3)

Database Technology

Database Technology

> The NetFlix Competition (6)

> A simple experiment ...

© Prof. Dr.-Ing. Wolfgang Lehner | UNVERSIGNATION

Forecasting and Data Imputation Strategies in Database Systems

color code := user rating

Phase 1: drop 75% of all pixels

Phase 2: Random permutation of rows and columns

> The Experiment ...

Phase 3: Determine the latent factors

© Prof. Dr.-Ing. Wolfgang Lehner |

Group

Phase 4: Reconstruction

© Prof. Dr.-Ing. Wolfgang Lehner | Universitation

Phase 5: Final Result Generation

© Prof. Dr.-Ing. Wolfgang Lehner | UNIVERSITAT

Forecasting and Data Imputation Strategies in Database Systems

Forecasting and Data Imputation Strategies in Database System

> Time Series Forecasting

Database Technology

Group

Database Technology Group

"It's tough to make predictions, especially about the future." -- Mark Twain

Given

 Time series with numerical values as training data

Goal

- Predict future values for arbitrary future point in times (forecast horizon)
- Include trend and seasonality

Applications

- Planning of sales and budget
- Price development
- Inventory, manufacturing
- Climate, weather, environment
- Economic indicators
- Stocks

Diverse Time Series Data

Find forecast model that minimizes the forecast error

Example: Exponential Smoothing Framework

30 variants (additional additive or multiplicative errors)

Trend/Season	No Season	Add. Season	Mult. Season
No Trend		\sim	\sim
Add. Trend			\sim
Add. Damp. Trend			\sim
Mult. Trend			
Mult. Damp. Trend			

Mathematical Foundations

In-DBMS Time Series Forecasting

Flash-Forward Query Project

Query Processing and Optimization

Model Configuration Advisor

- Forecasting the Data Cube
- Selection of Model Configurations

Notification-based Forecast Queries

Beyond Forecast Models

Model Refinement

Mathematical Foundations

© Prof. Dr.-Ing. Wolfgang Lehner |

Model Estimation

23

Problem

Instantiate a forecast model w.r.t. meta model and training data set

Example

- Forecast Model Type AR(2):
 - $\hat{y}_t = \phi_1 \cdot y_{t-1} + \phi_2 \cdot y_{t-2}$
- Error Metric: MSE

$$\frac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Parameter Estimator L-BFGS-B

Forecasting

Use the estimated forecast model $y_t =$ y_{t-2}

$$= 0.56 \cdot y_{t-1} + 0.23 \cdot$$

- Create h forecast values (forecast horizon)
- Update model state for new measurements (e.g., exponential smoothing)

Model Maintenance

Model Evaluation

- Goal: Trigger model adaptation only if necessary
- Fixed Interval Techniques (# updates, time interval)
- Continuous Evaluation Techniques (threshold, on-demand)

Model Adaptation

- Goal: Adapt the forecast model to the changed time series (if necessary)
- Model Re-Identification
- Model Re-Estimation (old model as start point)

Database Technology

In-DBMS Time Series Forecasting

Deep

- "Sophisticated analytics in Big Data"
- Extended algorithmic runtime environment
- Ad-hoc advanced analytics and statistics

Magnetic

- "Attract data and practitioners"
- Use all available data sources independent of their quality

Agile

- "Rapid iteration: ingest, analyze, productionalize"
- Continuous and rapid evolution of physical and logical structures
- ELT (Extraction, Loading, Transformation)

> MAD Skills

1. mad skills

92 up,

To be able to do/perform amazing/unexpected things

I gots me mad skills, yo.

To be said after performing an extraordinairy feat.

> Integrated Data Analytics

Group

Integration of advanced analytics into scalable database management systems

- Traditionally forecasting is performed manually in external statistical systems
- Support of transparent and automatic in-DBMS forecasting

Database Technology

Model-based Prediction

- We employ (classical) time series models (e.g. exponential smoothing, ARIMA)
- Used to
 - Explain time series from it's history
 - And—possibly—from exogenous inputs

Related Work

- Customized functions with proprietary languages
 - SQL Server 2012: ARIMA, autoregressive trees
 - Oracle: exponential smoothing, non-linear regression
- Bi-directional communication
 - Reuse existing statistical tools (e.g. R)
 - SAP HANA, Oracle, IBM Netezza
- Model-based views

Key Elements

- Declarative querying
- Automatic model creation
- Automatic model maintenance
- Forecast model advisor

Database Technology

Connection to 'MyConnection_db4711' established.

Query Processing and Optimization

Database Technology Group

product

HTC

HTC

quantity

36.000

38.000

Selection invariance

Condition filtering out whole clusters

Projection invariance

If neither time, measure or cluster attribute

Influence

 \rightarrow

date

Jun 2013

Jul 2013

Union invariance

Restructuring might also influence accuracy

E.g. join, aggregation

Expensive model creation

Expensive join

→ Cost model required: accuracy and runtime

How to compute aggregation forecast queries?

Runtime	Accuracy
$\mathbf{\uparrow}$	-

Uniform Estimation

$$\alpha = \frac{\# \text{ base series}}{\# \text{ base series in sample}}$$

 $\frac{3}{2} \cdot 20 = 30$

Estimation with Historical Ratios

$$ratio = \frac{base \ series}{aggregate \ series} \quad \Longrightarrow \quad \alpha = \frac{1}{\sum ratios} \qquad \qquad \frac{1}{\frac{9}{67} + \frac{9}{67}} = 3.7 \cdot 20 = 74$$

Calculation of Historical RatiosDifferent approaches possible

- Simple averages
- Lagged proportions
- ...
- Seasonality of data is important

Combined strategy: mixture of past ratios and ratio one season ago

Aggregation - Sales

Model Configuration Advisor

SELECT	time, measure
FROM	facts
WHERE	product = P4
AND	city = C4
AS OF	now() + 1 day

Conceptually, we organize the aggregation possibilities as a <u>directed time series hyper graph</u>

Each node (or time series) may be associated with a forecast model

A query describes one or several nodes in the hyper graph

Forecast values of a node can be computed by any nodes in the graph

Derivation weight k

>

 Based on history of source and target time series

Calculation of Forecast Values

Database Technology

Group

Model configuration

Configuration evaluation

Heuristically indicate the expected benefit of a model at a node (without building the model)

- Focus on time series relationships
- Measure to specify the <u>derivation error</u> between two nodes
- Low indicator value \rightarrow low error (*good derivation*)
- High indicator value \rightarrow high error (*poor derivation*)

> Indicators

Database Technology

Local indicator arrays → Derivation errors of one node

Global indicator array

 \rightarrow Minimum over all local arrays

Candidate selection

Preselection

Candidate selection

Preselection

Acceptance

Candidate selection

- Preselection
- Ranking

Evaluation

- Model creation
- Acceptance

Acceptance

Candidate selection

- Preselection
- Ranking

Evaluation

- Model creation
- Acceptance

Correlation between indicators and real forecast error

Sales

Static approaches – data independent

Dynamic approaches – empirical selection

Scalability

Subscription-Based Forecast Queries

© Prof. Dr.-Ing. Wolfgang Lehner | UNIVERSITAT

Energy data management systems

- Provide stable energy supply while including larger amounts of renewable energy
- Continously require forecasts of energy demand and supply

Subscription-based forecast queries

When to notify subscriber?

> Definition

Parameters

- Time series description
- Minimum continous forecast horizon
- Accuracy threshold

SELECT datetime, production
FROM ts_powerproduction
WHERE type = ,,wind"
FORECAST 3 hours
THRESHOLD 0.1

Horizon Violation

- When? Subscriber has less than minimum horizon
- What? Send missing values + horizon extension

Threshold Violation

- When? Threshold is violated
- What? Resend all values

SELECT	datetime, production
FROM	ts_powerproduction
WHERE	type = "wind"
FORECAST	3 hours
THRESHOLD	0.1

> Subscriber Cost Model

Processing costs of the subscriber

- Analytically known or learned function
- Depend on the forecast horizon
- Complete costs *F_C*
 - Complete restart of processing
- Incremental costs F_I
 - Processing of additional values

 F_C

 F_C

 F_I

Assume we know ...

- The sequence of threshold + horizon violations
- The subscriber cost functions F_C and F_I

Subscriber costs over subscription lifetime

• Sum over all *F_C* and *F_I*

Optimization Goal

- Find forecast horizon that minimizes total costs
- Depends on subscriber cost function
- Depends on forecast accuracy

How to get threshold violations?

Analyze past to predict future

Core Idea: Calculate best forecast horizon using our cost model on the time series history

Offline – Static

One forecast horizon over whole lifetime

Offline – Dynamic

- Adapts to periodic changes of time series accuracy
- Sequence of forecast horizons for time slices

Online

- Adapts to arbitrary changes in data or cost functions
- Continously adapts forecast horizon

Real-world energy demand and supply data sets

- National Energy Demand
- Household Energy Demand
- National Wind Supply

Subscriber cost functions

- Synthetic linear function
- Real world cost function (obtained from MIRABEL)

Forecast Methods

- Tailor-made for short-term energy forecasting
- Extension of exponential smoothing

Database Technolog

Comparison of Approaches

 Fixed subscription parameters and linear cost function

Evaluation of Time Slice Approach

76

Influence of subscriber threshold

Experimental Evaluation

- Relationship between number of notifications, subscriber costs and runtime
- Real-world cost function

© Prof. Dr.-Ing. Wolfgang Lehner |

Database Technology

Group

Cost Model Validation

- Estimated costs vs. real costs
- Real-world cost function
- Queries with increasing complexity (Q1, Q2, Q3)

Beyond Forecast Models

Towards a Model-based Database System

Forecast

- Base approach
- Predict missing data from history
- Requires no known data

Impute

- Exploit local patterns
- Infer missing data from similar units
- Requires adequate set of known data

Refine

- Detect local and global shifts
- Infer error \rightarrow yields new forecasts
- Requires few known data

Aggregate

Calculate aggregate (e.g. report)

Adjust

- Maintain models and synopses
- Optimize accuracy of estimates

> Refine

How to include new real data?

Data delivery may be late

- There might be missing data for the last period
- Reports still have to be generated
- Estimate missing data

> Refine

> Refine

Refine III: Estimation of forecast errors

Case 1

- Forecast and real value
- Calculate true model error

Case 2/3

- No real value
- No error calculation

Case 4

- No forecast value
- Estimate model error

Refine – Sales

Refine – Wind production

Database Technology

FFQ project

- Provide forecasting as 1st class citizen within a database system
- Preserve logical and physical data independence (e.g. transparent model usage, transparent model maintenance, and model creation)
- Extend traditional processing and optimization techniques
- Apply concept of traditional index advisors to foreast models

Towards a model-based database system

- Data is increasingly inconsistent, incomplete and imprecise
- Extend concept of models to other use cases (missing data, uncertain data, data compression ...)

Wolfgang Lehner

Forecasting and Data Imputation Strategies in Database Systems

11.07.2013