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Motivation 

Source: old-computers.com Source: iconarchive.com 
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Motivation 

? 

 Amount of data increases at a high speed 
 Response time grows 
 Number of requests / users increase 

Source: ibm.com 
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■ Scientific applications 
□ Large Hadron Collider  (15 PB / year) 

□ DNA sequencing 

 

Motivation – Data Sources 

Source: cern.ch 

■ Sensor networks 
□ Smart homes  

□ Smart grids 

 
Source: readwriteweb.com 

Source: uio.no 

■ Multimedia applications 
□ Audio & video analysis 

□ User generated content 
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Motivation – Scale up 

Solution 1 
 Powerful server 

Source: ibm.com 
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Motivation – Scale out 

Solution 2 
 Many (commodity-) server 

Source: 330t.com 



18.07.2012 DIMA – TU Berlin 8 

■ Background 
□ Parallel Speedup 

□ Levels of Parallelism 

□ CPU Architecture 

 

■ Scale out 
□ MapReduce 

□ Stratosphere 

 

■ Scale up 
□ Overview of Hardware Architectures 

□ Parallel Programming Model 

□ Relational Processing 

□ Further Operations 

□ Research Challenges of Hybrid Architectures 

Outline 
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■ The speedup is defined as: 𝑆𝑝 = 𝑇1
𝑇𝑝  

□ 𝑇1: runtime of sequential program 

□ 𝑇𝑝: runtime of the parallel program on p processors 

 

■ Amdahl‘s Law: „The maximal speedup is determined by the 

non-parallelizable part of a program.“ 

□ 𝑆𝑚𝑎𝑥 =
1

1−𝑓 + 𝑓 𝑝 
       f: fraction of the program that can be parallelized 

□ Ideal speedup:    S=p for f=1.0   (linear speedup) 

□ However – since usually f < 1.0, S is bound by a constant  

□ Fixed problems can be parallelized only to a certain degree 

Parallel Speedup 
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Parallel Speedup 
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■ Instruction-level Parallelism 
□ Single instructions are automatically processed in parallel 

□ Example:  Modern CPUs with multiple pipelines and instruction units. 

 

■ Data Parallelism 
□ Different Data can be processed independently 

□ Each processor executes the same operations on it‘s share of the input data. 

□ Example: Distributing loop iterations over multiple processors, or CPU’s 
vectors 

 

■ Task Parallelism 
□ Tasks are distributed among the processors/nodes 

□ Each processor executes a different thread/process.  

□ Example:  Threaded programs. 

Levels of Parallelism on Hardware 
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■ Most die space devoted to control logic & caches 

■ Maximize performance for arbitrary, sequential programs 

CPU Architecture 

www.chip-architect.com AMD K8L 
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Trends in processor architecture 

Free lunch is over:  
 

■ Power wall  
□ Heat dissipation 

 

■ Memory wall  
□ Memory gained little performance 

 

■ ILP wall 
□ Extracting more ILP scales poorly 
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Comparing Architectural Stacks 
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Parallel  
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Higher-Level  
Language 

Nephele 

JAQL, 
Pig, 
Hive 

 
 

Hadoop 

Currently 
porting JAQL 

Hadoop Stack 
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Stack 

PACT 
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Model 

MapReduce 
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Model 

Dryad Hyracks 

Asterix 
Stack 

Dryad 
Stack 

DryadLINQ, 
SCOPE 

AQL 
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■ Analysis over raw (unstructured) data 
□ Text processing 

□ In general: If relational schema does not suit the problem well 

 XML, RDF 

 

■ Where cost-effective scalability is required 
□ Use commodity hardware 

□ Adaptive cluster size (horizontal scaling) 

□ Incrementally growing, add computers without requirement for 
expensive reorganization that halts the system 

 

■ In unreliable infrastructures 
□ Must be able to deal with failures – hardware, software, network 

 Failure is expected rather than exceptional 

□ Transparent to applications 

 very expensive to build reliability into each application 

Where traditional Databases are unsuitable 



18.07.2012 DIMA – TU Berlin 17 

■ A Search Engine scenario: 
□ Have crawled the internet and stored the relevant documents 

□ Documents contain words (Doc-URL, [list of words]) 

□ Documents contain links   (Doc-URL, [Target-URLs]) 

 

■ Need to build a search index 
□ Invert the files (word, [list of URLs]) 

□ Compute a ranking (e.g. page rank), 
which requires an inverted graph: (Doc-URL, [URLs-pointing-to-it]) 

 

■ Obvious reasons against relational databases here 
□ Relational schema and algebra do not suit the problem well 

□ Importing the documents, converting them to the storage format is expensive 

 

■ A mismatch between what Databases were designed for and what 
is really needed: 
□ Databases come originally from transactional processing. They give hard 

guarantees about absolute consistencies in the case of concurrent updates. 

□ Analytics are added on top of that 

□ Here: The documents are never updated, they are read only. It is only about 
analytics here! 

Example Use Case: Web Index Creation 
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■ Driven by companies like Google, Facebook, Yahoo 

 

■ Use heavily distributed system 
□ Google used 450,000 low-cost commodity servers in 2006 

in cluster of 1000 – 5000 nodes 

 

■ Redesign infrastructure and architectures completely with 
the key goal to be 
□ Highly scalable  

□ Tolerant of failures 

 

■ Stay generic and schema free in the data model 

 

■ Start with: Data Storage 

■ Next Step: Distributed Analysis 

An Ongoing Re-Design… 
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■ Extremely large files 
□ In the order of Terabytes to Petabytes 

 

■ High Availability 
□ Data must be kept replicated 

 

■ High Throughput 
□ Read/Write Operations must not go through other servers 

□ A write operation must not be halted until the write is completed on the replicas. 
 Even if it may require to make files unmodifyable 

 

■ No single point of failure 
□ A Master must be kept redundantly 

 

■ Many different distributed file systems exist. They have very different 
goals, like transparency, updateability, archiving, etc… 

 

■ A widely used reference architecture for high-throughput and high-
availability DFS is the Google Filesystem (GFS) 

Storage Requirements 
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■ The file system 
□ is distributed across many nodes (DataNodes) 

□ provides a single namespace for the entire cluster 

□ metadata is managed on a dedicated node (NameNode) 

□ realizes a write-once-read-many access model 

 

■ Files are split into blocks 
□ typically 128 MB block size 

□ each block is replicated on multiple data nodes 

 

■ The client 
□ can determine the location of blocks 

□ can access data directly from the DataNode over the network 

 

■ Important: No file modifications (except appends), 
□ Spares the problem of locking and inconsistent or conflicting updates 

The Storage Model – Distributed File System 
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■ Data is stored as custom records in files 
□ Most generic data model that is possible 

 

■ Records are read and written with data model specific 
(de)serializers 

 

■ Analysis or transformation tasks must be written directly as 
a program 
□ Not possible to generate it from a higher level statement 

□ Like a query-plan is automatically generated from SQL 

 

■ Programs must be parallel, highly scalable, fault tolerant 
□ Extremely hard to program 

□ Need a programming model and framework that takes care of that 

□ The MapReduce model has been suggested and successfully adapted 
on a broad scale 

Retrieving and Analyzing Data 
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■ Programming model 
□ borrows concepts from functional programming 

□ suited for parallel execution – automatic parallelization & distribution of 
data and computational logic 

□ clean abstraction for programmers 

 

■ Functional programming influences 
□ treats computation as the evaluation of mathematical functions and 

avoids state and mutable data 

□ no changes of states (no side effects) 

□ output value of a function depends only on its arguments 

 

■ Map and Reduce are higher-order functions 

□ take user-defined functions as argument 

□ return a function as result 

□ to define a MapReduce job, the user implements the two functions 

What is MapReduce? 
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■ The data model 

□ key/value pairs 

□ e.g. (int, string) 

 

■ The user defines two functions 

□ map: 

 input key-value pairs: 

 output key-value pairs: 

 

□ reduce: 

 input key        and a list of values 

 output key         and a single value 

 

■ The framework   

□ accepts a list 

□ outputs result pairs   

 

 

 

User Defined Functions 
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Data Flow in MapReduce 

(K m,Vm)* 

(K m,Vm) (K m,Vm) (K m,Vm) 

MAP(K m,Vm) MAP(K m,Vm) MAP(K m,Vm) 

(K r ,Vr)* (K r ,Vr)* (K r ,Vr)* 

REDUCE(K r ,Vr*) REDUCE(K r ,Vr*) REDUCE(K r ,Vr*) 

(K r ,Vr*) (K r ,Vr*) (K r ,Vr*) 

(K r ,Vr) (K r ,Vr) (K r ,Vr) 

(K r ,Vr)* 

… 

… 

… 

… 

… 

… 

Framework 

Framework 

Framework 
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■ Problem: Counting words in a parallel fashion 

□ How many times different words appear in a set of files 

□ juliet.txt: Romeo, Romeo, wherefore art thou Romeo? 

□ benvolio.txt: What, art thou hurt? 

□ Expected output: Romeo (3), art (2), thou (2), art (2), hurt (1), 
wherefore (1), what (1) 

 

■ Solution: MapReduce Job 
 map(filename, line) { 

   foreach (word in line) 

      emit(word, 1);     

    } 

 

 reduce(word, numbers) { 

   int sum = 0; 

   foreach (value in numbers) { 

     sum += value; 

   } 

   emit(word, sum); 

 } 

 

MapReduce Illustrated (1) 
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MapReduce Illustrated (2) 
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■ Hadoop: Apache Top Level Project 
□ open Source 

□ written in Java 

 

■ Hadoop provides a stack of 
□ distributed file system (HDFS) – modeled after the Google File System 

□ MapReduce engine 

□ data processing languages (Pig Latin, Hive SQL) 

 

■ Runs on 
□ Linux, Mac OS/X, Windows, Solaris 

□ Commodity hardware 

Hadoop – A MapReduce Framework 
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■ Master-Slave Architecture 

 

■ HDFS Master “NameNode” 
□ manages all filesystem metadata 

□ controls read/write access to files 

□ manages block replication 

 

■ HDFS Slave “DataNode” 
□ communicates with the NameNode periodically via heartbeats 

□ serves read/write requests from clients 

□ performs replication tasks upon instruction by NameNode 

Hadoop Distributed File System (HDFS) 

Data 
Protocol 

MetaData 
Protocol 

HeartBeat 
Protocol 

Control 
Protocol 

NameNode 

Client 

DataNode DataNode DataNode 
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■ Master / Slave architecture 

 

■ MapReduce Master: JobTracker 
□ accepts  jobs submitted by clients 

□ assigns map and reduce tasks to TaskTrackers 

□ monitors execution status, re-executes tasks upon failure 

 

■ MapReduce Slave: TaskTracker 
□ runs map / reduce tasks upon instruction from the task tracker 

□ manage storage, sorting and transmission of intermediate output 

Hadoop MapReduce Engine 
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■ Jobs are executed like a Unix pipeline: 
□ cat * | grep | sort | uniq -c | cat    > output 

□ Input | Map  | Shuffle & Sort | Reduce | Output 

 

■ Workflow 
□ input phase: generates a number of FileSplits from input files (one per 

Map task) 

□ map phase: executes a user function to transform input kv-pairs into a 
new set of kv-pairs 

□ sort & shuffle: sort and distribute the kv-pairs to output nodes 

□ reduce phase: combines all kv-pairs with the same key into new kv-
pairs 

□ output phase writes the resulting pairs to files 

 

■ All phases are distributed with many tasks doing the work 
□ Framework handles scheduling of tasks on cluster 

□ Framework handles recovery when a node fails 

 

Hadoop MapReduce Engine 
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Hadoop MapReduce Engine 

User defined 
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■ Inputs are stored in a fault tolerant way by the DFS 

 

■ Mapper crashed 
□ Detected when no report is given for a certain time 

□ Restarted at a different node, reads a different copy of the same input 
split 

 

■ Reducer crashed 
□ Detected when no report is given for a certain time 

□ Restarted at a different node also. Pulls the results for its partition from 
each Mapper again. 

 

■ The key points are: 
□ The input is redundantly available 

□ Each intermediate result (output of the mapper) is materialized on disk 

 Very expensive, but makes recovery of lost processes very simple and 
cheap 

 

Hadoop Fault Tolerance 
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Goals  

■ Hide parallelization from programmer 

■ Offer a familiar way to formulate queries 

■ Provides optimization potential 

 

 

Pig Latin 

■ SQL-inspired language 

■ Nested data model 

■ Operators resemble relational algebra 

■ Applies DB optimizations 

■ Compiled into MapReduce jobs 

Higher-Level Languages 
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■ Schema  

urls: (url, category, pagerank)  

 

■ SQL 

SELECT category, AVG(pagerank) FROM urls  
WHERE pagerank > 0.2  

GROUP BY category  
HAVING COUNT(*) > 10^6  

 

 

■ Pig Latin 

good_urls    = FILTER urls BY pagerank > 0.2; 

groups        = GROUP good_urls BY category; 

big_groups  = FILTER groups BY COUNT(good_urls)>10^6 ; 

output         = FOREACH big_groups GENERATE 

              category, AVG(good_urls.pagerank); 

Pig Latin Example 



18.07.2012 DIMA – TU Berlin 35 

Distributed DBMS vs. MapReduce 

Distributed DBMS MapReduce 

Schema Support   

Indexing   

Programming Model 
Stating what you want 

(declarative: SQL) 

Presenting an algorithm 
(procedural: C/C++, 

Java, …) 

Optimization   

Scaling 1 – 500 10 - 5000 

Fault Tolerance Limited Good 

Execution 
Pipelines results 

between operators 
Materializes results 
between phases 
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■ Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file 
system. SOSP 2003: 29-43 

 

■ J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on 
Large Clusters. In OSDI, 2004. 

 

■ Hadoop. URL: http://hadoop.apache.org. 

 

■ DeWitt, S. Madden, and M. Stonebraker. A Comparison of Approaches to 
Large-Scale Data Analysis. SIGMOD Conference 2009. 

 

■ C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins: Pig Latin: A Not-
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SIGMOD international conference on Management of data (SIGMOD ‘08) 

 

References & Further Reading 

http://hadoop.apache.org/
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Outline 
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■ PACT Programming Model 
□ Parallelization Contract (PACT) 

□ Declarative definition of data parallelism 

□ Centered around second-order functions 

□ Generalization of MapReduce 

 

■ Nephele 
□ Dryad-style execution engine 

□ Evaluates dataflow graphs in parallel 

□ Data is read from distributed file system 

□ Flexible engine for complex jobs 

□ Designed for IaaS environments 

 

■ Stratosphere = Nephele + PACT 
□ Compiles PACT programs to Nephele dataflow graphs 

□ Combines parallelization abstraction and flexible execution 

□ Choice of execution strategies gives optimization potential 

 

■ Stratosphere is Open Source! 

The Stratosphere System 

Nephele 

PACT Compiler 
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Nephele Data Flow Example 

Define Dataflow 

Sink Source A 

Source B 

UDF 

Nephele Vertex 

Parallelized Dataflow 
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■ PACT is a generalization and extension of MapReduce 
□ PACT inherits many concepts of MapReduce 

 

■ Both are inspired by functional programming 
□ Fundamental concept of programming model are 2nd-order functions 

□ User writes 1st-order functions (user functions) 

□ User code can be arbitrarily complex 

□ 2nd-order function calls 1st-order function with independent data 
subsets 

□ No common state should be held between calls of user function 

 
 

 

Common Concepts of MapReduce and PACT 

Input 
 

1st-order function 
(User Code) 

2nd-order function 
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■ Both use a common data format 
□ Data is processed as pairs of keys and values 

□ Keys and Values can be arbitrary data structures 

 

 

 

 

 

 

Common Concepts of MapReduce and PACT 

Key: 
• Used to build independent subsets 
• Must be comparable and hashable 
• Does not need to be unique 

• no Primary Key semantic! 
• Interpreted only by user code 

Value: 
• Holds application data 
• Interpreted only by user code 
• Often struct-like data type to  
     hold multiple values 
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■ MapReduce provides two 2nd-order functions 

 

 

 

 

 

 

 

 

 

 

■ MapReduce programs have a fixed structure: 

 

 

 

MapReduce Programming Model 

Input Output 
   MAP 

1st-order map fnc 

   REDUCE 

1st-order reduce fnc 

Input set 
Independent 
subsets 

Key Value 

Map:  
• All pairs are independently processed 

Reduce: 
• Pairs with identical keys are grouped 
• Groups are independently processed 
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■ Generalization and Extension of MapReduce Programming Model 
 

■ Based on Parallelization Contracts (PACTs) 
 
 
 
 
 
 
 
 

 

■ Input Contract 
□ 2nd-order function; generalization of Map and Reduce 
□ Generates independently processable subsets of data 

 

■ User Code 
□ 1st-order function 
□ For each subset independently called 

 

■ Output Contract 
□ Describes properties of the output of the 1st-order function 
□ Optional but enables certain optimizations 

PACT Programming Model 

Input 
 

Output 
Contract 

Data Data User Code 
(1st-order function) 

Input Contract (2nd-order function) 
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■ Cross 
□ Builds a Cartesian Product 

□ Elements of CP are independently processed  

 

 

 

■ Match 
□ Performs an equi-join on the key 

□ Join candidates are independently processed  

 

 

 

■ CoGroup 
□ Groups each input on key 

□ Groups with identical keys are processed together 

 

Input Contracts beyond Map and Reduce 
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■ PACT Programs are data flow graphs 
□ Data comes from sources and flows to sinks 

□ PACTs process data in-between sources and sinks 

□ Multiple sources and sinks allowed 

□ Arbitrary complex directed acyclic data flows can be composed 

 

 

PACT Programming Model 

Data Source 1 Data Sink 1 
MAP 

Data Source 2 
COGROUP 

MAP 

MATCH 

CROSS 

Data Sink 2 

REDUCE 

MAP 
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■ Optimization Opportunities 
□ Declarative definition of data parallelism (Input Contracts) 

□ Annotations reveal user code behavior (Output Contracts) 

□ Compiler hints improve intermediate size estimates 

□ Flexible execution engine 

 

■ PACT Optimizer 
□ Compiles PACT programs to Nephele DAGs 

□ Physical optimization as known from relational database optimizers 

□ Avoids unnecessary expensive operations (partition, sort) 

□ Chooses between local strategies (hash- vs. sort-based) 

□ Chooses between ship strategies (partition, broadcast, local forward) 

□ Sensitive to data input sizes and degree of parallelism 

Optimization of PACT Programs 
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■ Partition n points into x clusters: 
□ Measure distance between points and clusters 

□ Assign each point to a cluster 

□ Move cluster to the center of associated points 

□ Repeat until it converges 

Example – K-Means Clustering 

Points 

Center 



18.07.2012 DIMA – TU Berlin 49 

■ Partition n points into x clusters: 
□ Measure distance between points and clusters 

□ Assign each point to a cluster 

□ Move cluster to the center of associated points 

□ Repeat until it converges 

Example – K-Means Clustering 

Points 

Center 



18.07.2012 DIMA – TU Berlin 50 

■ Partition n points into x clusters: 
□ Measure distance between points and clusters 

□ Assign each point to a cluster 

□ Move cluster to the center of associated points 

□ Repeat until it converges 

Example – K-Means Clustering 

Points 

Center 



18.07.2012 DIMA – TU Berlin 51 
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K-Means with MapReduce 
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K-Means with Stratosphere 
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■ Comparison from developer perspective 

 

■ PACT has same expressive power as MapReduce 
□ At PACT’s current state 

 

■ In practice, many tricks must be played with MapReduce 
□ Depends on the execution engine, such as Hadoop 

□ Concatenation of two or more MapReduce programs 

□ Auxiliary structures (e.g., Distributed Cache, Counters) 

□ Multiple inputs (Union of inputs and flagging the source) 

□ Overriding other parametric functions (sort, partition, split, …) 

 

■ Tricks have drawbacks 
□ Programming becomes much more difficult 

□ Knowledge of execution model must be exploited 

□ Parallelization strategies are hardcoded 

 

 

 

Comparing MapReduce and PACT 
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■ Record Data Model 
□ Generalization of Key-Value Pair Data Model 

□ Records with arbitrary many Key and Value fields 

□ Improved optimization potential 

 

■ Significant Runtime Improvements 
□ Extensive usage of mutable objects 

□ Reduced instantiation and garbage collection overhead 

 

■ Chained Mappers and Combiners 
□ Map und Combine Tasks are directly chained 

□ Less setup costs for data flow 

□ No serialization overhead 

Features of Upcoming Release 
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■ Published Components 
□ PACT Programming Model 

□ PACT Optimizer 

□ Nephele Execution Engine 

 

■ Extensive documentation 
□ Local and Distributed Setup Instructions 

□ PACT Programming How-to and Best Practices 

□ PACT Example Programs 

□ Mailing Lists and more… 

 

 Stratosphere published as Open Source 

http://www.stratosphere.eu 



18.07.2012 DIMA – TU Berlin 57 

■ Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej 
Kao, Volker Markl, Erik Nijkamp, Daniel Warneke: MapReduce and PACT - 
Comparing Data Parallel Programming Models. Proceedings of the 14th 
Conference on Database Systems for Business, Technology, and Web (BTW 
‘11) 

 

■ Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, 
and Daniel Warneke: Nephele/PACTs: A Programming Model and Execution 
Framework for Web-Scale Analytical Processing. In Proceedings of the ACM 
Symposium on Cloud Computing (SoCC) 2010 ACM, pp. 119–130 

References & Further Reading 
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A blast from the past: DIRECT 

■ Specialized database processors already in 1978 

■ Back then could not keep up with rise of commodity CPUs 

■ Today is different: memory wall, ILP wall, power wall.. 

Controller Host 

Query 
processor 

Mass 
storage 

Memory 

Query 
processor 

Query 
processor 

Memory Memory 

DIRECT - a multiprocessor organization for supporting relational data base management systems 

David J. DeWitt 
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■ Massively parallel & reconfigurable processors 

■ Lower clock speeds, but configuration for specific tasks 
makes up for this 

■ Very difficult to program 

■ Used in real world appliances: Kickfire/Teradata, 
Netezza/IBM.. 

FPGAs 

FPGA: what's in it for a database? 

Jens Teubner and Rene Mueller 

CPU 

RAM 

FPGA 

Network 

HDD 
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■ Input/Output blocks: interface to outside resources 

■ Configurable Logic Block (CLB) consists of 
□ Logic Gate (e.g., n-Lookup Table) 

□ Carry logic 

□ Storage elements (e.g., D flip flop) 

■ May contain hard intellectual property (IP) cores 
□ Discrete chips for common functionality: Block RAM, PowerPC cores 

 

FPGAs 

Architecture of FPGAs and CPLDs: A Tutorial 
Stephen Brown and Jonathan Rose 

Interconnect 

Input/Output Blocks 

Configurable Logic Block 
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■ CPU & GPU integrated on one die, shared memory 

■ Uses GPU programming model (OpenCL) 

■ No PCIe-bottleneck but only memory bandwidth like CPU 

CPU/GPU hybrid (AMD Fusion) 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

Local memory 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

Local memory 
… 

Memory controller 

x86 core x86 core … 

RAM 

AMD Whitepaper: AMD Fusion Family of APUs 
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■ First product: Knights Corner 

■ Focus: High Performance Computing (HPC) 

■ > 50 cores on a single chip 

■ Same tools, compilers, libraries as Intel® Xeon processors  
□ Portability 

Intel MIC 

Source: theregister.co.uk 
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■ Network processors 
□ Many-core architectures 

□ Associative memory (constant time search) 

 

■ CELL 
□ Similar to CPU/GPU hybrid: CPU core + several wide SIMD cores w/ 

local scratchpad memories (similar to L1 cache) 

There is more... 
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■ Similar approaches 
□ Many-core 

□ Distributed on-chip memory 

□ Hope for better perf/$ and perf/watt than traditional CPUs 

 

■ Similar difficulties 
□ Memory bandwidth always a bottleneck 

□ Hard to program 

 parallel 

 low-level & architecture-specific 

Common goals, common problems 
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■ D. J. DeWitt: DIRECT - a multiprocessor organization for supporting relational data 
base management systems. In Proceedings of the 5th annual symposium on 
Computer architecture (ISCA '78). ACM, New York, NY, USA, 182-189. 

■ R. Mueller and J. Teubner: FPGA: what's in it for a database?. In Proceedings of the 
35th SIGMOD international conference on Management of data (SIGMOD '09), 
Carsten Binnig and Benoit Dageville (Eds.). ACM, New York, NY, USA, 999-1004. 

■ S. Brown, J. Rose: FPGA and CPLD Architectures: A Tutorial. In IEEE Design and Test 
of Computers, Volume 13, Number 2, pp. 42--57, 1996 

■ AMD White paper: AMD Fusion family of APUs, 
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf (Visited 
May 2011) 

■ N. Bandi, A. Metwally, D. Agrawal, and A. El Abbadi: Fast data stream algorithms 
using associative memories. In Proceedings of the 2007 ACM SIGMOD international 
conference on Management of data (SIGMOD '07). ACM, New York, NY, USA, 247-
256. 

■ B. Gedik, P. S. Yu, and R. R. Bordawekar: Executing stream joins on the cell 
processor. In Proceedings of the 33rd international conference on Very large data 
bases (VLDB '07). VLDB Endowment 363-374.  

■ Intel: Many Integrated Core (MIC) Architecture – Advanced. 
http://www.intel.com/content/www/us/en/architecture-and-technology/many-
integrated-core/intel-many-integrated-core-architecture.html (Visited June 2012) 

References & Further Reading 
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A case for GPU architectures 

■ Trends in processor 
architecture 
□ The free lunch is over: power 

wall, memory wall, ILP wall… 

 

■ Motivates a look at 
alternatives to traditional CPU 
chips 
□ GPUs: cheap, massively parallel, 

available today 

□ „Fruit fly“ architecture for 
developing parallel algorithms 
and systems 
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■ GFLOPS & GB/s for different CPU & GPU chips.. 

■ Beware: theoretical peak numbers 

GFLOPS & GB/s 

Wikipedia, Intel, AMD, Nvidia, IBM 
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■ Most die space devoted to control logic & caches 

■ Maximize performance for arbitrary, sequential programs 

What is the difference? Look at a modern 
CPU..  

www.chip-architect.com AMD K8L 
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■ Little control logic, a lot of 
execution logic  

 

■ Maximize parallel 
computational throughput 

And at a GPU.. 

www.beyond3d.com Nvidia G200 
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■ SIMD cores with small local memories (16-48KiB) 

■ Shared high bandwidth + high latency DRAM (1-6GiB) 

■ Multi-threading hides memory latency 

■ Bulk-synchronous execution model 

GPU architecture 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

Local memory 

ALU ALU 
ALU 
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ALU ALU 
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ALU ALU 
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ALU ALU 
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Local memory 

ALU ALU 
ALU 
ALU 

ALU ALU 
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ALU 

ALU ALU 
ALU 
ALU 

ALU ALU 
ALU 
ALU 

Local memory 
… 

Shared DRAM 

x86 host 
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Hybrid CPU+GPU system 

■ 1 or several (interconnected) multicore CPUs 

■ 1 or several GPUs 

CPU 

I/OH 

GPU 

RAM RAM RAM RAM 

HDD 

CPU 

I/OH 

GPU 

RAM RAM RAM RAM 

HDD 
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Bottlenecks 

■ PCIe bandwidth & latency 

■ GPU memory size 

■ GPU has no direct access to storage & network 

CPU 

I/OH 

GPU 

RAM RAM RAM RAM 

HDD 

CPU 

I/OH 

GPU 

RAM RAM RAM RAM 

HDD 
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■ Most database operations well-suited for massively parallel 
processing 

■ Efficient algorithms for many database primitives exist 
□ Scatter, reduce, prefix sum, sort.. 

■ Find ways to utilize higher bandwidth & arithmetic 
throughput 

GPUs & databases: opportunities 

www.nvidia.com 
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■ Find a way to live with architectural constraints 
□ GPU to CPU bandwidth (PCIe) smaller than CPU to RAM bandwidth 

□ Fast GPU memory smaller than CPU RAM 
 

■ Technical hurdles 
□ GPU is a co-processor: needs CPU to orchestrate work, get data from 

storage devices etc.. 

□ GPU programming models (CUDA, OpenCL) are low level, need 
architecture-specific tuning 

□ Limited support for multi-tasking 

GPUs & databases: challenges & constraints 
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■ Fully-fledged CPU/GPU query processor 
□ GPU hash indices, B+ trees, hash join, sort-merge join 

□ Handles data sizes larger than GPU memory, supports non-numeric 
data types 

■ Executes queries either on CPU, GPU, or on both 
□ Analytical models & calibration via micro-benchmarks used to estimate 

cost for execution on CPU vs. GPU 

■ System with 1 CPU + 1 GPU, only 1 query at a time 
 

GDB: hybrid CPU+GPU query processing 

Relational query coprocessing on graphics processors 

Bingsheng  He and Mian Lu and Ke Yang and Rui Fang  and Naga K. 
Govindaraju and Qiong Luo and Pedro V. Sander 

CPU 

I/OH 

GPU 

RAM RAM RAM RAM 

HDD 
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■ Intel Core 2 Duo, Nvidia Geforce 8800 GTX 

■ 2x-7x speedup for compute-intense operators if data fits 
inside GPU memory 

■ Mixed mode operators provide no speedup 

■ No speedup if data does not fit into GPU memory 
 

GDB: results 
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■ J. Owens: GPU architecture overview, In ACM SIGGRAPH 2007 courses 
(SIGGRAPH '07). ACM, New York, NY, USA, , Article 2 

 

■ H. Sutter: The Free Lunch is Over: A Fundamental Turn Toward 
Concurrency in Software, Dr. Dobb's Journal, 30(3), March 2005, 
http://www.gotw.ca/publications/concurrency-ddj.htm (Visited May 2011) 

 

■ V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. 
Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. 
Dubey: Debunking the 100X GPU vs. CPU myth: an evaluation of 
throughput computing on CPU and GPU. SIGARCH Comput. Archit. News 
38, 3 (June 2010), 451-460. 

 

■ B. He and J. Xu Yu: High-throughput transaction executions on graphics 
processors. Proc. VLDB Endow. 4, 5 (February 2011), 314-325. 

 

■ B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. 
Sander: Relational query coprocessing on graphics processors. ACM Trans. 
Database Syst. 34, 4, Article 21 (December 2009), 39 pages.  

References & Further Reading 

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
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■ Background 
□ Parallel Speedup 

□ Levels of Parallelism 

□ CPU Architecture 

 

■ Scale out 
□ MapReduce 

□ Stratosphere 

 

■ Scale up 
□ Overview of Hardware Architectures 

□ Parallel Programming Model 

□ Relational Processing 

□ Further Operations 

□ Research Challenges of Hybrid Architectures 

Outline 
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Parallel Programming Model 

Grid 

Block (0,0) Block (1,0) Block (2,0) 

Block (0,1) Block (1,1) Block (2,1) 

Block (1,1) 

Thread 
(0,0) 

Thread 
(1,0) 

Thread 
(2,0) 

Thread 
(0,1) 

Thread 
(1,1) 

Thread 
(2,1) 

Local memory Local memory … 

Shared DRAM 

ALU ALU ALU ALU ALU ALU ALU ALU 

Hardware Architecture 

Programming Model 
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Block (0, 0) 

Memory Hierarchy 

Shared Memory 

Registers 

Thread (0,0) Thread (1,0) 

Registers 

Block (1, 0) 

Shared Memory 

Registers 

Thread (0,0) Thread (1,0) 

Registers 

Global Memory 
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■ No dynamic memory allocation 

 

■ Divergence 
□ Threads taking different code paths  

 Serialization 

 

■ Limited synchronization possibilities 
□ Only on block level 

□ Limited block size 

Challenges 
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■ Kernel 
__global__ void increment(int* values, int elements) { 

 // store thread identifier in register 

 unsigned int tid = threadIdx.x; 

 if (tid < elements) { 

  // increment stored value by 1 

  int value = values[tid]; 

  values[tid] = value + 1; 

 } 

} 

 

 

■ Host Code 

increment <<< nrBlocks, blockSize >>>(values, 200000); 

 

Sample CUDA Kernel 
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■ NVIDIA CUDA Programming Guide Version 3.1.1, 
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVI
DIA_CUDA_C_ProgrammingGuide_3.1.pdf (Visited June 2011) 

 

References & Further Reading 

http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
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■ Background 
□ Parallel Speedup 

□ Levels of Parallelism 

□ CPU Architecture 

 

■ Scale out 
□ MapReduce 

□ Stratosphere 

 

■ Scale up 
□ Overview of Hardware Architectures 

□ Parallel Programming Model 

□ Relational Processing 

□ Further Operations 

□ Research Challenges of Hybrid Architectures 

Outline 
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■ Classic: B+ Tree 

 

 

 

 

 

 

 

■ Accelerate access by organizing data in a sorted and 
hierarchical way 

■ Compression to map variable-length data to fixed size 

Indexing 

… … 

… … 

Key 

Payload 



Hierarchical Blocking 

• Rearrange the binary tree node and block in a hierarchical 
fashion 
– Page level, cache line level, SIMD level 
– Minimize # of pages, cache lines brought from memory 
– Increased computation overhead when crossing a blocking 

boundary 

 

89 

key1 
rid1 

key2 
rid2 

keyn 
ridn 

Page blocking 
Page blocking depth =10 (or 19) 

Cache line blocking 
Cache line blocking 
depth = 4 

SIMD blocking 
SIMD blocking depth = 2 (or 4) 



GPU Search 

90 

41 

23 61 

11 31 73 47 

2 19 29 37 43 53 67 79 

Query Key = 59 
1. Load 16 tree nodes within a SIMD 
blocked sub-tree 

4. Find a common ancestor node and 
check the result in the shared 
memory buffer 

3. Among 8 leaf nodes, find a largest 
index (j) such that “resj =1” and 
“resj+1 =0 

2. Compare with a query key (query 
> tree nodes) and store results 
(“res”) into shared memory buffer 

1  1  1  1  1  0  0  1  

0 

5. Compute the address of the next 
sub-tree 

=> more instruction overhead 
due to the lack of inter-SIMD 
lane operations 
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■ Path of a key within the tree defined by absolute value 

■ Split key into equally sized sub-keys 

■ Tree depth depends on key length 

Prefix Tree 

INT = 793910 

 

0001  1111  0000  00112 

 

 1         7         0        310 
… 

… 

… 
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■ Each computational tree is assigned to a GPU thread 

■ All computational trees are processed in parallel 

■ Intermediate results are stored in global list to retrieve final result later 

Speculative Partition-Based Traversal 

Partition 1 

Partition 2 Partition 3 Partition 4 

Computational Tree 

1 2 3 4 

INT = 793910 

0001  1111  0000  00112 
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■ Idea: Group processing to exploit faster local memory 

■ Group computational trees into blocks 

■ Tree block is executed by a GPU thread block 
□ Allows usage of shared memory for intermediate results 

■ Result for global retrieved by traversing internal result list 

Speculative Hierarchical Traversal 
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■ J. Rao, K. A. Ross: Cache Conscious Indexing for Decision-Support in Main 
Memory, In Proceedings of the 25th International Conference on Very 
Large Data Bases (VLDB '99), Malcolm P. Atkinson, Maria E. Orlowska, 
Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie (Eds.). Morgan 
Kaufmann Publishers Inc., San Francisco, CA, USA, 78-89 

 

■ C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. 
Lee, S. Brandt, P. Dubey: FAST: fast architecture sensitive tree search on 
modern CPUs and GPUs, ACM SIGMOD ‘10, 339-350, 2010 

 

■ P. B. Volk, D. Habich, W. Lehner: GPU-Based Speculative Query Processing 
for Database Operations, First International Workshop on Accelerating Data 
Management Systems Using Modern Processor and Storage Architectures 
In conjunction with VLDB 2010 

References & Further Reading 
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■ Disk-based databases 
□ Computation-intensive compression algorithms 

□ Trade computation for compression ratio 

□ Often full decompression required for evaluations 

 

 

■ In-memory databases 
□ Lightweight compression schemes 

□ Balance compression and computational overhead 

□ No decompression for most evaluations 

□ Combination of multiple schemes undesirable  

     Computational overhead 

Database Compression 
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■ GPUs 
□ Device has very limited memory capacity 

□ Offer high computation capabilities and bandwidth 

□ Compression reduces overhead of data transfer between device and 
main memory 

□ Compression allows GPUs to address bigger problems 

 

 Combine compression schemes for higher compression ratios 

Database Compression 
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■ Two Groups of compression schemes 
□ Main Schemes 

 Reduce data size 

□ Auxiliary Schemes 

 Transform data into formats suitable for main schemes 

 

■ Cascaded Compression 
□ Huge search space 

□ Dependent on data properties 

□ Different criteria 

 Compression ratio 

 (De)Compression performance 

 Combination of multiple factors 

Database Compression on Graphics Processors 
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■ Null Suppression with Variable Length (NSV) 
□ Main Scheme 

□ Eliminate leading zeros  variable length encoding 

□ Store encoded value and length of value 
 

■ Delta 
□ Auxiliary Scheme 

□ Encodes difference from the preceding value 

□ Small differences for sorted columns 

Cascaded Compression Example 

Column (Int) S Size (Bits) Delta NSV Length NSV Value S Size (Bits) 

1000 32 0 0x01 0x0 3 

1001 64 1 0x01 0x1 6 

1002 96 1 0x01 0x1 9 

1004 128 2 0x10 0x10 13 

1005 160 1 0x01 0x1 16 

1009 192 4 0x11 0x100 21 



18.07.2012 DIMA – TU Berlin 99 

■ W. Fang, B. He, Q. Luo: Database Compression on Graphics Processors, 
Proc. VLDB Endow. 3, 1-2 (September 2010), 670-680 

References & Further Reading 
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Sorting with GPUs 

■ Numerous GPU algorithms published 
□ Bitonic sort, bucket sort, merge sort, quicksort, radix sort, sample 

sort.. 

 

■ Existing work: focus on in-memory sorting with 1 GPU 

 

■ State of the art: merge sort, radix sort 

 

■ GPUs outperform multicore CPUs when data transfer over 
PCIe is not considered 
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■ Divide data between multiprocessors 

 

Radix Sort 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 
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■ Divide data between multiprocessors 

■ Create a local histogram 

 

Radix Sort 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 
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■ Divide data between multiprocessors 

■ Create a local histogram 

■ Store histrograms in array sorted by radix values 

 

Radix Sort 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

2 1 3 8 2 3 1 6 … 



18.07.2012 DIMA – TU Berlin 104 

■ Divide data between multiprocessors 

■ Create a local histogram 

■ Store histrograms in array sorted by radix values 

■ Compute prefix sum -> global write position 

 

Radix Sort 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 
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3
2 

3
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3
4 

… 



18.07.2012 DIMA – TU Berlin 105 

■ Divide data between multiprocessors 

■ Create a local histogram 

■ Store histrograms in array sorted by radix values 

■ Compute prefix sum -> global write position 

■ Scatter data to new positions 

Radix Sort 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 

Local memory 

ALU ALU ALU ALU 
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■ CPU: 2x Intel W5580, GPU: NVIDIA Geforce GTX480 

■ For GPU radix sort the PCIe transfer dominates running time 

GPU sorting performance 

Revisiting Sorting for GPGPU Stream Architectures  
Duane Merrill, Andrew Grimshaw 

Faster Radix Sort via Virtual Memory and Write-Combining   
Jan Wasenberg, Peter Sanders 
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■ D. G. Merrill and A. S. Grimshaw: Revisiting sorting for GPGPU stream 
architectures. In Proceedings of the 19th international conference on 
Parallel architectures and compilation techniques (PACT '10). ACM, New 
York, NY, USA, 545-546 

 

■ J. Wassenberg, P. Sanders: Faster Radix Sort via Virtual Memory and 
Write-Combining, CoRR 2010, http://arxiv.org/abs/1008.2849 (Visited May 
2011) 

 

■ N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. 
Dubey: Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD 
sort. In Proceedings of the 2010 international conference on Management 
of data (SIGMOD '10). ACM, New York, NY, USA, 351-362.  

References & Further Reading 

http://arxiv.org/abs/1008.2849
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■ Cross product between two sets R & S 

■ May apply a filter predicate to each pair 

■ Result set size hard to estimate 

Joins 

Equality Join 

Column x1 Column x2 … 

R S 

R.r1 = S.s1 
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1. Split relations into blocks 

2. Join smaller blocks in parallel 

 
Problem: Lack of dynamic memory allocation! 

To allocate memory for the result, the join has to be performed twice. 

Non-indexed Nested-Loop Join 

R 

S 

Thread 
Group 

1,1 

Thread 
Group 

i,1 

Thread 
Group 

1,j 

Thread 
Group 

i,j 

… 

… 

…
 …

 

R` 

S` 

… … 

… … 
Thread 1 Thread T 
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Hash buckets 

1. Partition R & S using a hash function (radix partitioning) 

2. Combine only buckets of the same hash value 

□ Bucket pair handled by a thread group (like NINLJ) 

Hash Join 

R … 
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■ Brent-Kung circuit strategy  

■ Only upsweep phase necessary because only final result is 
needed 

■ Permutation of elements to minimize memory bank conflicts 

■ Separate thread group to combine results of blocks 

Aggregation 

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 
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■ B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, P. Sander: 
Relational joins on graphics processors. In Proceedings of the 2008 ACM 
SIGMOD international conference on Management of data (SIGMOD '08). 
ACM, New York, NY, USA, 511-524.  

 

■ D. Merrill, A. Grimshaw: Parallel Scan for Stream Architectures. Technical 
Report CS2009-14, Department of Computer Science, University of 
Virginia. December 2009. 

References & Further Reading 
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■ Background 
□ Parallel Speedup 

□ Levels of Parallelism 
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■ Map and reduce are second-order functions 
□ Call first-order functions (user code) 

□ Provide first-order functions with subsets of the input data 

 

 

 

■ Map 
□ All records are independently 

processable 

 

 

■ Reduce 
□ Records with identical key must 

be processed together 

 

 

Programming Model 

Input set 

Key Value 
Independent 

subsets 
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■ Scheduler 
□ Prepares data input 

□ Invokes map & reduce stages on the GPU 

□ Returns results to the user 

■ 2-step output scheme for GPU processing 
□ Process to retrieve result size 

□ Process and output results 

Mars: A MapReduce Framework on Graphics 
Processors 

Map 
Split 

Map 
Task 

Map 
Task 

Sort 
Reduce 

Split 

Reduce 
Task 

Reduce 
Task 

Merge 

Mars scheduler GPU processing Notation: 

Map Stage Reduce Stage 
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Conclusion 

■ Abstracts from GPU architecture 

■ Doubles computation of map/reduce in the worst case 

■ Lock and write conflict-free parallel execution 

■ Combination of scale out and scale up 

Mars: A MapReduce Framework on Graphics 
Processors 

Map 
Split 

Map 
Task 

Map 
Task 

Sort 
Reduce 

Split 

Reduce 
Task 

Reduce 
Task 

Merge 

Mars scheduler GPU processing Notation: 

Map Stage Reduce Stage 
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■ Non-deterministic finite state automatons 

■ Exploit parallelism  

□ Analyze multiple packets (one thread group per packet) 

□ Each thread analyzes a transition 

Regular Expression Matching 

1 

2 

3 4 

5 

a 

b 

a 

c 

c 

a 

b 
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■ K-Means 

■ Apriori 

■ Exact String matching 

■ Support Vector Machines 

■ … 

There is more... 
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Architectural constraints 

■ PCIe bottleneck 
□ Direct access to storage devices, network etc.? 

□ Caching strategies for device memory 

 

■ GPU memory size 
□ Deeper memory hierarchy (e.g. a few GB of fast GDDR + large „slow“ 

DRAM)? 
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■ Want forward scalability: performance should scale with 
next generations of GPUs 
□ Existing work often optimized for exactly 1 type of GPU chip 

 

■ Need higher level programming models 
□ Hide hardware details (processor count, SIMD width, local memory 

size..)  

Performance portability 
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■ Database operations are a combination of  

□ single threaded compute-intensive operations 

□ massively parallel data-intensive operations 

■ Big data volume and limited memory 

■ Execution Plan consists of multiple operators 

□  Latency! 

■ Where to execute each operator? 

□ Trade off transfer time between CPU and GPU and computational 

advantage 

□ Cost Models for GPGPU, CPU and hybrid 

□ Amdahl’s law 

■ Shared Nothing CPU/GPGPU clusters for scale out 

Database-Specific Challenges 
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■ Scale out 
□ distribute data & processing among many machines 

□ requires a fault-tolerant system 

 

■ Scale up 
□ use big machines to handle the workload 

□ co-processors may accelerate execution 

 

■ Ideally: combination of scale up and scale out 
□ break problem into computable chunks 

□ accelerate processing of chunks 

 

■ Added complexity should be hidden by programmers 
□ Abstract programming model 

□ Optimized execution plans 

 

■ Future processor architectures will require a parallel 
programming approach 

Conclusion 
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