
eBISS European Business
Intelligence Summer School

Data mining for local patterns
Toon Calders

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Motivation

• Originally stated in the context of Market – Basket
Analysis

• Data consists of transactions

• Find unexpected associations between sets of products.

− Store layout

− Promotions

− …

Definitions

• Transaction database:

or,
more compact

Itemset I = set of items

supp(I) = # transactions containing I

EXAMPLE:

supp(abc) = 1

supp(ab) = 2

TID a b c

1 1 1 0

2 1 1 1

3 0 0 1

TID Items

1 a, b

2 a, b, c

3 c

Association Rules and Confidence

• Association rule: X=>Y

• X, Y non-empty itemsets

• Meaning: “Occurrence of X implies Y”

E.g. A,B => C
• “People who buy A and B, tend to buy C as well”

• Confidence: “Strength” of the implication X=>Y

conf(X=>Y) = support(XY) / support(X)

• Support of a rule X=>Y = support(XY)

Association Rule Mining Problem

• Given:

• transaction database D

• 0 ≤≤≤≤ minsup ≤≤≤≤ |D|

• 0 ≤≤≤≤ minconf ≤≤≤≤ 1

• Find all rules X=>Y such that

• support(X=>Y) ≥≥≥≥ minsup

• conf(X=>Y) ≥≥≥≥ minconf

Association Rule Mining Problem

• Minsup = 3

• Minconf = 65%

Rule Support Confidence

A => B 4 67%

B => A 4 57%

A => C 3 50%

C => A 3 50%

B => C 5 71%

C => B 5 83%

A => BC 2 40%

AB => C 2 50%

AC => B 2 66%

B => AC 2 29%

BC => A 2 40%

C => AB 2 33%

TID Items

1 A, B

2 B, C

3 B, C

4 A, B

5 A

6 B, C

7 A, C

8 A, B, C

9 A, B, C

Association Rule Mining Problem

• Typical approach:

• First find all itemsets I s.t. support(I) ≥≥≥≥ minsup

• Then: for all subsets X of I:

− Test if confidence(X=>(I / X)) ≥≥≥≥ minconf

Frequent Itemset Mining Problem:

Given:

• Database D

• 0 ≤≤≤≤ minsup ≤≤≤≤ |D|

Find: all itemsets I such that

• support(I) ≥≥≥≥ minsup

Association Rule Mining

• Minsup = 3
Minconf = 65%

����

TID Items

1 A, B

2 B, C

3 B, C

4 A, B

5 A

6 B, C

7 A, C

8 A, B, C

9 A, B, C

set supp

A 6

B 7

C 6

AB 4

AC 3

BC 5

ABC 2

Frequent Itemsets

Association Rule Mining

• Minsup = 3
Minconf = 65%

����

TID Items

1 A, B

2 B, C

3 B, C

4 A, B

5 A

6 B, C

7 A, C

8 A, B, C

9 A, B, C

Rule Conf

A => B 67%

B => A 57%

A => C 50%

C => A 50%

B => C 71%

C => B 83%

set supp

A 6

B 7

C 6

AB 4

AC 3

BC 5

ABC 2

Frequent Itemsets

Rules

Other Measures of Rule Quality

• Confidence often criticized:

• Beer => Snack (300) 75%

• Beer => Diapers (200) 50%

• However:

• Overall population:

− 86% buys snack

− 42% buys diapers

Beer has a negative effect on snacks, and a positive
effect on diapers !

TID Items

1-100 Beer, Snack

101-200 Beer, Diapers, Snack

201-300 Beer, Diapers

301-400 Beer, Snack

401-500 Diapers, Snack

501-600 Snack

601-700 Snack

Other Measures of Rule Quality

• Alternative measure:

• Lift(X=>Y) = conf(X=>Y) / (support(Y) / |D|)

I.e., by which factor does P(Y) change if X is present?

• Beer => Snack 0.87

• Beer => Diapers 1.72

• There exist many other
measures as well:

• Statistically based

• Information theory based

TID Items

1-100 Beer, Snack

101-200 Beer, Diapers, Snack

201-300 Beer, Diapers

301-400 Beer, Snack

401-500 Diapers, Snack

501-600 Snack

601-700 Snack

Statistical-Based Measure: X2-test

• X2-test for dependency between X and Y:

Example: Beer => Snack

┐X X

┐Y 0 100 100

Y 300 300 600

300 400 700

TID Items

1-100 Beer, Snack

101-200 Beer, Diapers, Snack

201-300 Beer, Diapers

301-400 Beer, Snack

401-500 Diapers, Snack

501-600 Snack

601-700 Snack

┐X X

┐Y 42.9 57.1 100

Y 257.1 342.9 600

300 400 700

observed

Expected

(indep.)

Statistical-Based Measure: X2-test

┐X X

┐Y 0 100 100

Y 300 300 600

300 400 700

┐X X

┐Y 42.9 57.1 100

Y 257.1 342.9 600

300 400 700

observed

Expected

(indep.)

X2 = 87.5

• P-value = probability of having a X2 value at least as
big as what we observe, by chance

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Why Itemset/Association Rule Mining?

• Explorative data analysis

• Find associations beyond simple correlation

• Compute huge amounts of statistics at the same time

• Changes in patterns can be significant

Machine log World cup website visits

Why Itemset/Association Rule Mining?

• Input to other data mining algorithms

• Finding name variations

• Transaction = set of names
co-occurring with at least
3 other names

Why Itemset/Association Rule Mining?

• Data Summarization

• What are the frequent patterns in my data?

• Abstract away from infrequent patterns

Illustration: eBISS registration

• Data: at eBISS registration

• Highly interested in …

• 1 student ���� 1 transaction

• Items = topics the student is highly interested in

• Result: toy dataset with 14 items & 36 transactions

• Example: 0 0 0 1 1 0 1 1 0 0 1 1 1 1

���� { Ontologies, Semantic web, IR, DM, Graph
mining, Cloud computing, Dist. Comp.,
Map Reduce }

Illustration: eBISS registration

0 0 0 1 1 0 1 1 0 0 1 1 1 1

1 1 0 1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 1 0 1 1 1 1 1 0 0 0

1 1 0 0 0 1 1 1 0 0 0 0 1 1

1 1 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 1 1 0 0 1

1 1 0 0 1 0 0 1 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 0

1 1 0 1 1 0 0 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 1 1 1 1 1 1 1

1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 1 0 0 0 1 1

1 1 1 0 0 0 1 1 1 0 1 1 1 1

0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 0 1 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 1

1 1 0 0 0 0 0 1 1 0 0 1 0 0

0 1 1 1 0 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 1 1

1 1 1 0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 1 0

0 0 0 0 0 0 1 1 1 1 1 0 1 0

0 0 0 1 1 0 0 1 0 1 1 0 1 0

1 1 1 0 0 0 0 0 1 1 0 1 0 0

1 1 0 0 0 0 1 1 1 1 1 0 0 0

Frequent Sets (support 14 or more)

25 DW

24 DM

22 DB

16 IR

16 Visual analytics

15 Graph databases

14 Distributed computing

14 Map Reduce

22 DB DW

15 DW DM

14 DB DM

14 Visual analytics DM

14 DB DW DM

Illustration: eBISS registration

Lift Conf Supp Rule

1.48 1.0 22 DB => DW

1.41 0.92 11 Graph mining => DM

2.31 1.0 7 GIS => Visual analytics

2.88 0.7 7 Ontologies => Semantic web

2.88 0.78 7 Semantic web => Ontologies

3.17 0.86 6 Semantic web, DM => Ontologies

3.08 0.75 6 Ontologies, DM => Semantic web

2.64 1.0 5 DB, Dist. Comp. => Map Reduce

Illustration: eBISS registration

Lift Conf Supp Rule

1.54 0.5 8 IR => Graph mining

1.41 0.46 11 DM => Graph mining

1.85 0.6 9 Graph databases => Graph mining

2.06 0.67 8 IR, DM => Graph mining

3.08 1.0 8 DM, Graph databases => Graph mining

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Monotonicity Principle

If X ⊆⊆⊆⊆ Y, then support(X) ≥≥≥≥ support(Y)

ABC ABD ACD BCD

AB BCAC AD CDBD

A CB D

{}

ABCD

AB infrequent

Apriori

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

0 0 0 0

Candidates

Apriori

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

0 1 1 0

Apriori

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

0 2 2 0

Apriori

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

1 2 3 1

Apriori

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

2 3 4 2

Apriori

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

2 4 4 3

Apriori

AB BCAC AD CDBD

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

2 4 4 3

Candidates

Apriori

AB BCAC AD CDBD

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

2 4 4 3

1 2 2 3 2 2

Apriori

ACD BCD

AB BCAC AD CDBD

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

1 2 2 3 2 2

Candidates

2 4 4 3

Apriori

ACD BCD

AB BCAC AD CDBD

A CB D

{}

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

1 2 2 3 2 2

2 1

2 4 4 3

Apriori

FI

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup=2

ACD

BCAC AD CDBD

A CB D

{}

2 2 3 2 2

2

2 4 4 3

Apriori Algoritme

Apriori
Input: minsup, D
Output: Set of all frequent itemsets F

k := 1
C1 := { {A} | A is an item }
Repeat until (Ck = {}) {

Count support of all itemsets in Ck in 1 scan over D

Fk := { I ∈∈∈∈ Ck : I is frequent};
Generate new candidates

Ck+1 := { I : |I| = k+1 and all J ⊂⊂⊂⊂ I with |J|=k are in Fk};
k:=k+1

}

Return ∪∪∪∪i=1…k-1 Fi

Apriori: Summary

• Candidate generation is optimal:

• If only information we can get from the database is
whether or not an itemset I is frequent

• Number of database scans is minimal (parallel queries
to the database)

• What if:

• we can load database into memory and transform the
database?

• we know the frequencies?

Depth-First Algorithms

• Depth-First algorithms:

+ allow for more efficient counting

● are based on divide-and-conquer

- do not fully exploit monotonicity principle

• Counting all itemsets with item a?

���� First reduce the database; remove all transactions

without a

• Counting all itemsets without a?

���� Remove a from the database

Skip Depth-first

Divide-and-Conquer

All itemsets

All itemsets with d

All itemsets with c, without d

All itemsets with b, without c or d

All itemsets with a, without b, or c, or d

Divide-and-Conquer

All itemsets

All itemsets with d

All itemsets with c, without d

All itemsets with b, without c or d

All itemsets with a, without b, or c, or d

All itemsets with c

All itemsets with b, without c

All itemsets with a, without b or c

…

…

…

…

…

…

Divide-and-Conquer

All itemsets

All itemsets with d

All itemsets with c, without d

All itemsets with b, without c or d

All itemsets with a, without b, or c, or d

All itemsets with c

All itemsets with b, without c

All itemsets with a, without b or c

…

…

…

…

…

…

Only transactions with d

Item d no longer needed

Divide-and-Conquer

TID a b c d

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

TID a b c

3

4

5

1

1

0

0

1

1

1

1

0

TID a b c

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

Find all frequent itemsets

Find all frequent itemsets with d

Find all frequent itemsets without d

ad, bd, cd, acd

ac, bc

a, b, c, d

a, b, c, ac

ac, bc

Skip FPGrowth

Divide-and-Conquer

MineFrequent(DB)

1. F := { a | a is frequent in DB }

2. If |F|<2 return F  base case

3. Remove infrequent items from DB

4. For every frequent item a, except the last:

a. DB[a] = { (tid,T\{a}) | (tid, T) ∈∈∈∈ DB, a in T }

b. F[a] := MineFrequent(DB[a])  recursion

c. F := F ∪∪∪∪ { I ∪∪∪∪ {a} | I ∈∈∈∈ F[a] }

d. Remove a from DB

5. return F Often skipped; a. then becomes:

DB[a] = { (tid,T∩O) | (tid, T) ∈ DB, a in T },

where O is the set of items not yet processed

Depth-First Algorithms

TID a b c d

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

TID a b c

3

4

5

1

1

0

0

1

1

1

1

0

TID a b

3

4

1

1

0

1

DB[d]

DB[cd]

DB[bd]

TID a b

1

2

3

4

0

0

1

1

1

1

0

1

DB[c]

DB[bc]

DB[b]

F
minsup = 2

a, b, c

TID a

4

5

1

0a

ac
F[c]

TID a

1

2

4

0

0

1

F[bc]

F[d]

F[cd]

a, b

TID a

1

2

4

5

0

0

1

0

ad, bd, cd, acd

ac, bc

a, b, c, d

Depth-First Algorithms

• Main difference between different algorithms:

• Way to represent the database

− Trie; tid-lists; …

• Database representation should allow for:

• Selecting transaction containing a specific item

• Building the conditional databases

• Most depth-first algorithms rely on an in-memory
data structure

• Random access important

Skip FPGrowth

FP-growth Algorithm

• Use a compressed representation of the database
using an FP-tree

• Once an FP-tree has been constructed, it uses a
recursive divide-and-conquer approach to mine the
frequent itemsets

FP-Tree

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

D:1

E:1

Transaction

Database

Item Pointer

A

B

C

D

E

Header table

Depth-First Algorithms

• Building the conditional database:

• DB[a] = { (tid,T∩∩∩∩O) | (tid, T) ∈∈∈∈ DB, a in T };
O is the set of items not yet processed

TID a b c d

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

TID a b c

3

4

5

1

1

0

0

1

1

1

1

0

TID a b

1

2

3

4

0

0

1

1

1

1

0

1

TID a

1

2

4

5

0

0

1

0

(Order d�c�b�a)

FP-Tree Operations: Example

{}

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

D:1

E:1

Item Pointer

A

B

C

D

E

DB;
Order e,d,c,b,a

DB[d]

How to create the

FPTree of DB[d]

from the FPTree of

DB?

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

2 {B,C}

3 {A,C}

4 {A}

6 {A,B,C}

9 {A,B}

FP-Tree Operations

{}

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

D:1

E:1

Item Pointer

A

B

C

D

E

{}

A:1

B:1

C:1

DB;
Order e,d,c,b,a

DB[d]

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

2 {B,C}

3 {A,C}

4 {A}

6 {A,B,C}

9 {A,B}

FP-Tree Operations

{}

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

D:1

E:1

Item Pointer

A

B

C

D

E

{}

A:2

B:2

C:1

DB;
Order e,d,c,b,a

DB[d]

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

2 {B,C}

3 {A,C}

4 {A}

6 {A,B,C}

9 {A,B}

FP-Tree Operations

{}

A:7

B:5

B:3

C:3

D:1

C:1

D:1

C:3

D:1

D:1

E:1

D:1

E:1

Item Pointer

A

B

C

D

E

{}

A:3

B:2

C:1

C:1

DB;
Order e,d,c,b,a

DB[d]

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

2 {B,C}

3 {A,C}

4 {A}

6 {A,B,C}

9 {A,B}

FP-Tree Operations

{}

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

D:1

E:1

Item Pointer

A

B

C

D

E

{}

A:4

B:2

C:1

C:1

DB;
Order e,d,c,b,a

DB[d]

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

2 {B,C}

3 {A,C}

4 {A}

6 {A,B,C}

9 {A,B}

FP-Tree Operations

{}

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

D:1

E:1

Item Pointer

A

B

C

D

E

{}

A:4

B:2

C:1

C:1

B:1

C:1

DB;
Order e,d,c,b,a

DB[d]

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

2 {B,C}

3 {A,C}

4 {A}

6 {A,B,C}

9 {A,B}

FP-Tree Operations

{}

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

D:1

E:1

Item Pointer

A

B

C

D

E TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

2 {B,C}

3 {A,C}

4 {A}

6 {A,B,C}

9 {A,B}

DB;
Order e,d,c,b,a

DB[d]

{}

A:4

B:2

C:1

C:1

B:1

C:1

FPGrowth – Complete Example

• Step 1: create Initial FPTree

TID a b c d

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

minsup = 2

B:3

C:2

A:2

C:1

D:1

B:1

C:1

D:1

D:1

FPGrowth – Complete Example

B:3

C:2

A:2

C:1

D:1

B:1

C:1

D:1

D:1

A:2

B:4

C:4

D:3

B:1 A:2

C:1 B:1

C:1

A:2

B:2

C:2

d

A:2

C:1 B:1

C:1

A:2

B:1

c

c

B:2 A:2

B:1

A:2

B:3

b

A:1

A:1

b

A:1

A:1

AD:2

BD:2

CD:2

ACD:2

AC:2

BC:3

FPGrowth Summary

• Depth-first algorithm

• Divide-and-conquer strategy

+ More efficient counting

• Reduce database in every step

- Not fully exploiting monotonicity

• FPTree data structure

+ Allows for quickly projecting the database

- Kept in-memory

• Overall: if database fits in memory, depth-first
algorithms rule

Frequent Itemset Mining: Summary

• Useful for exploration, feature selection, association
discovery

• Many efficient algorithms exist

• Monotonicity principle central property in all algorithms

• General-to-specific exploration of the search space

• Breadth-first algorithm: Apriori

• Depth-first algorithm: FPGrowth

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Other Types of Patterns

• Sequences

• Graphs

• Dynamic graphs

Other Types of Patterns

• Sequences

• Mining sequences of alarms

• Graphs

• Finding common structures

− Socially relevant

• Dynamic graphs

• How do social graphs grow?

• Patterns explaining growth over time.

Other Types of Patterns

• Sequences

• Graphs

• Dynamic graphs

• Breadth-first algorithms usually no longer work for
more complex pattern types:

• NK sequences of size K with N items

• NK 2K*(K-1) directed graphs with N labels and K nodes

• Cannot hold this many patterns in memory

• Monotonicity check requires random access

• Therefore: most algorithms are depth-first

Other Types of Patterns

• Sequences

• Graphs

• Dynamic graphs

Generate(P)

If supp(P) ≥ minsup :

Write P to output

Successors = extend(P)

For c in Successors:

Generate(C)

Sequence Mining

• Input data: database of sequences

• Sequence of alarms in an event log

• Order in which students followed courses

• Text = sequence of words

• Two settings:

• One large string

• Database of strings

• Algorithms are very similar as for frequent itemset
mining

Sequence Mining: Example

sequences

DB, DM, IR, DB II

DB, DM, IR, DB, DB II

DB, DB II, DM, IR

DB, DB, DB, DM

DB:4 DM:4 IR:3 DB II:3

DB�DM: 4 DB�IR:3 DB�DBII: 3DB�DB: 2

DB�DM�DB: 0 DB�DM�DM: 0 DB�DM�IR: 3 DB�DM�DBII: 2

DB�DM�IR�DB: 0

DB�DM�IR�DM: 0

DB�DM�IR�IR: 0

DB�DM�IR�DBII: 2

Sequence Mining: Example

DB:4 DM:4 IR:3 DB II:3

DB�DM: 4 DB�IR:3 DB�DBII: 3DB�DB: 2

DB�IR�DB: 1 DB�IR�DM: 0 DB�IR�IR: 0 DB�IR�DBII: 2

sequences

DB, DM, IR, DB II

DB, DM, IR, DB, DB II

DB, DB II, DM, IR

DB, DB, DB, DM

Sequence Mining: Example

DB:4 DM:4 IR:3 DB II:3

DB�DM: 4 DB�IR:3 DB�DBII: 3DB�DB: 2

DB�DBII�DB: 0 DB�0DBII�DM: DB�DBII�IR: 0 DB�DBII�DBII: 2

sequences

DB, DM, IR, DB II

DB, DM, IR, DB, DB II

DB, DB II, DM, IR

DB, DB, DB, DM

Sequence Mining: Example

DB:4 DM:4 IR:3 DB II:3

sequences

DB, DM, IR, DB II

DB, DM, IR, DB, DB II

DB, DB II, DM, IR

DB, DB, DB, DM

… … … …

Other Types of Patterns

• Sequences

• Graphs

• Dynamic graphs

• Common problems:

• How to generate all candidates without duplicates

• How to count efficiently

• Notion of “support” is not always straightforward

− Must be anti-monotone and efficient to compute

Generate Graphs w.o. Duplicates

a

b

a

b

b

b

b

a

b

a

a

b

ba

a

b

ba

a

b

b

a

b

a

b

a

Generate Graphs w.o. Duplicates

a

b

a

b

b

b

b

a

b

a

a

b

ba

a

b

ba

a

b

b

a

b

a

b

a Skip to support

Generate Candidates w.o. Duplicates

• Canonical representation

(1,2), (2,3), (3,4), (2,4) abab

(1,2), (2,3), (2,4), (3,4) abab

a

b

ba

Generate Candidates w.o. Duplicates

• Canonical representation

(1,2), (2,3), (3,4), (2,4) abab

(1,2), (2,3), (2,4), (3,4) abab

(1,2), (2,3), (3,4), (2,4) abba

(1,2), (2,3), (2,4), (3,4) abba

…

• Canonical representation = lexicographically first

a

b

ba

0 1 0 0

0 0 1 1 0100001100010000 = 34308

0 0 0 1

0 0 0 0

Generate Candidates w.o. Duplicates

• Generating successors:

• Look at all direct successors of the pattern:

• For all successors, look at all the predecessors that
could have generated it

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

…

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Candidate

successors

Candidate

“real father”

Generate Candidates w.o. Duplicates

• Generating successors:

• For all successors, look at all the predecessors that
could have generated it

• Find the canonical representation; pick the first one

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

656; abab 656; bbaa56; abab

a

b

a

b

a

b

a

b

Generate Candidates w.o. Duplicates

• Generating successors:

• Find the canonical representation; pick the first one

• Only that pattern is allowed to generate the successor

− Avoid the generation of duplicates while exploring of
the search space depth-first

a

b

a

b

a

b

a

b

a

b

a

b

656; abab 656; bbaa56; abab

a

b

a

b

Other Types of Patterns

• Sequences

• Graphs

• Dynamic graphs

• Common problems:

• How to generate all candidates without duplicates

• How to count efficiently

• Notion of “support” is not always straightforward

− Must be anti-monotone and efficient to compute

Problems with Frequency

• Counting instances does not work !

p

G

Problems with Frequency

• Counting instances does not work !

p

G

Problems with Frequency

• Counting instances does not work !

p

G

Problems with Frequency

• Counting instances does not work !

p

G

Problems with Frequency

• Counting instances does not work !

3

p

G

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

p

G

P

Problems with Frequency

• Counting instances does not work !

3

10

p

G

P

Problems with Frequency

• Counting instances does not work !

• Counter-intuitive

• Algorithms rely critically on anti-monotonicity for
pruning the search space

3 10

?!

Pp

Less

frequent

than

Skip to part II

Overlap Graph

• Most algorithms for single graph mining base
themselves on the overlap-graph:

Example:

overlap graph of in :

Gp

Overlap Graph

• Most algorithms for single graph mining base
themselves on the overlap-graph:

Example:

overlap graph of in :

Gp

Overlap Graph

• Most algorithms for single graph mining base
themselves on the overlap-graph:

Example:

overlap graph of in :

Gp

Overlap Graph

• Most algorithms for single graph mining base
themselves on the overlap-graph:

Example:

overlap graph of in :

Gp

Gp

Overlap Graph

• Most algorithms for single graph mining base
themselves on the overlap-graph:

Example:

overlap graph of in :

G
P

GP

Overlap Graph

• Summarizes all instances, and describes how they
overlap

• vertex ���� instance

• edge ���� overlap

• Notion extends straightforwardly to instances in
labeled/directed graphs

• Yet, overlap graph is always an unlabeled,
undirected graph

Maximum Independent Set

• Anti-monotone measure on overlap graph:

• size of the Maximum Independent Set of the overlap
graph

Data graph pattern overlap graph

G

p

P

Gp

GP

Summary: Extension to Other Pattern Types

• Many extensions of frequent itemset mining exist

• Sequences, partial orders, trees, graphs

• Most algorithms are depth-first

• Too many patterns of same size for breadth-first

• Extensions become much more challenging

• Pattern generation without duplicates

• Define a good support measure

• Counting support efficiently

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Illustration: Tags dataset

• Flickr tags dataset

• Question: What are popular tags?

Pictures from: Xirong Li, Cees G.M. Snoek, and Marcel Worring, Learning Social Tag Relevance

by Neighbor Voting, IEEE Transactions on Multimedia, volume 11, issue 7, page 1310-1322, 2009

Illustration: Tags dataset (top-most frequent)

796 street

713 bridge

661 night

552 city

532 people

527 water

521 the

517 bus

495 dog

489 boat

487 sky

477 telephone

453 canon

433 kitchen

431 airplane

430 ship

423 new

409 blue

404 of

395 harbour

387 cityscape

381 flying

Illustration: Tags Dataset (Longest)

304 flight aeroplane travel aircraft plane

319 flight aeroplane aircraft plane

308 aeroplane travel aircraft plane

305 flight travel aircraft plane

304 flight aeroplane travel plane

304 flight aeroplane travel aircraft

639 airport aircraft plane

630 and black white

511 war protest demonstration

489 aeroplane aircraft plane

Redundancy Problem

• Frequent itemset / Association rule mining

= find all itemsets / ARs satisfying thresholds

• Only some itemsets / association rules are interesting

• Many are redundant

smoker ���� lung cancer

smoker, bald ���� lung cancer

pregnant ���� woman

pregnant, smoker ���� woman, lung cancer

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Compact Representation of Frequent Itemsets

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0

2 1 1 1 1 1 1 1 1 1 1 0

3 1 1 1 1 1 1 1 1 1 1 0

4 1 1 1 1 1 1 1 1 1 1 0

5 1 1 1 1 1 1 1 1 1 1 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 1 1 1 1 1 1 1 1 1 1

12 0 1 1 1 1 1 1 1 1 1 1

13 0 1 1 1 1 1 1 1 1 1 1

14 0 1 1 1 1 1 1 1 1 1 1

15 0 1 1 1 1 1 1 1 1 1 1

• Some itemsets are redundant because they have
identical support as their supersets

• Number of frequent itemsets

• Need a compact representation

3070223
10

=−×=

304 flight aeroplane travel aircraft plane

304 flight aeroplane travel plane

304 flight aeroplane travel aircraft

Closed Itemsets

• The support-set of an itemset I is:

sset(I) := { TID | (TID,J)∈∈∈∈ D, I ⊆⊆⊆⊆ J }

• Itemset I and J are said to be equivalent if:

sset(I) = sset(J)

Example:

sset(A) = { 3, 4 }

sset(AC) = { 3, 4 }

sset(BC) = { 1, 2, 4 }

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

Closed Itemsets

• Let [I] denote the equivalence class
of itemset I

• For all J ∈∈∈∈ [I] : support(J) = support(I)

− support(J) = | sset(J) | = | sset(I) |

• [I] has a unique maximal element max([I])

− If X ∈∈∈∈ [I], Y ∈∈∈∈ [I], then also X∪∪∪∪Y ∈∈∈∈ [I]

• The closure cl(I) of an itemset I is defined as max([I])

• A set I is closed if I = cl(I)

Example:

[ACD] = { A, AC, AD, ACD, CD }; hence ACD is closed

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

Closed Itemsets

ABC ABD ACD BCD

AB BCAC AD BD

A CB D

{}

ABCD

CD

TID A B C D

1

2

3

4

5

0

0

1

1

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

Closed Itemsets

• All sets in the same equivalence class have the same
support

• Occur in the same transactions

• Maximal element in an equivalence class is unique

• If two itemsets occur in the same transactions, then so
does their union

• Frequent Closed Itemset representation:

{ I | I ∈∈∈∈ F and I is closed}

Benefit of Condensed Representations

Figure from: Toon Calders. Deducing Bounds on the Support of Itemsets.

In: Database Support for Data Mining Applications: pp. 214-233 (2004)

Disadvantages of the “Combinatorial Method”

• Still too many rules/itemsets remain

• Rules where head and tail are independent remain

conf(smoking => lung cancer) = 20%

conf(smoking & blue eyes => lung cancer) = 20%

• Highly frequent items form together frequent itemsets
���� not very surprising

• Need a way to quantify what is “surprising”

• Depends on what we expect

Closed Sets – Tags Dataset

304 flight aeroplane travel aircraft plane

319 flight aeroplane aircraft plane

308 aeroplane travel aircraft plane

305 flight travel aircraft plane

304 flight aeroplane travel plane

304 flight aeroplane travel aircraft

639 airport aircraft plane

630 and black white

511 war protest demonstration

489 aeroplane aircraft plane

458 ussmidway sandiego aircraftcarrier

449 aviation aircraft plane

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Interestingness Depends on Expectation

Buying a lot

Buying nothing

Significant !! Trivial

Picture from: A. Gionis, H. Mannila, T. Mielikäinen, P. Tsaparas: Assessing data

mining results via swap randomization. TKDD 1(3): (2007)

The Modeling Method

List of
patterns &
statistics

Statistical model
Expresses what you

expect given the known

patterns

Database

Of patterns

Surprising

given

model?

Update

no

Background

knowledge

Surprising

patterns

Example: Statistical Model

Statistical model
Expresses what you

expect given the known

patterns

Surprising

given

model?

Update

no

Surprising

patterns

Pregnant => female

Smoking: 20% Cancer: 10%

Pregnant: 1% Female: 40%

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

Example: Statistical Model

Surprising

given

model?

Update

no

Surprising

patterns

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

P(s,c,p,f) = P(s).P(c).P(p,f)P => F

S: 20% C: 10%

P: 1% F: 40%

Example: Statistical Model

Surprising

given

model?

Update

no

Surprising

patterns

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

P(s,c,p,f) = P(s).P(c).P(p,f)

2%

S&C: 8%

P => F

S: 20% C: 10%

P: 1% F: 40%

Example: Statistical Model

Surprising

given

model?

Update

no

Surprising

patterns

P => F

S: 20% C: 10%

P: 1% F: 40%

S => C : 40%

P(s,c,p,f) =

P(s).P(c|s).P(p,f)

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

Example: Statistical Model

Surprising

given

model?

Update

no

Surprising

patterns

P => F

S: 20% C: 10%

P: 1% F: 40%

S => C : 40%

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

P(s,c,p,f) =

P(s).P(c|s).P(p,f)

0.2%

S&P: 0.1%

Example: Statistical Model

Surprising

given

model?

Update

no

Surprising

patterns

P => F

S: 20% C: 10%

P: 1% F: 40%

S => C : 40%

P => S : 10%

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

P(s,c,p,f) =

P(s|p).P(c|s).P(p,f)

Example: Statistical Model

Surprising

given

model?

Update

no

Surprising

patterns

P => F

S: 20% C: 10%

P: 1% F: 40%

S => C : 40%

P => S : 10%

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

P(s,c,p,f) =

P(s|p).P(c|s).P(p,f)

S&F:15%

19.5…%

Example: Statistical Model

Surprising

given

model?

Update

no

Surprising

patterns

P => F

S: 20% C: 10%

P: 1% F: 40%

S => C : 40%

P => S : 10%

F => S : 15%

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

P(s,c,p,f) =

P(s|p).P(c|s).P(p,f)

Example: Statistical Model

Surprising

given

model?

Update

Surprising

patterns

P => F

S: 20% C: 10%

P: 1% F: 40%

S => C : 40%

P => S : 10%

F => S : 15%

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X X 8%

P(s,c,p,f) =

P(s|p).P(c|s).P(p,f)

no

S&P&F:0.1%

0.1%

Example: Statistical Model

Surprising

given

model?

Update

Surprising

patterns

P => F

S: 20% C: 10%

P: 1% F: 40%

S => C : 40%

P => S : 10%

F => S : 15%

S C P F Supp

X X 8%

X X 0.1%

X X 15%

X X X 0.1%

X X 8%

P(s,c,p,f) =

P(s|p).P(c|s).P(p,f)

no

C&F:8%

8.125%

MTV – Statistics Based Filter

geo geotagged lat lon
airplane plane flying aircraft
boat ship
city nyc new york
two people
and white black
night exposure long
b w
protest demonstration
airplane flying aviation
san francisco
diamondclassphotographer flickrdiamond

Tell me what I need to know: Succinctly summarizing data with itemsets. Michael

Mampaey, Nikolaj Tatti, and Jilles Vreeken. In Proceedings of the 17th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2011.

Outline

PART I: Frequent itemset mining

• Definition & Applications

• Algorithms for Frequent Itemset Mining

• Extensions to other pattern types

PART II:

• Pattern explosion & Redundancy problem

• Methods to remove redundancy

• Condensed representations

• Statistical methods

• Minimal Description Length

Minimal Description Length

• A good model helps us to compress the data and is
compact

• Let L(M) be the description length of the model,

• Let L(D|M) be the size of the data when compressed by
the model

• Find set of patterns (model M) that minimizes:

L(M) + L(D|M)

• Explicit trade-off; making a model more specific:

• Increases L(M),

• Decreases L(D|M)

Skip app

Minimal Description Length: Example

• Determining the intrinsic cardinality of a time series

• More segments will make the model more accurate

• What is the optimal number of segments?

Minimal Description Length: Example

• What is the optimal number of segments?

• Increasing the number of segments

− Increase model complexity
= # bits to describe the model = L(M)

− Decrease residuals
= less bits for encoding the error = L(D|M)

• Optimal point is determined by minimizing
L(M) + L(D|M)

• L(M) + L(D|M) = amount of structure that can be exploited
usefully

Application: Deep Sleep Prediction

• Based on ECG data predict if patient in deep sleep

• Less intrusive than EEG

A First Result

• Use L(M) + L(D|M) to characterize regularity of the
sequence

• Window slides over the ECG; continuously compute
L(M)+L(D|M) for the best model

Stage Mean

Wake 0.5119

REM 0.4596

N1 0.4700

N2 0.3256

N3 0.2053

Minimal Description Length

• We can use patterns to code a database

• Find set of patterns that minimizes L(M)+L(D|M)

• Heuristic approach

TID Items

1 A

2 C

3 C

4 A,B

5 A,B,C

6 A,B,C

pattern code

A 00

B 01

C 10

AB 11

TID Items

1 00

2 10

3 10

4 11

5 1110

6 1110

L(D|M)

L(M)

D

Minimal Description Length

• Rank itemsets according to how well they can be
used to compress the dataset

• Property of a set of patterns

• The “Krimp” algorithm was the first to use this
paradigm in itemset mining

• Assumes a seed set of patterns

• A subset of these patterns is selected to form the “code
book”

• The best codebook is the one that gives the best
compression

Vreeken, Jilles, Matthijs Van Leeuwen, and Arno Siebes. "Krimp: mining itemsets

that compress." Data Mining and Knowledge Discovery 23.1 (2011): 169-214

Tags Dataset - MDL

• jet landing gear airliner jetliner jetliners planes aeroplanes engines aircrafts
airliners les avions tail motors cockpit fuselage flaps rudder aeroplano vliegtuig
avi

• boat ship

• geo geotagged lat lon

• http library gov congress loc identifier hdl pnp purl elements

• airplane flying

• two people

• bridges bridgepix bridgepixing bridging

• photograph d set slr close nikonstunninggallery camera heigan martin mh

• jets aircraft airplanes aeroplane avion wings nose flugzeug

• nyc new york

• b w

• white black

• protest demonstration

• exposure long

• emergency fire truck vehicle

Summary: Redundancy problem

• Output of frequent set mining not useful in itself

• Lots of redundant patterns

• Methods to remove redundancy

• Element of “surprise”

• Statistical: model expectation

• MDL: how much structure can be exploited efficiently

• Mainly aimed towards summarization

• Although also applications in change detection

Summary

• Frequent itemset mining

• Simple definition, high complexity

• Breadth-first and Depth-first algorithms

• Many extensions to other pattern types

• Pattern explosion problem

• Too many, redundant patterns are generated

• Condensed representations ���� subset of all patterns

− “Combinatorial” approach insufficient

• Recently new techniques emerged

• statistically and MDL based

• Model expectation / benefit of a set of patterns

Literature for Basics Frequent Pattern Mining

Dualize and Advance:

Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Hannu Toivonen:
Data mining, Hypergraph Transversals, and Machine Learning. PODS
1997: 209-216

Frequent itemset mining definition:

Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association
Rules between Sets of Items in Large Databases. SIGMOD Conference
1993: 207-216

Apriori:

Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining
Association Rules in Large Databases. VLDB 1994: 487-499

FPGrowth:

Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns without
Candidate Generation. SIGMOD Conference 2000: 1-12

Literature for Pattern Explosion

FIMI competition:

Roberto J. Bayardo Jr., Bart Goethals, Mohammed Javeed Zaki: FIMI '04,
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations, Brighton, UK, November 1, 2004 CEUR-WS.org 2004

Closed Itemsets:

Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal: Discovering Frequent
Closed Itemsets for Association Rules. ICDT 1999: 398-416

Non-Derivable Itemsets:

Toon Calders, Bart Goethals: Non-derivable itemset mining. Data Min. Knowl.
Discov. 14(1): 171-206 (2007)

Extending NDI:

Chedy Raïssi, Toon Calders, Pascal Poncelet: Mining conjunctive sequential
patterns. Data Min. Knowl. Discov. 17(1): 77-93 (2008)

Reasoning about frequencies:

Toon Calders: The complexity of satisfying constraints on databases of
transactions. Acta Inf. 44(7-8): 591-624 (2007)

Toon Calders: Itemset frequency satisfiability: Complexity and axiomatization.
Theor. Comput. Sci. 394(1-2): 84-111 (2008)

Literature for Statistical Measures

Swap randomization:

Aristides Gionis, Heikki Mannila, Taneli Mielikäinen, Panayiotis Tsaparas:
Assessing data mining results via swap randomization. TKDD 1(3):
(2007)

Style “Nikolaj”:

Michael Mampaey, Nikolaj Tatti, Jilles Vreeken: Tell me what i need to
know: succinctly summarizing data with itemsets. KDD 2011: 573-581

Style “De Bie”:

Tijl De Bie, Kleanthis-Nikolaos Kontonasios, Eirini Spyropoulou: A
framework for mining interesting pattern sets. SIGKDD Explorations
12(2): 92-100 (2010)

Krimp - MDL:

Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes: Krimp: mining
itemsets that compress. Data Min. Knowl. Discov. 23(1): 169-214 (2011)

Thank You for Your Attention!

