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Graph Mining and SNDA. Why?

My Facebook’s friends set reduced in 3 main communities.

What you don’t tell, your network can tell it for you (MIT’s Gaydar
experience).
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A talk with a minimum of formulas?

Stephen Hawking
My editor told me that each
equation I included in the book
would halve sales.

"A Brief History of Time"

But...min > 0 ! (Argh! A first formula!)
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The Graph Theory start

How to walk through the city that would cross each bridge once and
only once ? (Typically mathematician’s game).

Figure: source: wikipedia

Figure: source: wikipedia

Using graphs Euler proved that the problem has no solution.
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The Graph Theory Paradigm

A graph is denoted G = (V ,E)
with

V the set of vertices,
E the set of edges.

{v ,w} is the edge connecting
vertices v and w .

A =


a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n


where

ai,j =

{
1 if vi and vj are connected,
0 else.

If G is a weighted graph, then ai,j = ω(vi , vj) and then
A = W = (wi,j) = (ω(vi , vj)).
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The Graph Theory Goes Social

Moreno (1933) 1st to use points
and lines for social
configurations,
Cartwright and Harary (1956) link
with the graph theory,
individuals are represented using
points, called nodes or vertices,
and social relationships are
represented using lines.
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Directed or not?
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(v ,w).
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Graph Theory Basic Notions

|V | = n is called the order the graph.
|E | = m is called the size of the graph.
If |E | = n(n − 1)/2, i.e. (any pair of vertices are connected), the
graph complete.
v and u are neighbours if connected by an edge.
The neighbourhood of a node v is denoted Γ(v).
A subgraph G′ = (V ′,E ′) of G = (V ,E) is such V ′ ⊂ V , E ′ ⊂ E
and {v ,u} ∈ E ′ ⇒ v ,u ∈ V ′.
A subset C of V can define an induced subgraph
G(C) = (C,E(C)), where E(C) = {(v ,u) ∈ E |v ,u ∈ C}.
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Graph Theory Basic Notions (ctd)

A path P is a subgraph
P = (V (P),E(P)) such
V (P) = {vi0 , · · · , vik} and E(P) ={
{vi0 , vi1}, {vi1 , vi2}, · · · , {vik−1 , vik}

}
.

k is the length path.
If no vertice is repeated, then the path
is simple. length,
If there exists a path between v and
u, they are connected.
The graph is a connected graph if
∀v ,u, there is, at least, one path
connecting v and u.
A connected subgraph is called a
connected component.
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Graph Theory Basic Notions (ctd)

Density of a subgraph C(V (C),E(C)) : ratio between |E(C)| and
the maximum possible number of edges:

δ(G(C)) =
|E(C)|

|V (C)|(|V (C)| − 1)/2
(1)

A partition of V in two subsets C and V \ C is called a cut.
The cut size is the number of edges joining vertices of C with
vertices of V \ C:

c(C,V \ C) = | {{u, v} ∈ E |u ∈ C, v ∈ V \ C} | (2)

For an unweighted graph, degree of a vertice v , deg(v) : number
of incident edges,
For weighted graph:

deg(vi) =
n∑

j=1

wi,j . (3)
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Detecting Communities
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But What is a Community?

In the clustering framework a community is a cluster of nodes in a
graph,

But a very important question is what is a cluster?,
Even in the clustering literature there is non complete agreement
between all authors, ([EC02]),
But, objects inside a cluster must be more similar than objects
outside of this cluster,
Objects are clustered or grouped based in maximizing intra-class
similarity and minimizing inter-class similarity .
In graph framework, clustering is dividing vertices such nodes of a
community must be more connected with nodes of this community,
than with nodes outside of the cluster ( [Sha07], [For10]).
It implies that it must exists at least a path between two nodes of a
cluster, and this path must be internal to the cluster.
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Then in a Community...

Connections must be minimum between groups and maximum within
groups.

0

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 16 / 56



Then in a Community...

Connections must be minimum between groups and maximum within
groups.

0

1

2
3

4

5

6

7

8

9

10

11 12

13

14

15

16

17
18

19

20

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 16 / 56



Wasserman Criteria

Four criteria:

Complete mutuality: all member of a subgroup must be “linked”
with all members of the subgroup,
Reachability: existence (and length) of paths between vertices of
a subgroup,
Nodal degree: imposes a constraint on the number of adjacent
vertices,
Internal versus external cohesion: the former must be higher than
the latter.
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Complete mutuality

In a very strict sense, in a
community, all member of a
subgroup must be “friends” with
all members of the subgroup,
In graph theory, it corresponds to
a clique,
But define of a community as a
clique is very too strict (Alba
1973) calls it “a quite stingy”),
that leads to relaxed definitions of
the notion of clique...
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Reachability

An n-clique is a maximal subgraph such, for any pair of vertices,
there exists at least a geodesic no larger than n.
The classical clique is then a 1-clique.

But a geodesic path of an n-clique could run outside of this latter,
and then the diameter of the subgraph c an exceed n...
That is why was defined n-clan which is an n-clique with diameter
not larger than n.
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Nodal degree

For a given graph G and a cluster C:
A k-plex is a maximal subgraph such each vertice is adjacent to all
other vertices of the subgraph except for k of them.
Conversely a k-core is a maximal subgraph such each vertice is
adjacent to, at least, k other vertices of the subgraph.
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Internal versus external cohesion

For a given graph G and a cluster C:
degi(C): internal degree of C is the number of internal edges of
C: degi(v ,C) = |Γ(v) ∩ C|,
dege(C): external degree of C is the number of edges with one
vertice inside C, and the other outside of C:
dege(v ,C) = |Γ(v) ∩ (V \ C)|,
deg(C) = degi(C) + dege(C): degree of C,

If dege(v ,C) = 0, then v ∈ C is surely a good assignation for v ,
Conversly if degi(v ,C) = 0, then we must have v /∈ C.
A LS-set, or strong community is a subgraph C such for each
node v ∈ C we have degi(v ,C) > dege(v ,C).
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Internal versus external cohesion

For a given graph G and a cluster C:
Graph density is the ratio between existing number of edges and
maximum possible number of edges: δ(G(C)) = |E(C)|

|V (C)|(|V (C)|−1)/2

Intra-cluster density: quotient of the number of internal edges of C
and the maximal possible number of internal nodes:
δi(C) = |{{u,v}|u,v∈C}|

|C|(|C|−1)/2 ,,

Inter-cluster density: quotient of the existing number of edges with
one vertice inside C, and the other outside of C and maximum
possible number of edges in this configuration:
δe(C) = |{{u,v}|u∈C,v /∈C}|

|C|(|G|−|C|) ,,

For a given partition {C1, · · · ,Ck} we want

k∑
i=1

δi(Ci) = δi(G|C1, · · · ,Ck ) >> δ(G).
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Internal versus external cohesion

Using the cut size, the number of edges joining vertices of C with
vertices of V \ C,
The conductance of a community C is defined to taking into
account the order of the cluster and the outside of the cluster:

Φ(C) =
c(C,V \ C)

min{deg(C),deg(V \ C)}

where deg(C) and deg(V \ C) are the total degrees of C and of
the rest of the graph. The min(Φ(C)) is obtained when C has a
low cut size and when the total degree of the cluster and its
complement are equal.
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Internal versus external cohesion

A community with strong inner ties must have a higher Relative
density

ρ(C) =
degi(C)

deg(C)
.

The edge connectivity of a graph G is the minimal number of
nodes to be removed so that G is disconnected, and is denoted
k(G).
A community C can be defined as an Highly connected subgraph
(HCS) such

k(C) >
n
2
.
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Measures of Belonging to a Community

Dissimilarity Measures
A distance measure d between
two objects must fulfill the
following criteria:

1 separation: d(u,u) = 0,
2 symmetry: d(u, v) = d(v ,u),
3 triangle inequality:

d(u, v) ≤ d(u,w) + d(w , v).

Similarity Measures
A similarity measure s must fulfill
the following criteria:

1 s(u,u) = k , where k is a
constant,

2 s(u, v) = s(v ,u),
3 s(u, v) ≤ s(u,u) = k .

Link Between Similarities and Dissimilarity
A dissimilarity measure d can be converted into a similarity measure
using a strictly decreasing functions φ with some boundary conditions :

d = φ(s) and s = φ−1(d).
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using a strictly decreasing functions φ with some boundary conditions :

d = φ(s) and s = φ−1(d).
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Classical Distance Recall

Recall Distances for Classical Vectors
For two vectors in IR2, u = (u1, · · · ,un) and v = (v1, · · · , vn):

Euclidean:

d(u, v) =

√√√√ n∑
k=1

(uk − vk )2

Manhattan distance: d1(u, v) =
∑n

k=1 |uk − vk |
Tchebychev’s distance d∞(u, v) = maxk=1,··· ,n |uk − vk |
Cosine:

θ(u, v) =

∑n
k=1 uk · vk√∑n

k=1(uk )2
√∑n

k=1(vk )2
.
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Measures for Graphs: structural equivalence

Given the adjacency matrix A = {ai,j}, ui and uj are structurally
equivalent if they have the same neighbors, i.e. if di,j = 0:

di,j =

√∑
k 6=i,j

(ai,k − aj,k )2

A =


0 0 1 1 0
1 0 0 1 0
1 1 0 1 0
0 0 1 0 0
1 0 1 1 0

 12

3

4

5

Structural Equivalence
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Measures for Graphs: Pearson Correlation

Another measure directly defined on A is the Pearson correlation
matrix:

ci,j =

∑n
k=1(ai,k − µi)(aj,k − µj)

nσjσj
(4)

with µi =
∑

k ai,k/n and σi =
√∑

k (ai,k − µk )2/n.

A =


1.00 0.16 −0.16 0.16 0.66
0.16 1.00 0.66 −0.66 0.66
−0.16 0.66 1.00 −1.00 0.16

0.16 −0.66 −1.00 1.00 −0.16
0.66 0.66 0.16 −0.16 1.00


12

3

4

5

Structural Equivalence
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Measures for Graphs: Jaccard Index

Another popular seed to build (dis)similarity measure is the Jaccard
index which measures similarity between sets:

J(A,B) =
|A ∩ B|
|A ∪ B|

. (5)

A first use of the Jaccard index in the graph theory context is to
measure the overlap of the neighborhoods of two nodes v and u:

ω(v ,u) =
|Γ(v) ∩ Γ(u)|
|Γ(v) ∪ Γ(u)|

(6)

which is equal to zero when there is no common neighbors, and one
when v and u are structurally equivalent. And, as 0 ≤ J(A,b) ≤ 1, it is
easy to define the Jaccard distance:

Jδ(A,B) = 1− J(A,B) =
|A ∪ B| − |A ∩ B|

|A ∪ B|
. (7)
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Measures for Graphs: Tanimoto coefficient

Tanimoto coefficient is an extension of the cosine similarity which
coincide with the Jaccard index for binary vectors:

T (A,B) =

n∑
k=1

ak · bk

n∑
k=1

ak +
n∑

k=1

bk −
n∑

k=1

ak · bk

. (8)

The Tanimoto coefficient gives the quotient between the number of
shared features by A and B, divided by the whole number of features
for A and B.
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Partitional Algorithms - Introduction

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 32 / 56



Partitional Algorithms : k-means

k-means algorithms try to maximize the intra-cluster dissimilarity:

gn(C) =
k∑

i=1

∑
x∈Ci

d(x , ci)

Algorithm:
Starting:Determine an initial vector (or centers) (c(0)

1 · · · , c
(0)
k ),

Repeat until stationarity: t ← t + 1
Assignment: observations go to the cluster with the closest centroid:

C(t+1)
i =

{
x : d(x , c(t)

i ) ≤ d(x , c(t)
j )∀j = 1, . . . , k

}
Update: Compute the new centroids (c(t+1)

1 , · · · , c(t+1)
k ):

c(t+1)
i =

1

|C(t)
i |

∑
x∈C(t)

i

x
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Partitional Algorithms - Instability
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Partitional Algorithms - Spherical Clusters
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Partitional Algorithms - Drawbacks

Drawbacks
choice of k : an inappropriate
choice leads too non
significant results,
spherical clusters: algorithms
works better when spherical
clusters are in data,
instability: the random starting
partition can leads to a local
optimum for the criterion
function.
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k−means

Complexity: O(m2 × n × k) where m is the number of attributes, n the
number of objects to cluster and k the number of clusters.

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 36 / 56



Partitional Algorithms - Drawbacks

Drawbacks
choice of k : an inappropriate
choice leads too non
significant results,
spherical clusters: algorithms
works better when spherical
clusters are in data,
instability: the random starting
partition can leads to a local
optimum for the criterion
function.

Criterion: 44

0

1

2

3

4

5
6

7

8
9

10

11
12

13

14

15
16

17

18

19

20

Complexity: O(m2 × n × k) where m is the number of attributes, n the
number of objects to cluster and k the number of clusters.

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 36 / 56



Partitional Algorithms - Drawbacks

Drawbacks
choice of k : an inappropriate
choice leads too non
significant results,
spherical clusters: algorithms
works better when spherical
clusters are in data,
instability: the random starting
partition can leads to a local
optimum for the criterion
function.

Criterion: 43

0

1

2

3

4

5
6

7

8
9

10

11
12

13

14

15
16

17

18

19

20

Complexity: O(m2 × n × k) where m is the number of attributes, n the
number of objects to cluster and k the number of clusters.

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 36 / 56



Partitional Algorithms - Drawbacks

Drawbacks
choice of k : an inappropriate
choice leads too non
significant results,
spherical clusters: algorithms
works better when spherical
clusters are in data,
instability: the random starting
partition can leads to a local
optimum for the criterion
function.

Criterion: 45

0

1

2

3

4

5
6

7

8
9

10

11
12

13

14

15
16

17

18

19

20

Complexity: O(m2 × n × k) where m is the number of attributes, n the
number of objects to cluster and k the number of clusters.

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 36 / 56



Partitional Algorithms - Drawbacks

Drawbacks
choice of k : an inappropriate
choice leads too non
significant results,
spherical clusters: algorithms
works better when spherical
clusters are in data,
instability: the random starting
partition can leads to a local
optimum for the criterion
function.

Criterion: 41

0

1

2

3

4

5
6

7

8
9

10

11
12

13

14

15
16

17

18

19

20

Complexity: O(m2 × n × k) where m is the number of attributes, n the
number of objects to cluster and k the number of clusters.

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 36 / 56



Agglomerative Hierarchical Algorithms - Intro
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Agglomerative Hierarchical Algorithms - For SNA
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Zachary's Karate Club Network

Figure: The Zachary Karate club network.

At the starting point, the n objects to cluster are their own classes:
{{x1}, · · · , {xn}}, then at each stage we merged the two more similar
clusters.
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Figure: A dendrogram for the Zachary Karate club network.

At the starting point, the n objects to cluster are their own classes:
{{x1}, · · · , {xn}}, then at each stage we merged the two more similar
clusters.
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Agglomerative Hierarchical Algorithms - The Link
Choice

For a given dissimilarity measure d between objects, several
dissimilarities between clusters D exist:

the single linkage:

D(A,B) = min{d(x , y) : x ∈ A, y ∈ B},

the complete linkage:

D(A,B) = max{d(x , y) : x ∈ A, y ∈ B},

the average linkage:

D(A,B) =
1

|A| · |B|
∑
x∈A

∑
y∈B

d(x , y).

Drawbacks: vertices of a community may be not correctly classified.
Complexity: O(n2) for the single linkage and O(n2 log n) for complete
and average linkages.
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Divisive Hierarchical Algorithms - Betweenness
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Divisive Hierarchical Algorithms - Betweenness

Find the connecting edges to find the communities.
Edge betweenness is the number of shortest paths between all
vertex pairs that run along the edge.
Divide the graph finding and "‘removing"’ edges connecting
community, two communities, i.e. edges on the maximum of
shortest paths between these Communities (max edge
betweenness):

1 compute the edge betweenness for all edges of the running graph,
2 remove the edge with the largest value (which gives the new

running graph).
Stop when no improvement on a criterion like the modularity:

M(C1, · · · ,Ck ) =
∑

i

dege(Ci)−
∑

i

degi(Ci)

Complexity edge betwneenness on a graph can be computed in
O(n ·m) for unweighted graphs and in O(n ·m + n2logn) for the
weighted.
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Spectral Methods - intro
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Two Connected Components.

Figure: Two connected
components.

Adjacency Matrix

W =



0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0


.

Spectral Decomposition

W = QΛQ−1
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Eigenvectors matrix
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. . . . . −18 1
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.

spectrum={· · · } Spectral Decomposition
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Spectral Methods - Algorithm
For efficiency reason it is recommended to not work directly with the
adjacency matrix W but with the Laplacian matrix:

L = D −W .

where D is such that we found the degrees deg(vi ) on the diagonal, and then
choose a normalization:

Lrw = D−1L or Lsym = D−1/2LD−1/2

Algorithm for spectral clustering is the following:

1 compute the eigenvalues and sort them such λ1 ≥ λ2 ≥ · · · ≥ λn,

2 compute the last k eigenvectors ~un−k · · · , ~un,

3 form matrix U ∈ Rn×k with ~un−k · · · , ~un as columns, and matrix Y = U t ,

4 cluster the points (yi )i=1,··· ,n using the k -means algorithm into clusters
A1, · · · ,Ak ,

5 build the communities C1, · · · ,Ck such Ci = {vj |yj ∈ Ai}.
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Spectral Methods - For More than Graphs

Efficient even for non "‘graph"’ data: it is sufficient to have a similarity
measure s(u, v) to build the weight/adjacency matrix W :
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spectral clustering

Complexity issue: the computation of the k eigenvectors of the
Laplacian matrix require a time in O(n3).
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Galois Lattices - Introduction

To cluster from a binary table cwith objects and attributes,

Preying Flying Bird Mammal
Lion x x
Finch x x
Eagle x x x
Hare x
Ostrich x
Bee x
Bat x x
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Galois Lattices - Introduction

we can compute a similarity table...

Lion Finch Eagle Hare Ostrich Bee Bat
Lion 2 0 1 1 0 0 1
Finch 0 2 2 0 1 1 1
Eagle 1 2 3 0 1 1 1
Hare 1 0 0 1 0 0 1
Ostrich 0 1 1 0 1 0 0
Bee 0 1 1 0 0 1 1
Bat 1 1 1 1 0 1 2
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Galois Lattices - Introduction

do a hierarchical classification
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Galois Lattices - Introduction

do a hierarchical classification and choose one class per object!
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Galois Lattices - Introduction

...or extract all the concepts and shared propeties!
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Galois Lattices: Intension

O
bj

ec
ts

O
Attributes A︷ ︸︸ ︷

Preying Flying Bird Mammal
Lion x x
Finch x x
Eagle x x x
Hare x
Ostrich x
Bee x
Bat x x


For X ∈ O:

f (X ) = {a ∈ A|∀o ∈ X ,oIa}.
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Galois Lattices: Extension

O
bj

ec
ts

O
Attributes A︷ ︸︸ ︷

Preying Flying Bird MammifÃ¨re
Lion x x
Moineau x x
Eagle x x x
Hare x
Ostrich x
Bee x
Bat x x


For Y ∈ A:

g(Y ) = {o ∈ O|∀a ∈ Y ,oIa}.
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Galois Lattices: Concepts

O
bj

ec
ts

O
Attributes A︷ ︸︸ ︷

Preying Flying Bird MammifÃ¨re
Lion x x
Moineau x x
Eagle x x x
Hare x
Ostrich x
Bee x
Bat x x


A concept is (X ,Y ) ∈ O × A such:

f (X ) = Y & g(Y ) = X .
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Galois Lattices: POSET

O
bj

ec
ts

O
Attributes A︷ ︸︸ ︷

Preying Flying Bird MammifÃ¨re
Lion x x
Moineau x x
Eagle x x x
Hare x
Ostrich x
Bee x
Bat x x


(X1,Y1), (X2,Y2) ∈ O×A : (X1,Y1) ≤ (X2,Y2)⇔ X1 ⊆ X2( or Y1 ⊇ Y2).
({Moineau,Eagle,Ostrich}, {Birdx}) ⊃
({Moineau,Eagle}, {Flying,Birdx}) ⊃
({Eagle}, {Preying,Flying,Birdx})
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Galois Lattices for Social Networks
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Galois Lattices for Social Networks

1 2 3 4 5 6 7 8
1 × × × × ×
2 × × ×
3 × × × ×
4 × × ×
5 × × ×
6 × × × × ×
7 × × × × ×
8 × × × × × ×
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Galois Lattices for Social Networks
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Galois Lattices for Social Networks

Conceptual Metrics based on Galois Lattices.

Relatedness
Relatedness(O)= % of objects which share properties with O.

Closeness
Closeness(O)= % of shared properties of with its related objects.

Relatedness→
↓ Closeness

High Low

High Clustered
Low Marginal

Filter the p % of marginal objects for a chosen p ∈]0,1[.
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Galois Lattices vs Similarity Based Clusterings

Criteria GL SBC
Similarity Equality Proximity
Uniqueness of results Y N
Completeness of final structure Y N
Attribute Weight N Y
Continuous value management Hard Y

Complexity: if we denote |O| the number of objects, |A| the number of
attributes and |L| the size of the lattices (i.e. the number of concepts),
then algorithms have a complexity time in O(|O|2|A||L|) or
O(|O||A|2|L|).
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EVARIST: eBuzz Monitoring on Twitter
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EVARIST: eBuzz Monitoring on Twitter
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Pajek
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igraph
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Gephi
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Conclusions

Definition of a community or cluster, is not an easy task.
In fact, what is a cluster is in the eyes of the beholder,
One person’s noise could be another person’s signal.
Cluster analysis is structure seeking although its operation is
structure imposing.
In data clustering many choices must be done before any analysis
(cluster definition , algorithms, measures, ...) which influence
strongly the result.
But, in spite of all these warnings, clustering algorithms allow us to
retrieve valuable pieces of information in social networks, by
finding communities.
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