
18.07.2012 DIMA – TU Berlin 1

Database Systems and Information Management Group
Technische Universität Berlin

http://www.dima.tu-berlin.de/

Big Data Analytics on Modern Hardware
Architectures

Volker Markl
Michael Saecker

With material from:

S. Ewen, M. Heimel, F. Hüske, C. Kim, N. Leischner, K.
Sattler

18.07.2012 DIMA – TU Berlin 2

Motivation

Source: old-computers.com Source: iconarchive.com

18.07.2012 DIMA – TU Berlin 3

Motivation

Source: ibm.com
Source: iconarchive.com

18.07.2012 DIMA – TU Berlin 4

Motivation

?

 Amount of data increases at a high speed
 Response time grows
 Number of requests / users increase

Source: ibm.com

18.07.2012 DIMA – TU Berlin 5

■ Scientific applications
□ Large Hadron Collider (15 PB / year)

□ DNA sequencing

Motivation – Data Sources

Source: cern.ch

■ Sensor networks
□ Smart homes

□ Smart grids

Source: readwriteweb.com

Source: uio.no

■ Multimedia applications
□ Audio & video analysis

□ User generated content

18.07.2012 DIMA – TU Berlin 6

Motivation – Scale up

Solution 1
 Powerful server

Source: ibm.com

18.07.2012 DIMA – TU Berlin 7

Motivation – Scale out

Solution 2
 Many (commodity-) server

Source: 330t.com

18.07.2012 DIMA – TU Berlin 8

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 9

■ The speedup is defined as: 𝑆𝑝 = 𝑇1
𝑇𝑝

□ 𝑇1: runtime of sequential program

□ 𝑇𝑝: runtime of the parallel program on p processors

■ Amdahl‘s Law: „The maximal speedup is determined by the

non-parallelizable part of a program.“

□ 𝑆𝑚𝑎𝑥 =
1

1−𝑓 + 𝑓 𝑝
 f: fraction of the program that can be parallelized

□ Ideal speedup: S=p for f=1.0 (linear speedup)

□ However – since usually f < 1.0, S is bound by a constant

□ Fixed problems can be parallelized only to a certain degree

Parallel Speedup

18.07.2012 DIMA – TU Berlin 10

Parallel Speedup

18.07.2012 DIMA – TU Berlin 11

■ Instruction-level Parallelism
□ Single instructions are automatically processed in parallel

□ Example: Modern CPUs with multiple pipelines and instruction units.

■ Data Parallelism
□ Different Data can be processed independently

□ Each processor executes the same operations on it‘s share of the input data.

□ Example: Distributing loop iterations over multiple processors, or CPU’s
vectors

■ Task Parallelism
□ Tasks are distributed among the processors/nodes

□ Each processor executes a different thread/process.

□ Example: Threaded programs.

Levels of Parallelism on Hardware

18.07.2012 DIMA – TU Berlin 12

■ Most die space devoted to control logic & caches

■ Maximize performance for arbitrary, sequential programs

CPU Architecture

www.chip-architect.com AMD K8L

18.07.2012 DIMA – TU Berlin 13

Trends in processor architecture

Free lunch is over:

■ Power wall
□ Heat dissipation

■ Memory wall
□ Memory gained little performance

■ ILP wall
□ Extracting more ILP scales poorly

18.07.2012 DIMA – TU Berlin 14

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 15

Comparing Architectural Stacks

Execution
Engine

Parallel
Programming
Model

Higher-Level
Language

Nephele

JAQL,
Pig,
Hive

Hadoop

Currently
porting JAQL

Hadoop Stack
Stratosphere

Stack

PACT
 Programming

Model

MapReduce
Programming

Model

Dryad Hyracks

Asterix
Stack

Dryad
Stack

DryadLINQ,
SCOPE

AQL

18.07.2012 DIMA – TU Berlin 16

■ Analysis over raw (unstructured) data
□ Text processing

□ In general: If relational schema does not suit the problem well

 XML, RDF

■ Where cost-effective scalability is required
□ Use commodity hardware

□ Adaptive cluster size (horizontal scaling)

□ Incrementally growing, add computers without requirement for
expensive reorganization that halts the system

■ In unreliable infrastructures
□ Must be able to deal with failures – hardware, software, network

 Failure is expected rather than exceptional

□ Transparent to applications

 very expensive to build reliability into each application

Where traditional Databases are unsuitable

18.07.2012 DIMA – TU Berlin 17

■ A Search Engine scenario:
□ Have crawled the internet and stored the relevant documents

□ Documents contain words (Doc-URL, [list of words])

□ Documents contain links (Doc-URL, [Target-URLs])

■ Need to build a search index
□ Invert the files (word, [list of URLs])

□ Compute a ranking (e.g. page rank),
which requires an inverted graph: (Doc-URL, [URLs-pointing-to-it])

■ Obvious reasons against relational databases here
□ Relational schema and algebra do not suit the problem well

□ Importing the documents, converting them to the storage format is expensive

■ A mismatch between what Databases were designed for and what
is really needed:
□ Databases come originally from transactional processing. They give hard

guarantees about absolute consistencies in the case of concurrent updates.

□ Analytics are added on top of that

□ Here: The documents are never updated, they are read only. It is only about
analytics here!

Example Use Case: Web Index Creation

18.07.2012 DIMA – TU Berlin 18

■ Driven by companies like Google, Facebook, Yahoo

■ Use heavily distributed system
□ Google used 450,000 low-cost commodity servers in 2006

in cluster of 1000 – 5000 nodes

■ Redesign infrastructure and architectures completely with
the key goal to be
□ Highly scalable

□ Tolerant of failures

■ Stay generic and schema free in the data model

■ Start with: Data Storage

■ Next Step: Distributed Analysis

An Ongoing Re-Design…

18.07.2012 DIMA – TU Berlin 19

■ Extremely large files
□ In the order of Terabytes to Petabytes

■ High Availability
□ Data must be kept replicated

■ High Throughput
□ Read/Write Operations must not go through other servers

□ A write operation must not be halted until the write is completed on the replicas.
 Even if it may require to make files unmodifyable

■ No single point of failure
□ A Master must be kept redundantly

■ Many different distributed file systems exist. They have very different
goals, like transparency, updateability, archiving, etc…

■ A widely used reference architecture for high-throughput and high-
availability DFS is the Google Filesystem (GFS)

Storage Requirements

18.07.2012 DIMA – TU Berlin 20

■ The file system
□ is distributed across many nodes (DataNodes)

□ provides a single namespace for the entire cluster

□ metadata is managed on a dedicated node (NameNode)

□ realizes a write-once-read-many access model

■ Files are split into blocks
□ typically 128 MB block size

□ each block is replicated on multiple data nodes

■ The client
□ can determine the location of blocks

□ can access data directly from the DataNode over the network

■ Important: No file modifications (except appends),
□ Spares the problem of locking and inconsistent or conflicting updates

The Storage Model – Distributed File System

18.07.2012 DIMA – TU Berlin 21

■ Data is stored as custom records in files
□ Most generic data model that is possible

■ Records are read and written with data model specific
(de)serializers

■ Analysis or transformation tasks must be written directly as
a program
□ Not possible to generate it from a higher level statement

□ Like a query-plan is automatically generated from SQL

■ Programs must be parallel, highly scalable, fault tolerant
□ Extremely hard to program

□ Need a programming model and framework that takes care of that

□ The MapReduce model has been suggested and successfully adapted
on a broad scale

Retrieving and Analyzing Data

18.07.2012 DIMA – TU Berlin 22

■ Programming model
□ borrows concepts from functional programming

□ suited for parallel execution – automatic parallelization & distribution of
data and computational logic

□ clean abstraction for programmers

■ Functional programming influences
□ treats computation as the evaluation of mathematical functions and

avoids state and mutable data

□ no changes of states (no side effects)

□ output value of a function depends only on its arguments

■ Map and Reduce are higher-order functions

□ take user-defined functions as argument

□ return a function as result

□ to define a MapReduce job, the user implements the two functions

What is MapReduce?

18.07.2012 DIMA – TU Berlin 23

■ The data model

□ key/value pairs

□ e.g. (int, string)

■ The user defines two functions

□ map:

 input key-value pairs:

 output key-value pairs:

□ reduce:

 input key and a list of values

 output key and a single value

■ The framework

□ accepts a list

□ outputs result pairs

User Defined Functions

18.07.2012 DIMA – TU Berlin 24

Data Flow in MapReduce

(K m,Vm)*

(K m,Vm) (K m,Vm) (K m,Vm)

MAP(K m,Vm) MAP(K m,Vm) MAP(K m,Vm)

(K r ,Vr)* (K r ,Vr)* (K r ,Vr)*

REDUCE(K r ,Vr*) REDUCE(K r ,Vr*) REDUCE(K r ,Vr*)

(K r ,Vr*) (K r ,Vr*) (K r ,Vr*)

(K r ,Vr) (K r ,Vr) (K r ,Vr)

(K r ,Vr)*

…

…

…

…

…

…

Framework

Framework

Framework

18.07.2012 DIMA – TU Berlin 25

■ Problem: Counting words in a parallel fashion

□ How many times different words appear in a set of files

□ juliet.txt: Romeo, Romeo, wherefore art thou Romeo?

□ benvolio.txt: What, art thou hurt?

□ Expected output: Romeo (3), art (2), thou (2), art (2), hurt (1),
wherefore (1), what (1)

■ Solution: MapReduce Job
 map(filename, line) {

 foreach (word in line)

 emit(word, 1);

 }

 reduce(word, numbers) {

 int sum = 0;

 foreach (value in numbers) {

 sum += value;

 }

 emit(word, sum);

 }

MapReduce Illustrated (1)

18.07.2012 DIMA – TU Berlin 26

MapReduce Illustrated (2)

18.07.2012 DIMA – TU Berlin 27

■ Hadoop: Apache Top Level Project
□ open Source

□ written in Java

■ Hadoop provides a stack of
□ distributed file system (HDFS) – modeled after the Google File System

□ MapReduce engine

□ data processing languages (Pig Latin, Hive SQL)

■ Runs on
□ Linux, Mac OS/X, Windows, Solaris

□ Commodity hardware

Hadoop – A MapReduce Framework

18.07.2012 DIMA – TU Berlin 28

■ Master-Slave Architecture

■ HDFS Master “NameNode”
□ manages all filesystem metadata

□ controls read/write access to files

□ manages block replication

■ HDFS Slave “DataNode”
□ communicates with the NameNode periodically via heartbeats

□ serves read/write requests from clients

□ performs replication tasks upon instruction by NameNode

Hadoop Distributed File System (HDFS)

Data
Protocol

MetaData
Protocol

HeartBeat
Protocol

Control
Protocol

NameNode

Client

DataNode DataNode DataNode

18.07.2012 DIMA – TU Berlin 29

■ Master / Slave architecture

■ MapReduce Master: JobTracker
□ accepts jobs submitted by clients

□ assigns map and reduce tasks to TaskTrackers

□ monitors execution status, re-executes tasks upon failure

■ MapReduce Slave: TaskTracker
□ runs map / reduce tasks upon instruction from the task tracker

□ manage storage, sorting and transmission of intermediate output

Hadoop MapReduce Engine

18.07.2012 DIMA – TU Berlin 30

■ Jobs are executed like a Unix pipeline:
□ cat * | grep | sort | uniq -c | cat > output

□ Input | Map | Shuffle & Sort | Reduce | Output

■ Workflow
□ input phase: generates a number of FileSplits from input files (one per

Map task)

□ map phase: executes a user function to transform input kv-pairs into a
new set of kv-pairs

□ sort & shuffle: sort and distribute the kv-pairs to output nodes

□ reduce phase: combines all kv-pairs with the same key into new kv-
pairs

□ output phase writes the resulting pairs to files

■ All phases are distributed with many tasks doing the work
□ Framework handles scheduling of tasks on cluster

□ Framework handles recovery when a node fails

Hadoop MapReduce Engine

18.07.2012 DIMA – TU Berlin 31

Hadoop MapReduce Engine

User defined

18.07.2012 DIMA – TU Berlin 32

■ Inputs are stored in a fault tolerant way by the DFS

■ Mapper crashed
□ Detected when no report is given for a certain time

□ Restarted at a different node, reads a different copy of the same input
split

■ Reducer crashed
□ Detected when no report is given for a certain time

□ Restarted at a different node also. Pulls the results for its partition from
each Mapper again.

■ The key points are:
□ The input is redundantly available

□ Each intermediate result (output of the mapper) is materialized on disk

 Very expensive, but makes recovery of lost processes very simple and
cheap

Hadoop Fault Tolerance

18.07.2012 DIMA – TU Berlin 33

Goals

■ Hide parallelization from programmer

■ Offer a familiar way to formulate queries

■ Provides optimization potential

Pig Latin

■ SQL-inspired language

■ Nested data model

■ Operators resemble relational algebra

■ Applies DB optimizations

■ Compiled into MapReduce jobs

Higher-Level Languages

18.07.2012 DIMA – TU Berlin 34

■ Schema

urls: (url, category, pagerank)

■ SQL

SELECT category, AVG(pagerank) FROM urls
WHERE pagerank > 0.2

GROUP BY category
HAVING COUNT(*) > 10^6

■ Pig Latin

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls)>10^6 ;

output = FOREACH big_groups GENERATE

 category, AVG(good_urls.pagerank);

Pig Latin Example

18.07.2012 DIMA – TU Berlin 35

Distributed DBMS vs. MapReduce

Distributed DBMS MapReduce

Schema Support

Indexing

Programming Model
Stating what you want

(declarative: SQL)

Presenting an algorithm
(procedural: C/C++,

Java, …)

Optimization

Scaling 1 – 500 10 - 5000

Fault Tolerance Limited Good

Execution
Pipelines results

between operators
Materializes results
between phases

18.07.2012 DIMA – TU Berlin 36

■ Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file
system. SOSP 2003: 29-43

■ J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, 2004.

■ Hadoop. URL: http://hadoop.apache.org.

■ DeWitt, S. Madden, and M. Stonebraker. A Comparison of Approaches to
Large-Scale Data Analysis. SIGMOD Conference 2009.

■ C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins: Pig Latin: A Not-
So-Foreign Language for Data Processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data (SIGMOD ‘08)

References & Further Reading

http://hadoop.apache.org/

18.07.2012 DIMA – TU Berlin 37

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 38

Comparing Architectural Stacks

Execution
Engine

Parallel
Programming
Model

Higher-Level
Language

Nephele

JAQL,
Pig,
Hive

Hadoop

Currently
porting JAQL

Hadoop Stack
Stratosphere

Stack

PACT
 Programming

Model

MapReduce
Programming

Model

Dryad Hyracks

Asterix
Stack

Dryad
Stack

DryadLINQ,
SCOPE

AQL

18.07.2012 DIMA – TU Berlin 39

■ PACT Programming Model
□ Parallelization Contract (PACT)

□ Declarative definition of data parallelism

□ Centered around second-order functions

□ Generalization of MapReduce

■ Nephele
□ Dryad-style execution engine

□ Evaluates dataflow graphs in parallel

□ Data is read from distributed file system

□ Flexible engine for complex jobs

□ Designed for IaaS environments

■ Stratosphere = Nephele + PACT
□ Compiles PACT programs to Nephele dataflow graphs

□ Combines parallelization abstraction and flexible execution

□ Choice of execution strategies gives optimization potential

■ Stratosphere is Open Source!

The Stratosphere System

Nephele

PACT Compiler

18.07.2012 DIMA – TU Berlin 40

Nephele Data Flow Example

Define Dataflow

Sink Source A

Source B

UDF

Nephele Vertex

Parallelized Dataflow

18.07.2012 DIMA – TU Berlin 41

■ PACT is a generalization and extension of MapReduce
□ PACT inherits many concepts of MapReduce

■ Both are inspired by functional programming
□ Fundamental concept of programming model are 2nd-order functions

□ User writes 1st-order functions (user functions)

□ User code can be arbitrarily complex

□ 2nd-order function calls 1st-order function with independent data
subsets

□ No common state should be held between calls of user function

Common Concepts of MapReduce and PACT

Input

1st-order function
(User Code)

2nd-order function

18.07.2012 DIMA – TU Berlin 42

■ Both use a common data format
□ Data is processed as pairs of keys and values

□ Keys and Values can be arbitrary data structures

Common Concepts of MapReduce and PACT

Key:
• Used to build independent subsets
• Must be comparable and hashable
• Does not need to be unique

• no Primary Key semantic!
• Interpreted only by user code

Value:
• Holds application data
• Interpreted only by user code
• Often struct-like data type to
 hold multiple values

18.07.2012 DIMA – TU Berlin 43

■ MapReduce provides two 2nd-order functions

■ MapReduce programs have a fixed structure:

MapReduce Programming Model

Input Output
 MAP

1st-order map fnc

 REDUCE

1st-order reduce fnc

Input set
Independent
subsets

Key Value

Map:
• All pairs are independently processed

Reduce:
• Pairs with identical keys are grouped
• Groups are independently processed

18.07.2012 DIMA – TU Berlin 44

■ Generalization and Extension of MapReduce Programming Model

■ Based on Parallelization Contracts (PACTs)

■ Input Contract
□ 2nd-order function; generalization of Map and Reduce
□ Generates independently processable subsets of data

■ User Code
□ 1st-order function
□ For each subset independently called

■ Output Contract
□ Describes properties of the output of the 1st-order function
□ Optional but enables certain optimizations

PACT Programming Model

Input

Output
Contract

Data Data User Code
(1st-order function)

Input Contract (2nd-order function)

18.07.2012 DIMA – TU Berlin 45

■ Cross
□ Builds a Cartesian Product

□ Elements of CP are independently processed

■ Match
□ Performs an equi-join on the key

□ Join candidates are independently processed

■ CoGroup
□ Groups each input on key

□ Groups with identical keys are processed together

Input Contracts beyond Map and Reduce

18.07.2012 DIMA – TU Berlin 46

■ PACT Programs are data flow graphs
□ Data comes from sources and flows to sinks

□ PACTs process data in-between sources and sinks

□ Multiple sources and sinks allowed

□ Arbitrary complex directed acyclic data flows can be composed

PACT Programming Model

Data Source 1 Data Sink 1
MAP

Data Source 2
COGROUP

MAP

MATCH

CROSS

Data Sink 2

REDUCE

MAP

18.07.2012 DIMA – TU Berlin 47

■ Optimization Opportunities
□ Declarative definition of data parallelism (Input Contracts)

□ Annotations reveal user code behavior (Output Contracts)

□ Compiler hints improve intermediate size estimates

□ Flexible execution engine

■ PACT Optimizer
□ Compiles PACT programs to Nephele DAGs

□ Physical optimization as known from relational database optimizers

□ Avoids unnecessary expensive operations (partition, sort)

□ Chooses between local strategies (hash- vs. sort-based)

□ Chooses between ship strategies (partition, broadcast, local forward)

□ Sensitive to data input sizes and degree of parallelism

Optimization of PACT Programs

18.07.2012 DIMA – TU Berlin 48

■ Partition n points into x clusters:
□ Measure distance between points and clusters

□ Assign each point to a cluster

□ Move cluster to the center of associated points

□ Repeat until it converges

Example – K-Means Clustering

Points

Center

18.07.2012 DIMA – TU Berlin 49

■ Partition n points into x clusters:
□ Measure distance between points and clusters

□ Assign each point to a cluster

□ Move cluster to the center of associated points

□ Repeat until it converges

Example – K-Means Clustering

Points

Center

18.07.2012 DIMA – TU Berlin 50

■ Partition n points into x clusters:
□ Measure distance between points and clusters

□ Assign each point to a cluster

□ Move cluster to the center of associated points

□ Repeat until it converges

Example – K-Means Clustering

Points

Center

18.07.2012 DIMA – TU Berlin 51

■ Partition n points into x clusters:
□ Measure distance between points and clusters

□ Assign each point to a cluster

□ Move cluster to the center of associated points

□ Repeat until it converges

Example – K-Means Clustering

Points

Center

18.07.2012 DIMA – TU Berlin 52

K-Means with MapReduce

18.07.2012 DIMA – TU Berlin 53

K-Means with Stratosphere

18.07.2012 DIMA – TU Berlin 54

■ Comparison from developer perspective

■ PACT has same expressive power as MapReduce
□ At PACT’s current state

■ In practice, many tricks must be played with MapReduce
□ Depends on the execution engine, such as Hadoop

□ Concatenation of two or more MapReduce programs

□ Auxiliary structures (e.g., Distributed Cache, Counters)

□ Multiple inputs (Union of inputs and flagging the source)

□ Overriding other parametric functions (sort, partition, split, …)

■ Tricks have drawbacks
□ Programming becomes much more difficult

□ Knowledge of execution model must be exploited

□ Parallelization strategies are hardcoded

Comparing MapReduce and PACT

18.07.2012 DIMA – TU Berlin 55

■ Record Data Model
□ Generalization of Key-Value Pair Data Model

□ Records with arbitrary many Key and Value fields

□ Improved optimization potential

■ Significant Runtime Improvements
□ Extensive usage of mutable objects

□ Reduced instantiation and garbage collection overhead

■ Chained Mappers and Combiners
□ Map und Combine Tasks are directly chained

□ Less setup costs for data flow

□ No serialization overhead

Features of Upcoming Release

18.07.2012 DIMA – TU Berlin 56

■ Published Components
□ PACT Programming Model

□ PACT Optimizer

□ Nephele Execution Engine

■ Extensive documentation
□ Local and Distributed Setup Instructions

□ PACT Programming How-to and Best Practices

□ PACT Example Programs

□ Mailing Lists and more…

 Stratosphere published as Open Source

http://www.stratosphere.eu

18.07.2012 DIMA – TU Berlin 57

■ Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej
Kao, Volker Markl, Erik Nijkamp, Daniel Warneke: MapReduce and PACT -
Comparing Data Parallel Programming Models. Proceedings of the 14th
Conference on Database Systems for Business, Technology, and Web (BTW
‘11)

■ Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl,
and Daniel Warneke: Nephele/PACTs: A Programming Model and Execution
Framework for Web-Scale Analytical Processing. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC) 2010 ACM, pp. 119–130

References & Further Reading

18.07.2012 DIMA – TU Berlin 58

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 59

A blast from the past: DIRECT

■ Specialized database processors already in 1978

■ Back then could not keep up with rise of commodity CPUs

■ Today is different: memory wall, ILP wall, power wall..

Controller Host

Query
processor

Mass
storage

Memory

Query
processor

Query
processor

Memory Memory

DIRECT - a multiprocessor organization for supporting relational data base management systems

David J. DeWitt

18.07.2012 DIMA – TU Berlin 60

■ Massively parallel & reconfigurable processors

■ Lower clock speeds, but configuration for specific tasks
makes up for this

■ Very difficult to program

■ Used in real world appliances: Kickfire/Teradata,
Netezza/IBM..

FPGAs

FPGA: what's in it for a database?

Jens Teubner and Rene Mueller

CPU

RAM

FPGA

Network

HDD

18.07.2012 DIMA – TU Berlin 61

■ Input/Output blocks: interface to outside resources

■ Configurable Logic Block (CLB) consists of
□ Logic Gate (e.g., n-Lookup Table)

□ Carry logic

□ Storage elements (e.g., D flip flop)

■ May contain hard intellectual property (IP) cores
□ Discrete chips for common functionality: Block RAM, PowerPC cores

FPGAs

Architecture of FPGAs and CPLDs: A Tutorial
Stephen Brown and Jonathan Rose

Interconnect

Input/Output Blocks

Configurable Logic Block

18.07.2012 DIMA – TU Berlin 62

■ CPU & GPU integrated on one die, shared memory

■ Uses GPU programming model (OpenCL)

■ No PCIe-bottleneck but only memory bandwidth like CPU

CPU/GPU hybrid (AMD Fusion)

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

Local memory

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

Local memory
…

Memory controller

x86 core x86 core …

RAM

AMD Whitepaper: AMD Fusion Family of APUs

18.07.2012 DIMA – TU Berlin 63

■ First product: Knights Corner

■ Focus: High Performance Computing (HPC)

■ > 50 cores on a single chip

■ Same tools, compilers, libraries as Intel® Xeon processors
□ Portability

Intel MIC

Source: theregister.co.uk

18.07.2012 DIMA – TU Berlin 64

■ Network processors
□ Many-core architectures

□ Associative memory (constant time search)

■ CELL
□ Similar to CPU/GPU hybrid: CPU core + several wide SIMD cores w/

local scratchpad memories (similar to L1 cache)

There is more...

18.07.2012 DIMA – TU Berlin 65

■ Similar approaches
□ Many-core

□ Distributed on-chip memory

□ Hope for better perf/$ and perf/watt than traditional CPUs

■ Similar difficulties
□ Memory bandwidth always a bottleneck

□ Hard to program

 parallel

 low-level & architecture-specific

Common goals, common problems

18.07.2012 DIMA – TU Berlin 66

■ D. J. DeWitt: DIRECT - a multiprocessor organization for supporting relational data
base management systems. In Proceedings of the 5th annual symposium on
Computer architecture (ISCA '78). ACM, New York, NY, USA, 182-189.

■ R. Mueller and J. Teubner: FPGA: what's in it for a database?. In Proceedings of the
35th SIGMOD international conference on Management of data (SIGMOD '09),
Carsten Binnig and Benoit Dageville (Eds.). ACM, New York, NY, USA, 999-1004.

■ S. Brown, J. Rose: FPGA and CPLD Architectures: A Tutorial. In IEEE Design and Test
of Computers, Volume 13, Number 2, pp. 42--57, 1996

■ AMD White paper: AMD Fusion family of APUs,
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf (Visited
May 2011)

■ N. Bandi, A. Metwally, D. Agrawal, and A. El Abbadi: Fast data stream algorithms
using associative memories. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data (SIGMOD '07). ACM, New York, NY, USA, 247-
256.

■ B. Gedik, P. S. Yu, and R. R. Bordawekar: Executing stream joins on the cell
processor. In Proceedings of the 33rd international conference on Very large data
bases (VLDB '07). VLDB Endowment 363-374.

■ Intel: Many Integrated Core (MIC) Architecture – Advanced.
http://www.intel.com/content/www/us/en/architecture-and-technology/many-
integrated-core/intel-many-integrated-core-architecture.html (Visited June 2012)

References & Further Reading

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html

18.07.2012 DIMA – TU Berlin 67

A case for GPU architectures

■ Trends in processor
architecture
□ The free lunch is over: power

wall, memory wall, ILP wall…

■ Motivates a look at
alternatives to traditional CPU
chips
□ GPUs: cheap, massively parallel,

available today

□ „Fruit fly“ architecture for
developing parallel algorithms
and systems

18.07.2012 DIMA – TU Berlin 68

■ GFLOPS & GB/s for different CPU & GPU chips..

■ Beware: theoretical peak numbers

GFLOPS & GB/s

Wikipedia, Intel, AMD, Nvidia, IBM

Xeon E5320

Xeon W3540
Xeon X5680

Opteron
2360SE

Opteron
6180SE

Power7
4.04Ghz

SPARC64
VIIIfx

Firestream
9270

Firestream
9370

Tesla c870

Tesla c1060

Tesla c2050

0

20

40

60

80

100

120

140

160

2006 2007 2008 2009 2010 2011 2012

Memory bandwidth (GB/s)

Xeon E5320

Xeon X7460

Xeon W3540

Xeon X5680 Xeon E8870
Opteron
2360SE

Opteron
2435

Opteron
6180SE

Power7
4.04Ghz

SPARC64
VIIIfx

Firestream
9270

Firestream
9370

Tesla c1060

Tesla c2050

0

100

200

300

400

500

600

2006 2007 2008 2009 2010 2011 2012

GFLOP/s

18.07.2012 DIMA – TU Berlin 69

■ Most die space devoted to control logic & caches

■ Maximize performance for arbitrary, sequential programs

What is the difference? Look at a modern
CPU..

www.chip-architect.com AMD K8L

18.07.2012 DIMA – TU Berlin 70

■ Little control logic, a lot of
execution logic

■ Maximize parallel
computational throughput

And at a GPU..

www.beyond3d.com Nvidia G200

18.07.2012 DIMA – TU Berlin 71

■ SIMD cores with small local memories (16-48KiB)

■ Shared high bandwidth + high latency DRAM (1-6GiB)

■ Multi-threading hides memory latency

■ Bulk-synchronous execution model

GPU architecture

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

Local memory

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

Local memory

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

ALU ALU
ALU
ALU

Local memory
…

Shared DRAM

x86 host

18.07.2012 DIMA – TU Berlin 72

Hybrid CPU+GPU system

■ 1 or several (interconnected) multicore CPUs

■ 1 or several GPUs

CPU

I/OH

GPU

RAM RAM RAM RAM

HDD

CPU

I/OH

GPU

RAM RAM RAM RAM

HDD

18.07.2012 DIMA – TU Berlin 73

Bottlenecks

■ PCIe bandwidth & latency

■ GPU memory size

■ GPU has no direct access to storage & network

CPU

I/OH

GPU

RAM RAM RAM RAM

HDD

CPU

I/OH

GPU

RAM RAM RAM RAM

HDD

18.07.2012 DIMA – TU Berlin 74

■ Most database operations well-suited for massively parallel
processing

■ Efficient algorithms for many database primitives exist
□ Scatter, reduce, prefix sum, sort..

■ Find ways to utilize higher bandwidth & arithmetic
throughput

GPUs & databases: opportunities

www.nvidia.com

18.07.2012 DIMA – TU Berlin 75

■ Find a way to live with architectural constraints
□ GPU to CPU bandwidth (PCIe) smaller than CPU to RAM bandwidth

□ Fast GPU memory smaller than CPU RAM

■ Technical hurdles
□ GPU is a co-processor: needs CPU to orchestrate work, get data from

storage devices etc..

□ GPU programming models (CUDA, OpenCL) are low level, need
architecture-specific tuning

□ Limited support for multi-tasking

GPUs & databases: challenges & constraints

18.07.2012 DIMA – TU Berlin 76

■ Fully-fledged CPU/GPU query processor
□ GPU hash indices, B+ trees, hash join, sort-merge join

□ Handles data sizes larger than GPU memory, supports non-numeric
data types

■ Executes queries either on CPU, GPU, or on both
□ Analytical models & calibration via micro-benchmarks used to estimate

cost for execution on CPU vs. GPU

■ System with 1 CPU + 1 GPU, only 1 query at a time

GDB: hybrid CPU+GPU query processing

Relational query coprocessing on graphics processors

Bingsheng He and Mian Lu and Ke Yang and Rui Fang and Naga K.
Govindaraju and Qiong Luo and Pedro V. Sander

CPU

I/OH

GPU

RAM RAM RAM RAM

HDD

18.07.2012 DIMA – TU Berlin 77

■ Intel Core 2 Duo, Nvidia Geforce 8800 GTX

■ 2x-7x speedup for compute-intense operators if data fits
inside GPU memory

■ Mixed mode operators provide no speedup

■ No speedup if data does not fit into GPU memory

GDB: results

0

5

10

15

20

25

30

35

40

45

50

NEJ EJ (HJ)

Performance of SQL queries (seconds)

CPU only

GPU only

18.07.2012 DIMA – TU Berlin 80

■ J. Owens: GPU architecture overview, In ACM SIGGRAPH 2007 courses
(SIGGRAPH '07). ACM, New York, NY, USA, , Article 2

■ H. Sutter: The Free Lunch is Over: A Fundamental Turn Toward
Concurrency in Software, Dr. Dobb's Journal, 30(3), March 2005,
http://www.gotw.ca/publications/concurrency-ddj.htm (Visited May 2011)

■ V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N.
Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P.
Dubey: Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. SIGARCH Comput. Archit. News
38, 3 (June 2010), 451-460.

■ B. He and J. Xu Yu: High-throughput transaction executions on graphics
processors. Proc. VLDB Endow. 4, 5 (February 2011), 314-325.

■ B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander: Relational query coprocessing on graphics processors. ACM Trans.
Database Syst. 34, 4, Article 21 (December 2009), 39 pages.

References & Further Reading

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

18.07.2012 DIMA – TU Berlin 81

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 82

Parallel Programming Model

Grid

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Block (1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Local memory Local memory …

Shared DRAM

ALU ALU ALU ALU ALU ALU ALU ALU

Hardware Architecture

Programming Model

18.07.2012 DIMA – TU Berlin 83

Block (0, 0)

Memory Hierarchy

Shared Memory

Registers

Thread (0,0) Thread (1,0)

Registers

Block (1, 0)

Shared Memory

Registers

Thread (0,0) Thread (1,0)

Registers

Global Memory

18.07.2012 DIMA – TU Berlin 84

■ No dynamic memory allocation

■ Divergence
□ Threads taking different code paths

 Serialization

■ Limited synchronization possibilities
□ Only on block level

□ Limited block size

Challenges

18.07.2012 DIMA – TU Berlin 85

■ Kernel
__global__ void increment(int* values, int elements) {

 // store thread identifier in register

 unsigned int tid = threadIdx.x;

 if (tid < elements) {

 // increment stored value by 1

 int value = values[tid];

 values[tid] = value + 1;

 }

}

■ Host Code

increment <<< nrBlocks, blockSize >>>(values, 200000);

Sample CUDA Kernel

18.07.2012 DIMA – TU Berlin 86

■ NVIDIA CUDA Programming Guide Version 3.1.1,
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVI
DIA_CUDA_C_ProgrammingGuide_3.1.pdf (Visited June 2011)

References & Further Reading

http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

18.07.2012 DIMA – TU Berlin 87

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 88

■ Classic: B+ Tree

■ Accelerate access by organizing data in a sorted and
hierarchical way

■ Compression to map variable-length data to fixed size

Indexing

… …

… …

Key

Payload

Hierarchical Blocking

• Rearrange the binary tree node and block in a hierarchical
fashion
– Page level, cache line level, SIMD level
– Minimize # of pages, cache lines brought from memory
– Increased computation overhead when crossing a blocking

boundary

89

key1
rid1

key2
rid2

keyn
ridn

Page blocking
Page blocking depth =10 (or 19)

Cache line blocking
Cache line blocking
depth = 4

SIMD blocking
SIMD blocking depth = 2 (or 4)

GPU Search

90

41

23 61

11 31 73 47

2 19 29 37 43 53 67 79

Query Key = 59
1. Load 16 tree nodes within a SIMD
blocked sub-tree

4. Find a common ancestor node and
check the result in the shared
memory buffer

3. Among 8 leaf nodes, find a largest
index (j) such that “resj =1” and
“resj+1 =0

2. Compare with a query key (query
> tree nodes) and store results
(“res”) into shared memory buffer

1 1 1 1 1 0 0 1

0

5. Compute the address of the next
sub-tree

=> more instruction overhead
due to the lack of inter-SIMD
lane operations

18.07.2012 DIMA – TU Berlin 91

■ Path of a key within the tree defined by absolute value

■ Split key into equally sized sub-keys

■ Tree depth depends on key length

Prefix Tree

INT = 793910

0001 1111 0000 00112

 1 7 0 310
…

…

…

18.07.2012 DIMA – TU Berlin 92

■ Each computational tree is assigned to a GPU thread

■ All computational trees are processed in parallel

■ Intermediate results are stored in global list to retrieve final result later

Speculative Partition-Based Traversal

Partition 1

Partition 2 Partition 3 Partition 4

Computational Tree

1 2 3 4

INT = 793910

0001 1111 0000 00112

18.07.2012 DIMA – TU Berlin 93

■ Idea: Group processing to exploit faster local memory

■ Group computational trees into blocks

■ Tree block is executed by a GPU thread block
□ Allows usage of shared memory for intermediate results

■ Result for global retrieved by traversing internal result list

Speculative Hierarchical Traversal

18.07.2012 DIMA – TU Berlin 94

■ J. Rao, K. A. Ross: Cache Conscious Indexing for Decision-Support in Main
Memory, In Proceedings of the 25th International Conference on Very
Large Data Bases (VLDB '99), Malcolm P. Atkinson, Maria E. Orlowska,
Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie (Eds.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 78-89

■ C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.
Lee, S. Brandt, P. Dubey: FAST: fast architecture sensitive tree search on
modern CPUs and GPUs, ACM SIGMOD ‘10, 339-350, 2010

■ P. B. Volk, D. Habich, W. Lehner: GPU-Based Speculative Query Processing
for Database Operations, First International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architectures
In conjunction with VLDB 2010

References & Further Reading

18.07.2012 DIMA – TU Berlin 95

■ Disk-based databases
□ Computation-intensive compression algorithms

□ Trade computation for compression ratio

□ Often full decompression required for evaluations

■ In-memory databases
□ Lightweight compression schemes

□ Balance compression and computational overhead

□ No decompression for most evaluations

□ Combination of multiple schemes undesirable

 Computational overhead

Database Compression

18.07.2012 DIMA – TU Berlin 96

■ GPUs
□ Device has very limited memory capacity

□ Offer high computation capabilities and bandwidth

□ Compression reduces overhead of data transfer between device and
main memory

□ Compression allows GPUs to address bigger problems

 Combine compression schemes for higher compression ratios

Database Compression

18.07.2012 DIMA – TU Berlin 97

■ Two Groups of compression schemes
□ Main Schemes

 Reduce data size

□ Auxiliary Schemes

 Transform data into formats suitable for main schemes

■ Cascaded Compression
□ Huge search space

□ Dependent on data properties

□ Different criteria

 Compression ratio

 (De)Compression performance

 Combination of multiple factors

Database Compression on Graphics Processors

18.07.2012 DIMA – TU Berlin 98

■ Null Suppression with Variable Length (NSV)
□ Main Scheme

□ Eliminate leading zeros variable length encoding

□ Store encoded value and length of value

■ Delta
□ Auxiliary Scheme

□ Encodes difference from the preceding value

□ Small differences for sorted columns

Cascaded Compression Example

Column (Int) S Size (Bits) Delta NSV Length NSV Value S Size (Bits)

1000 32 0 0x01 0x0 3

1001 64 1 0x01 0x1 6

1002 96 1 0x01 0x1 9

1004 128 2 0x10 0x10 13

1005 160 1 0x01 0x1 16

1009 192 4 0x11 0x100 21

18.07.2012 DIMA – TU Berlin 99

■ W. Fang, B. He, Q. Luo: Database Compression on Graphics Processors,
Proc. VLDB Endow. 3, 1-2 (September 2010), 670-680

References & Further Reading

18.07.2012 DIMA – TU Berlin 100

Sorting with GPUs

■ Numerous GPU algorithms published
□ Bitonic sort, bucket sort, merge sort, quicksort, radix sort, sample

sort..

■ Existing work: focus on in-memory sorting with 1 GPU

■ State of the art: merge sort, radix sort

■ GPUs outperform multicore CPUs when data transfer over
PCIe is not considered

18.07.2012 DIMA – TU Berlin 101

■ Divide data between multiprocessors

Radix Sort

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

18.07.2012 DIMA – TU Berlin 102

■ Divide data between multiprocessors

■ Create a local histogram

Radix Sort

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

18.07.2012 DIMA – TU Berlin 103

■ Divide data between multiprocessors

■ Create a local histogram

■ Store histrograms in array sorted by radix values

Radix Sort

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

2 1 3 8 2 3 1 6 …

18.07.2012 DIMA – TU Berlin 104

■ Divide data between multiprocessors

■ Create a local histogram

■ Store histrograms in array sorted by radix values

■ Compute prefix sum -> global write position

Radix Sort

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

0 2 3 6 3
0

3
2

3
3

3
4

…

18.07.2012 DIMA – TU Berlin 105

■ Divide data between multiprocessors

■ Create a local histogram

■ Store histrograms in array sorted by radix values

■ Compute prefix sum -> global write position

■ Scatter data to new positions

Radix Sort

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

Local memory

ALU ALU ALU ALU

18.07.2012 DIMA – TU Berlin 106

■ CPU: 2x Intel W5580, GPU: NVIDIA Geforce GTX480

■ For GPU radix sort the PCIe transfer dominates running time

GPU sorting performance

Revisiting Sorting for GPGPU Stream Architectures
Duane Merrill, Andrew Grimshaw

Faster Radix Sort via Virtual Memory and Write-Combining
Jan Wasenberg, Peter Sanders

0

200

400

600

800

1000

1200

GPU Radix w/ PCIe transfer GPU Radix CPU Radix

Throughput (million items / second)

32bit keys

32bit keys, 32bit values

18.07.2012 DIMA – TU Berlin 107

■ D. G. Merrill and A. S. Grimshaw: Revisiting sorting for GPGPU stream
architectures. In Proceedings of the 19th international conference on
Parallel architectures and compilation techniques (PACT '10). ACM, New
York, NY, USA, 545-546

■ J. Wassenberg, P. Sanders: Faster Radix Sort via Virtual Memory and
Write-Combining, CoRR 2010, http://arxiv.org/abs/1008.2849 (Visited May
2011)

■ N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P.
Dubey: Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD
sort. In Proceedings of the 2010 international conference on Management
of data (SIGMOD '10). ACM, New York, NY, USA, 351-362.

References & Further Reading

http://arxiv.org/abs/1008.2849

18.07.2012 DIMA – TU Berlin 108

■ Cross product between two sets R & S

■ May apply a filter predicate to each pair

■ Result set size hard to estimate

Joins

Equality Join

Column x1 Column x2 …

R S

R.r1 = S.s1

18.07.2012 DIMA – TU Berlin 109

1. Split relations into blocks

2. Join smaller blocks in parallel

Problem: Lack of dynamic memory allocation!

To allocate memory for the result, the join has to be performed twice.

Non-indexed Nested-Loop Join

R

S

Thread
Group

1,1

Thread
Group

i,1

Thread
Group

1,j

Thread
Group

i,j

…

…

…
 …

R`

S`

… …

… …
Thread 1 Thread T

18.07.2012 DIMA – TU Berlin 110

Hash buckets

1. Partition R & S using a hash function (radix partitioning)

2. Combine only buckets of the same hash value

□ Bucket pair handled by a thread group (like NINLJ)

Hash Join

R …

18.07.2012 DIMA – TU Berlin 111

■ Brent-Kung circuit strategy

■ Only upsweep phase necessary because only final result is
needed

■ Permutation of elements to minimize memory bank conflicts

■ Separate thread group to combine results of blocks

Aggregation

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

18.07.2012 DIMA – TU Berlin 112

■ B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, P. Sander:
Relational joins on graphics processors. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data (SIGMOD '08).
ACM, New York, NY, USA, 511-524.

■ D. Merrill, A. Grimshaw: Parallel Scan for Stream Architectures. Technical
Report CS2009-14, Department of Computer Science, University of
Virginia. December 2009.

References & Further Reading

18.07.2012 DIMA – TU Berlin 113

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 114

■ Map and reduce are second-order functions
□ Call first-order functions (user code)

□ Provide first-order functions with subsets of the input data

■ Map
□ All records are independently

processable

■ Reduce
□ Records with identical key must

be processed together

Programming Model

Input set

Key Value
Independent

subsets

18.07.2012 DIMA – TU Berlin 115

■ Scheduler
□ Prepares data input

□ Invokes map & reduce stages on the GPU

□ Returns results to the user

■ 2-step output scheme for GPU processing
□ Process to retrieve result size

□ Process and output results

Mars: A MapReduce Framework on Graphics
Processors

Map
Split

Map
Task

Map
Task

Sort
Reduce

Split

Reduce
Task

Reduce
Task

Merge

Mars scheduler GPU processing Notation:

Map Stage Reduce Stage

18.07.2012 DIMA – TU Berlin 116

Conclusion

■ Abstracts from GPU architecture

■ Doubles computation of map/reduce in the worst case

■ Lock and write conflict-free parallel execution

■ Combination of scale out and scale up

Mars: A MapReduce Framework on Graphics
Processors

Map
Split

Map
Task

Map
Task

Sort
Reduce

Split

Reduce
Task

Reduce
Task

Merge

Mars scheduler GPU processing Notation:

Map Stage Reduce Stage

18.07.2012 DIMA – TU Berlin 117

■ Non-deterministic finite state automatons

■ Exploit parallelism

□ Analyze multiple packets (one thread group per packet)

□ Each thread analyzes a transition

Regular Expression Matching

1

2

3 4

5

a

b

a

c

c

a

b

18.07.2012 DIMA – TU Berlin 118

■ K-Means

■ Apriori

■ Exact String matching

■ Support Vector Machines

■ …

There is more...

18.07.2012 DIMA – TU Berlin 119

■ N. Cascarano, P. Rolando, F. Risso, R. Sisto: iNFAnt: NFA Pattern Matching on
GPGPU Devices. SIGCOMM Comput. Commun. Rev. 40, 5 20-26.

■ M.C. Schatz, C. Trapnell: Fast Exact String Matching on the GPU, Technical
Report.

■ W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam, P. Y. Yang, B. He, Q. Luo, P. V.
Sander, K. Yang: Parallel Data Mining on Graphics Processors, Technical Report
HKUST-CS08-07, Oct 2008.

■ S. Herrero-Lopez, J. R. Williams, A. Sanchez: Parallel multiclass classification
using SVMs on GPUs. Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU '10), Pages 2-11, ACM New
York, 2010

■ B. C. Catanzaro, N. Sundaram, K. Keutzer: Fast Support Vector Machine Training
and Classification on Graphics Processors. Proceedings of the 25th international
conference on Machine learning (ICML '08), ACM New York, 2008

■ B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. 2008. Mars: a
MapReduce framework on graphics processors. In Proceedings of the 17th
international conference on Parallel architectures and compilation techniques
(PACT '08). ACM, New York, NY, USA, 260-269.

References & Further Reading

18.07.2012 DIMA – TU Berlin 120

■ Background
□ Parallel Speedup

□ Levels of Parallelism

□ CPU Architecture

■ Scale out
□ MapReduce

□ Stratosphere

■ Scale up
□ Overview of Hardware Architectures

□ Parallel Programming Model

□ Relational Processing

□ Further Operations

□ Research Challenges of Hybrid Architectures

Outline

18.07.2012 DIMA – TU Berlin 121

Architectural constraints

■ PCIe bottleneck
□ Direct access to storage devices, network etc.?

□ Caching strategies for device memory

■ GPU memory size
□ Deeper memory hierarchy (e.g. a few GB of fast GDDR + large „slow“

DRAM)?

18.07.2012 DIMA – TU Berlin 122

■ Want forward scalability: performance should scale with
next generations of GPUs
□ Existing work often optimized for exactly 1 type of GPU chip

■ Need higher level programming models
□ Hide hardware details (processor count, SIMD width, local memory

size..)

Performance portability

18.07.2012 DIMA – TU Berlin 123

■ Database operations are a combination of

□ single threaded compute-intensive operations

□ massively parallel data-intensive operations

■ Big data volume and limited memory

■ Execution Plan consists of multiple operators

□ Latency!

■ Where to execute each operator?

□ Trade off transfer time between CPU and GPU and computational

advantage

□ Cost Models for GPGPU, CPU and hybrid

□ Amdahl’s law

■ Shared Nothing CPU/GPGPU clusters for scale out

Database-Specific Challenges

18.07.2012 DIMA – TU Berlin 124

■ S. Hong and H. Kim: An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. SIGARCH Comput.
Archit. News 37, 3 (June 2009), 152-163.

■ L. Bic and R. L. Hartmann: AGM: a dataflow database machine. ACM Trans.
Database Syst. 14, 1 (March 1989), 114-146.

■ H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun:
A domain-specific approach to heterogeneous parallelism. In Proceedings
of the 16th ACM symposium on Principles and practice of parallel
programming (PPoPP '11). ACM, New York, NY, USA, 35-46.

References & Further Reading

18.07.2012 DIMA – TU Berlin 125

■ Scale out
□ distribute data & processing among many machines

□ requires a fault-tolerant system

■ Scale up
□ use big machines to handle the workload

□ co-processors may accelerate execution

■ Ideally: combination of scale up and scale out
□ break problem into computable chunks

□ accelerate processing of chunks

■ Added complexity should be hidden by programmers
□ Abstract programming model

□ Optimized execution plans

■ Future processor architectures will require a parallel
programming approach

Conclusion

18.07.2012 DIMA – TU Berlin 126

Thank You

Merci
Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

German

Italian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Hindi

Tamil

Thai

Korean

