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Why personalisation or recommendation?

» Mankind created |50 exabytes
(billion gigabytes) of data in
2005. In 2010, it will create
1,200 exabytes.

The Economist, The Data Deluge,
Feb 25th 2010

» Databases should be more user-
friendly [Jagadish & al., 2007]

Instances are huge, schemas are
complex

The user may not know SQL, the
schema, the values

I Overload

Exabytes
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Why personalisation?
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Why personalisation in database?

» Given a database query q
Am | always happy with the result?

Too many answers

How to focus on the most relevant!?

Too few answers

How to soften hard constraints? Empty set (8.01 sec)

mysql> []

» Adding preferences to queries
If too many answers
Rank them to focus on the preferred ones

If too few answers

Consider selections as preferences, not constraints
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Why recommendation?
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Why recommendation in databases?

Sales of cheese

for 2010 by
countries

France 90

Italy 70
Sales of ® Spain 40
cheese for UK 25

2009 by
countries?

Sales of Sales of

cheese by cheese by
French cities? years?
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Scope

» Personalisation

A process that, given a database query q and some profile,
computes another query q’ c q that has an added value for the
user

» Recommendation

A process that, given a database query q and some profile,
computes another query q’ & q, q & q’ that has an added value
for the user

» What is outside the scope
Other forms of query transformation (relaxation, completion, etc.)
Non relational data types (XML, etc.)
Implementation and evaluation issues
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Categorisation: [Golfarelli & Rizzi, 2010]

» Formulation effort:

How profile is specified

» Prescriptiveness:

How profile is incorporated to the query

» Proactiveness:

How profile affects query evaluation

» Expressiveness:

How complex profile is
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Formulation effort

» Formulation effort:
Profile elements manually specified for each query, or
Profile inferred from the context and/or past actions.
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Prescriptiveness

Consider this
first...

Rl .

<

» Prescriptiveness:
Profile elements added as hard constraints to a query, or

Tuples that satisfy as much profile as possible are returned even if no
tuples satisfies all the profile.
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Proactiveness (1)

User profile

Personalize and execute or Present the

User query execute and personalize result

\’

» Proactiveness:

Change the current query before execution or post process its
results, or

Suggest new queries without executing them.
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Proactiveness (2)

User profile

User query

select * from ( select c_last_name,c_first_name,sales
from ((select c_last_name,c_first_name,sum(cs_quantity*cs_list_price) sales
from catalog_sales

Suggest

» Proactiveness:

Change the current query before execution or post process its
results, or

Suggest new queries without executing them.
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Expressiveness

» | prefer movies
directed by David
Lynch

v

| prefer movies directed
by David Lynch

But | also prefer short
movies

| like Julia Roberts more
than Nicole Kidman

Well it depends if it is a
drama or a comedy

Length is more
important than the
director

Except if it is a comedy
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Query personalisation
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Basics on preferences
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Example

mmm

Cohen Comedy 5
t2 Cohen Comedy 6 100
t3 Cohen Comedy 7 80
t4 Allen Drama 7 120
t5 Lynch Drama 5 150

» “l prefer Lynch movies over Allen’s and Allen movies over
Cohen’s”

Then t5 preferred to t4 and t4 preferred to tl, t2,t3
Nothing is said e.g., for tl and t2, neither for tl and t3
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Example of representation

t5 (Lynch,Drama,5,150)
Reads “preferred to” l

t4 (Allen,Drama,7,120)

T

tl (Cohen,Comedy,5,90) t2 (Cohen,Comedy,6,100) t3 (Cohen,Comedy,7,80)

» “l prefer Lynch movies over Allen’s and Allen movies over
Cohen’s”

t5> > t4 Prefers(t5,t4)
t4>tl,t4>t2,t4 > €3 Prefers(t4,tl), Prefers(t4,t2), Prefers(t4,t3)
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Another formulation

t5 (Lynch,Drama,5,150)

l

t4 (Allen,Drama,7,120)

T

tl (Cohen,Comedy,5,90) t2 (Cohen,Comedy,6,100) t3 (Cohen,Comedy,7,80)

» “Il like Lynch: score=0.9"
» “| like Allen: score=0.8"

» “| like Cohen: score=0.5"
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Qualitative versus quantitative

» Qualitative Approaches
Relative preferences of the form | like A better than B

Based on Partial ordering
| like A better than B iff (A > B) where “>" is a partial ordering

» Quantitative Approaches
Absolute preferences of the form | like A to a specific degree

Based on Scoring / Utility Functions
| like A better than B iff u(A) > u(B) where “u” is a scoring function

» However, not every intuitively plausible preference relation can
be captured by scoring functions

But scoring functions can express the “intensity”’ of the preference
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Preferences are usually SPO
» Strict Partial Order (SPO)

A binary relation “>" over a set O which is

Irreflexive: 7(a > a)
Asymmetric: If (a # b) and (a > b) then (b > a)
Transitive: If (a > b) and (b > c¢) then (a > ¢)

» Preferences are usually assumed to be SPO

| like “a” better than “b” if (a > b)
| consider a and b indifferent (a ~ b) if 7(a > b) and ~(b > a)
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Preference composition

» P1:“l prefer Lynch’s over Allen’s and Allen’s over Cohen’s”

» P2:“l also prefer shorter movies”

Pl t5 (Lynch,Drama,S, | 50) P2 t3 (Cohen,Comedy,7,80)
l tl (Cohen,Comedy,5,90)
t4 (Allen,Drama,7,120) l
t2 (Cohen,Comedy,6,100)
tl (Cohen,comedy,5,90) | t3 (Cohen,comedy,7,80) l
t2 (Cohen,comedy,6,100) t4 (Allen,Drama,7,120)

l

t5 (Lynch,Drama,5,150)
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Example of quantitative composition

» “l prefer Lynch’s over Allen’s and Allen’s over Cohen’s”
“I like Lynch with score; =0.9”
“I like Allen with scorep=0.8"

“I like Cohen with scorep=0.5"

» “l also prefer shorter movies”
“I like (duration=80) with scorep,=1",“l like (duration=90) with
scorep,=0.9", ..., like (duration=150) with scorep,=0.6"

» Combination can be with weighted summation

Scoreqp) py)(t;)=x scorep(t) + (1-x) scorep,(t)
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Intersection P1 N P2
(t >4 t) 1f (t >p, t) and (t >p, t)

» “l prefer Lynch’s over Allen’s and Allen’s over Cohen’s”

» “l also prefer shorter movies”

Would union

achieve the same?

t3 (Cohen,Comedy,7,80)

tl (Cohen,Comedy,5,90)

t2 (Cohen,Comedy,6,100)
t4 (Allen,Drama,7,120)

t5 (Lynch,Drama,5,150)

25 OLAP query personalisation and  eBISS 201 |
recommendation



Prioritization P1 > P2
(t >|> t,) lf (t >P]. t,) or (_I(t, >P1 t) and (t >P2 t,) )

» “l prefer Lynch’s over Allen’s and Allen’s over Cohen’s”

» “l also prefer shorter movies”

What about

t5 (Lynch,Drama,5, 150) P25 PI?

!

t4 (Allen,Drama,7,120)

!

t3 (Cohen,Comedy,7,80)

l

tl (Cohen,Comedy,5,90)

!

t2 (Cohen,Comedy,6,100)
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Pareto P1 & P2
(t > t) if ((t >p; t) and (t >p, t" Or t ~p, t’))
or ((t >p, t') and (t >p; t" or t ~p; 1))

» “l prefer Lynch’s over Allen’s and Allen’s over Cohen’s”

» “l also prefer shorter movies”

t5 (Lynch,Drama,5,150) t3 (Cohen,Comedy,7,80)

tl (Cohen,Comedy,5,90)
t4 (Allen,Drama,7,120)

\
£2 (Cohen,Comedy,6, | 00)
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Existing approaches

In relational databases
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Two approaches

» Preference operators

Use explicit preference operators in queries
Winnow [Chomicki, 2003]
Preference SQL [KieBling, 2002]

High formulation effort , not prescriptive, not proactive, high expressiveness
Skyline [Borzsonyi & al., 2001]
» Query expansion

Rewrite regular queries with elements of a profile
[Koutrika & loannidis, 2004]

Low formulation effort, prescriptive, not proactive, low expressiveness
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Winnow / BMO (Best-Matches-Only)

» Given
A relation r of schema sch(r)

A preference C over sch(r) defining a preference relation >

» The winnow operator, denoted w, is defined by:
we(r)={t€r|@ACENT >t}

» Can be used to order query results
The answer to q can be partitioned according to C
q=wc (q) U we(q-we(9) U ...
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Example

t5 (Lycnh,Drama,5,150) t4 (Allen,Drama,7,120)

t| (Cohen,Comedy,5,90) 2 (Cohen,Comedy,6,100)  t3 (Cohen,Comedy,7,80)

» Model Cis

» “l prefer drama”
» What are my most preferred affordable movies!?
Wc(Opyice<7(Movies))

Answer is

First: t5
Then: tl,t2
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Preference SQL [Kiefdling, 2002]

» Built-in Preference Constructors

32

SELECT * FROM Movies
PREFERING HIGHEST (Duration)

(X >HigHesT Y) if x>y

SELECT * FROM Movies
PREFERING genre IN (‘Drama’, Thriller’)

X > et if x €{‘Drama’, Thriller’} and
IN (‘Drama’;Thriller’) Y
y &{‘Drama’, Thriller’ }

SELECT * FROM Movies
PREFERING Duration AROUND 90

(X >arounpo) ¥) if [x —90] <]y — 90|
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Preference SQL

» How to assemble Complex Preferences

With Pareto Composition

SELECT * FROM Movies
PREFERING HIGHEST(Duration)
AND Genre IN (‘Drama’, Thriller’)

With Prioritized Composition

SELECT * FROM Movies
PREFERING HIGHEST(Duration)
CASCADE Genre IN (‘Drama’, Thriller’)
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Query expansion
|[Koutrika & loannidis, 2005]

Example
5
1
User 0.6 -
profile A. Miguela

W. Allen

0.7
‘ 0.9 comedy
0.5 thriller

N. Kidman
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User query

Example

o
C)ﬁ‘“\‘“ﬁ\m:SELE('JT MV.title

FROM MOVIE MV

Results should satisfy

WHERE MV .YEAR=2003’ at least L of the K

preferences

Parameters for personalization: K=2, L=1

Content Personalization
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Using the profile

Example: Preference Selection

DIRECTOR g NAME &

A. Miguela
W. Allen

0.7

comedy

thriller
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Expanding the query

Example: Personalized Query
® Query rewriting (7o
SELECT MV.title

FROM MOVIE M,CAST C, ACTOR A, DIRECTOR D
WHERE MV.YEAR='2003’

and (M.DID=D.DID and D.NAME=‘W.Allen’) or
(M.MID=C.MID and C.ACID=A.ACID and
A. NAME='N.Kidman’)

Content Personalization
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Existing approaches

In multidimensional databases
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Peculiarities of data warehouses

» Data warehouses are particular databases
Read mostly instance, with an inflationist evolution
Schema inducing a particular topology (lattice of cuboids)

Shared in a multi-user environment

» OLAP queries over data warehouses
Expressed in a dedicated query language (MDX)
May produce large results, visualised as crosstabs
Are grouped into sessions having an analytical goal

Are written based on:
Past results of the session

User expectations
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Two existing approaches
» [Bellatreche & al. 2005]

Inspired by Koutrika & loannidis

Query expansion for computing preferred visualisations

Low formulation effort, prescriptive, not proactive, low expressiveness

» [Golfarelli & Rizzi, 2009]
Inspired by KieBling
Preference operators adapted to the multidimensional context

High formulation effort, not prescriptive, not proactive, high
expressiveness
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[Bellatreche & al. 20095]

SELECT CROSSJOIN({City.Tours, City.Orleans},
{Category.Members}) ON ROWS
{2003, 2004, 2005, 2006} ON COLUMNS
FROM SalesCube
WHERE (Measures.quantity)

Visualization depends on the user's profile

2003 2004 2005 2006 2003 2004 2005 2006

Tours Drink Tours Drink

Food Food

Orleans Drink Cloth
Food Shoes
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Problem formulation

User profile P

B |

User query g

SELECT {Awglncome} ON COLUMNS,
CROSSJ0IN DESCENDANTS (|RE SIDENCE] [AI,
|[RESIDENCE] [City], SELF_AND_BEFORE),
CROSSJ0INDESCENDANTS (|RACE]. (A,
> —>

[RACE].[RaceGmup), SELF_AND BEFORE),
[OCCUPATION] [Occ). Members)) ON ROWS

FROM [GENSUS] WHERE [TIME] [Yaar|.[2009]

Execute the Present the
personalized visualisation

Personalize q
query

Visualisatiion constraint v

maxp {q” S q|v(q") = true}

2 9
Lo
e ’
= » compute q =
= pute q
OLAP query personalisation and  eBISS 201 |
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Example of personalization (1)

The query:
SELECT CROSSJOIN({City.Tours, City.Orleans},
{Category.Members}) ON ROWS
{2003, 2004, 2005, 2006} ON COLUMNS
FROM SalesCube
WHERE (Measures.quantity)
Preferences:

Time < Location and Product < Location
2002 < 2003 <2004 < 2005 < 2006
Electronics < shoes < cloth < food < drink
Quantity < price

Constraint: 2 axes, no more than 4 positions on each axis
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Example of personalization (2)

Step |
The most preferred references
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Example of personalization (3)

Step 2
The second most preferred
references

Drink  Orleans

Tours

Food Orleans

Tours
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Example of personalization (4)

2006 2005

Drink  Orleans

Tours

Food Orleans

Tours

Drink Food Cloth

Tours

Orleans

Step 3:the next most preferred references
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Example of personalization (5)

... finally, the constructed query is

SELECT CROSSJOIN({City.Tours, City.Orleans},
{Category.Food, Category.drink}) ON ROWS
{2003, 2004, 2005, 2006} ON COLUMNS

FROM SalesCube

WHERE (Measures.quantity)

2003 2004 2005 2006
Tours Drink
Food

Orleans Drink
Food
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|Golfarelli & Rizzi 2009,2011]

» Adaptation of preference constructors to a
multidimensional context

Taking into account hierarchies

Preferences can be expressed over levels and thus over
cuboids

Preferences can be expressed over measures

» Composition: Prioritization and Pareto

SELECT {Avgincome} ON COLUMNS,
CROSSJOINDESCENDANTS [|RESIDENCE] JAN),
[RESIDENCE] [City], SELF_AND BEFORE;,
CROSSJOINDESCENDANTS ([RACE]. [AN),
|[RACE].|RaceGroup), SELF_AND BEFORE),
[OC CURATION]. [Occ).Members) ) ON ROWS
FROM |[CENSUS) WHERE [TIME] [Yaar].[2009)
PREFERRING Avglncome BETWEEN 500 AND 1000
AND RESIDEMCE CONTAIN Siala
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Example of constructors

W ™y o
Cily | Raoe | Jip
Slata RaosGmup - allocs
- ’
DOCUFRATION
Ragion MRMN | Yaar || Sax
. AlCHees || AdRaces || AalYears | AlSaxas i
*, L A L A
RESICEMNCE R&CE TIME SEX

» POS(City,LA)

(LA,all,2010,Fall) > (NY,all,all,all,all)
(California,all,2009,all,all) > (NY,all,2010,allall)

» CONTAIN(RESIDENCE,City)
(LA,all,2010,Fall) > (California,all,2009,all,all)
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ixample of dominations

50

City Avginc State | Avglnc State | Avglnc
Miami 1200 FL | 400 FL | 800
POS(State.'FL")
Region Avginc State | Avglnc State | Avglnc
MNew England 100 CA 100 NV | 1000
v I
City Avginc State | Avglnc State | Avglnc
Miami 1200 FL | 400 FL | 800
T BETWEEM({AvgIncome,
00,1000}
Regian Avginc State | Avglne State | Avglnc
New England, 100 CA 100 N 1000
v |
City Avginc State | Awvglnc State | Avglnc
Miami 1200 FL | 400 FL | 800
CONTAIN(RESIDENCE, State)
Region Avginc State | Awvglnc State | Avglnc
New England 100 CA 100 NV | 1000
City Avgine | | State | Avglnc State | Avglnc
Miami 1200 FL | 400 FL | B0
CONTAIN(RESIDENCE,State) @
. BETWEEN{Avglncome,
Region | Avginc State | Avginc State | Avginc | 500,1000)
MNew England) 100 CA | 100 NV | 1000
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Improving proactiveness
|Aligon & al, 2011]

SELECT {Avglncome} ON COLUMNS,
CROSSJ0IN|DESCENDANTS (|RESIDEMGE] [A1],

User’s |og of [RESIDENCE] [City], SELF_AND BEFORE),
CROSSJOIN|DESCENDANTS ([RACE]. AN,
past queries |[RACE]|RacelGoup], SELF_AND BEFORE)

[OCCURATION].[Occ]. Members;) ON ROWS
FROM [CENSUS] WHERE [TIME].[vaar].[2009]

User’s current query

X Execute the personalized query

Extract association rules Extract relevant preferences

SELECT {Awgincome} ON COLUMMS,
CROSSJOIN| DESCENDANTS [|RESIDEMCE] AN,
[RESIDEMCE]|City), SELF_AND BEFORE),
CROSSJOIN| DESCENDANTS (| RACE]. A1,
|[RACE] [RaceGroup], SELF_AND BEFORE),
[OCCUPATION]. [Occ).Members) ) ON ROWS
FROM [CENSUS] WHERE [TIME].[Yaar].[2009)
PREFERRING Avgincome BETWEEM 500 AND 1000
AND RESIDEMCE COMTAIN Stala
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Query recommendation
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Basics of recommender systems
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Recommender systems
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LOOK INSIDE! LOOK INSIDE! LOOK INSIDE! LOOK INSIDE!
Algorithe 3 Coll
Inteiliger )
Web X : |
X”f o

Inspired by Your Browsing History

You viewed Customers who viewed this also viewed

Recommender Systems: A
Introduction
Dietmar Jannach, Markus Zal
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The basic model

interest Item | Item 2 Item 3 Item m
User | 0.3 0.9 0.7
User 2 0.4 0.8 0.6

User 3

User n 0.9 0.5 0.2

» A matrix customers * items recording the interests
» Recommend the items having highest ratings

» But
Ratings are hard to find

Matrix is huge and sparse
Everyone is a bit eccentric [WSDM 2010]
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Three classical approaches

» Content-based

Recommend items similar to those highly rated
» Collaborative

Recommend items highly rated by similar users
» Hybrid

Combine content-based and collaborative

» A lot of works in the areas of e-commerce,Web, IR, ...

See e.g.,"Recommender systems handbook”, Springer, 201 |
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Example of content-based recommendations
1. build item profiles

-mmm-m

Homer

Marge 0.8 0.6

Bart 0.7 0.6 0.1 0.8
Lisa 0.2 0.8 0.6

Maggie 0.6 0.5 0.6

» Features: contains sugar, ok for diet
» Profile of Donuts: (0.9,0)

» Profile of Duff: (0.6,0.1)

» Profile of Apple: (0.4,0.6)

» Profile of Tofu: (0,0.9)

4
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Example of content-based recommendations
2. build user profiles

-mmm-m

Homer

Marge 0.8 0.6

Bart 0.7 0.6 0.1 0.8
Lisa 0.2 0.8 0.6

Maggie 0.6 0.5 0.6

» Features: contains sugar, ok for diet

» Profile of Homer: (0.9%(0.9,0) + 0.8%(0.6,0.1) ...)/3
= (0.8,0.1)

» Profile of Lisa: (0.3,0.8)

> ...

58 OLAP query personalisation and  eBISS 201 |
recommendation



Example of content-based recommendations
3. compare profiles to score

-mmm-m

Homer

Marge 0.8 0.6

Bart 0.7 0.6 0.1 0.8
Lisa 0.2 0.8 0.6

Maggie 0.6 0.5 0.6

» Compare Homer profile to Apple profile:
cosine((0.8,0.1),(0.4,0.6)) =0.33

» Compare Homer profile to Tofu profile
cosine((0.8,0.1),(0,0.9)) =O0.1
> ...

» In the end, recommend Ribs to Homer, Apple to Lisa
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Example of collaborative recommendations
1. find similar users

Donuts DI
Homer 0.9 0.8 0.7
Marge 08 0.6
Bart 07 0.6 0.1 08
Lisa 0.2 0.8 0.6
Maggie 0.6 0.5 0.6

» Find similar users

Compare Homer and Marge
Cosine((0.9,0.8,0,...),(0,0,0.8,...))

Compare Homer and Bart
Cosine((0.9,0.8,0,...),(0.7,0.6,0.1,...))
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Example of collaborative recommendations
2. compute scores

-mm-m

Homer 0.9

Marge 0.8

Bart 0.7 0.6 0.1 @
Lisa 0.2 0.8

Maggie 0.6 0.5

» Recommend items highly rated by similar users

Rating weighted with simildrity score

Cosine(Homer,Bart)
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Existing approaches

In relational databases
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How to recommend? [Stefanidis & al., 2009]

» Use current state of the database

Find correlated attributes, most frequent values, etc.
» Use history (query log)
Compute similarities among users, similarities among queries

» Use external data
E.g., wikipedia, etc.
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YMAL [Stefanidis & al., 2009]
Example

» Local analysis

Select title, genre from Movies where actor="C. Lee’
The result has a lot of genre="fantastic’
Recommend:

Select title, genre from Movies where genre=‘fantastic’

» Global analysis

Value ‘Allen’ of attribute Director is correlated with value
‘Comedy’ of attribute Genre

Select * from Movies where director="Allen’
Recommend:

Select * from Movies where genre=‘Comedy’
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QueRIE [Chatzopoulou & al., 2009]

Session |

Session 2 0 I I I
Session 3 0 0 0 I
Session m | I 0 0

» Current session S_=(1,...,0)
» Find session S the most similar to S_ using cosine

» Recommend the query of S that is the most similar to S_
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Existing approaches

In multidimensional databases
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Why recommendation?

Sales of cheese

for 2010 by
countries

France 90

Italy 70

Sales of ® Spain 40
cheese for UK 25

2009 by
countries?

Sales of Sales of

cheese by cheese by
French cities? years?
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Profile?

| prefer to
compare
with former
sales

Sales of cheese

for 2010 by
countries

France 90
Italy 70
Sales of Spain 40
cheese for UK 25
2009 by
countries?
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T\
K

| expect sales

xXpectations?

Sales of cheese

to be for 2010 by
uniformly countries
distributed

France 90
Italy 70
Spain 40
UK 25

Sales of

cheese by

French cities
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Others?

Sales of cheese
for 2010 by
countries

France
Italy
Spain
UK

Sales of
cheese by
years
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Four different approaches

71

Content-based methods based on user preferences
Current state, with external data

Content-based methods based on expectations
Current state

Collaborative methods based on a query log
History-based

Collaborative methods based on log and expectations
Current state and history-based

All approaches:

Low formulation effort, prescriptive, proactive, low
expressiveness
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1. Preference-based recommendations
|[dJerbi & al., 2009]

If query concerns 2009, score of Barcelona is 0.9 —— The
If query concerns N-Y, score of SUM(REVENUE)>5 is 0.8
If query concerns 2009, score of Madrid is 0.4

If query concerns 2010, score of Paris is 0.3

preferences

The query
/

REVENLUE)} > 10

14 13 MNull 11 20 24 18 16

Paris Lyan N-Y Washingbon

Recommend:
Add Barcelona to the list of cities
Change SUM(REVENUE)>10 by SUM(REVENUE)>5
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2. Expectation-based recommendations
Discovery driven analysis [Sarawagi, 2000)]

CEmCT —
100 query result

Europe

Not surprising,

do not
/ recommend it

Sales | Quarter I e
Quarter | recommend it
France 25 /

Spain 25
P Europe 80
UK 25
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2. Expectation-based recommendations
Discovery driven analysis [Cariou & al., 2008]

query result

France

UK

Not surprising,
do not

recommend it

Sales | Drink | Food | e
recommend it
3

France 7
UK 4 16
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3. Log-based recommendations
Promise [Sapia, 2000]

/Ti’—#orrepairs O I
B oy (BB \ ¥
wehicle.all | geogr.region \ [ wofrepairs
customer.all I B yea i
(1) vehicle.all garage
customer.all

(2)
0.5
0.1
/ﬁm

#ofrepairs
_— T #ofrepairs ~~_ < =
i = vehicle.all garage
year garage customer.all manth
vehicle.all customer
(5) S

T _rorepars

Number of repairs by garage for year 2009 for = -
all vehicles and all customers @ w
Recommend: (@)

drilldown to month

If the current query asks for:
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3. Log-based recommendations
|Giacometti & al., 2009]

farmer sessions
MDX MDX MDX
MDX -
current session OLAP serverl
W
= 2 Candidate sessi |
=3 andidate sessions 1: Matching
|
v
q

qg Candidate queries 2: Selecting
|

N v
1. g6 3. Ranking

2. 05

Recommended queries
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3. Log-based recommendations
|Giacometti & al., 2009]

» Distances proposed
» Between positions in a cube\
Hamming

Based on the shortest path in the dimension FIMIelERe Bl ATCT
“Similarity measures for

> Between queries multidimensional data” by

Based on dimension-wise differences Baikousi, Rogkakos,
Hausdorff Vassiliadis at ICDE 201 |

» Between sessions
Based on the subsequence
Edit distance
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4. Log and expectation-based
recommendations [Giacometti & al., 2009]

Hm this looks
strange to me...

Current query

Session 1 Session 2 Session 3

Query 1
cheese all
2006 100
2007 200

Query 2
cheese all
2007 200

Query 4
Normandie cheese
2007 0
2008 1

Query 5
Loire Valley cheese

2007 40
2008 4

OLAP server query log Current session
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4. Log and expectation-based
recommendations [Giacometti & al., 2009]

1: detect
difference pairs

Session 1 Session 2 Session 3

Query 1

Query 1 Current query

cheese all

/ 2: specialize a most

2007 2008

general pair in the log?

Normandie cheese
2007 0
2008 1

Query 5
Loire Valley cheese

2007 T 3: suggest the most

2008 4 .
4 then OLAP server query log general querles Current session
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Conclusion
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Conclusion

» So far...
Given g, compute q such thatq cqorq#z q,qz q
» The best approach!?

Low formulation effort, proactive, not prescriptive, high
expressiveness... yet to be proposed!

Collaborative for naive user, content-based for advanced user
» How about effectiveness!?

Need to categorize database user’s navigational behavior

A taxonomy exists in the web but not in databases...
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Some open issues

» Some open issues
How to learn preferences? Navigational habits?

Can preferences be revised? What if | don’t know what |
prefer?

What about privacy!?

How to handle preferences on data distribution?
How to assess the quality of a recommendation?
What recommendation in what context?

When are two sessions similar?

How to guess the intent of a query!?
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