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Graph Mining and SNDA. Why?

My Facebook’s friends set reduced in 3 main communities.

What you don't tell, your network can tell it for you (MIT’s Gaydar
experience).
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A talk with a minimum of formulas?

Stephen Hawking

My editor told me that each
equation | included in the book
would halve sales.

"A Brief History of Time"

But...min > 0 ! (Argh! A first formula!)
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@ Social Networks and Graphs Basics
e Define Communities in Social Network
e Measures of Belonging to a Community
e Detection Algoritms

e Softwares

e Conclusions
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Q Social Networks and Graphs Basics
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The Graph Theory start

How to walk through the city that would cross each bridge once and
only once ? (Typically mathematician’s game).

Figure: source: wikipedia
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The Graph Theory start

How to walk through the city that would cross each bridge once and
only once ? (Typically mathematician’s game).

Figure: source: wikipedia

Figure: source: wikipedia

Using graphs Euler proved that the problem has no solution.
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The Graph Theory Paradigm

A graph is denoted G = (V, E)
with

@ V the set of vertices,

@ E the set of edges.

{v, w} is the edge connecting
vertices v and w.

an1 -+ @dnn

P if v; and v; are connected,
ML 0 else.

If G is a weighted graph, then a;; = w(v;, v;) and then
A=W =(w) = (w(v;, )))-
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The Graph Theory Goes Social

Zachary's Karate Club Network

@ Moreno (1933) 1st to use points

and lines for social
configurations, @ @0
9 . : ®
@ Cartwright and Harary (1956) link ® 60 ®
with the graph theory, ® o o2 @
o . ® o 52 ®
@ individuals are represented using e
points, called nodes or vertices, ®
@ and social relationships are ea®®

represented using lines.
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Directed or not?

O ® @

® ® .

® o @
® ®
®
@

©)

® ® e %
An undirected graph (ex.: A directed graph (ex.: Twitter):

Facebook): {v, w} (v, w).
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Graph Theory Basic Notions

@ |V| = nis called the order the graph.
@ |E| = mis called the size of the graph.

e If |[E| =n(n—1)/2,i.e. (any pair of vertices are connected), the
graph complete.

@ v and u are neighbours if connected by an edge.

@ The neighbourhood of a node v is denoted I'(v).

@ A subgraph G' = (V',E")of G=(V,E)issuch V' Cc V,E' C E
and {v,u} e E'=v,ue V.

@ A subset C of V can define an induced subgraph
G(C) = (C,E(C)), where E(C) = {(v,u) € E|v,u € C}.
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Graph Theory Basic Notions (ctd)

@ A path P is a subgraph
P = (V(P), E(P)) such
V(P) = {Vj, -,V } and E(P) =

{ Vi, Vi 1o (Vi Vi by o {Vi_ s Vi } ) Dlameter ot h ZacharyKarte Gt v
@ k is the length path. ® @9®
@ If no vertice is repeated, then the path @®@ ®
is simple. length, »
@ If there exists a path between v and ® e ° cp %
u, they are connected. % i\
@ The graph is a connected graph if ®e @

Vv, u, there is, at least, one path
connecting v and u.

@ A connected subgraph is called a
connected component.
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Graph Theory Basic Notions (ctd)

@ Density of a subgraph C(V(C), E(C)) : ratio between |E(C)| and
the maximum possible number of edges:

B E(C)
(GO = vemvie) — 12 M

@ A partition of V in two subsets C and V' \ C is called a cut.
@ The cut size is the number of edges joining vertices of C with
vertices of V'\ C:

c(C,V\C)=|{{u,v}eElueC,ve V\C}| (2)

@ For an unweighted graph, degree of a vertice v, deg(v) : number
of incident edges,
@ For weighted graph:

deg(v;) Z Wi . (3)
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e Define Communities in Social Network
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Detecting Communities
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But What is a Community?

@ In the clustering framework a community is a cluster of nodes in a
graph,

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 15/56



But What is a Community?

@ In the clustering framework a community is a cluster of nodes in a
graph,
@ But a very important question is what is a cluster?,

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 15/56



But What is a Community?

@ In the clustering framework a community is a cluster of nodes in a
graph,

@ But a very important question is what is a cluster?,

@ Even in the clustering literature there is non complete agreement
between all authors, ([EC02]),

Cuvelier (ECP) eBISS 2011, 07/07/2011 15/56



But What is a Community?

@ In the clustering framework a community is a cluster of nodes in a
graph,

@ But a very important question is what is a cluster?,

@ Even in the clustering literature there is non complete agreement
between all authors, ([EC02]),

@ But, objects inside a cluster must be more similar than objects
outside of this cluster,

Cuvelier (ECP) eBISS 2011, 07/07/2011 15/56



But What is a Community?

@ In the clustering framework a community is a cluster of nodes in a
graph,

@ But a very important question is what is a cluster?,

@ Even in the clustering literature there is non complete agreement
between all authors, ([EC02]),

@ But, objects inside a cluster must be more similar than objects
outside of this cluster,

@ Objects are clustered or grouped based in maximizing intra-class
similarity and minimizing inter-class similarity .

Cuvelier (ECP) eBISS 2011, 07/07/2011 15/56



But What is a Community?

@ In the clustering framework a community is a cluster of nodes in a
graph,

@ But a very important question is what is a cluster?,

@ Even in the clustering literature there is non complete agreement
between all authors, ([EC02]),

@ But, objects inside a cluster must be more similar than objects
outside of this cluster,

@ Objects are clustered or grouped based in maximizing intra-class
similarity and minimizing inter-class similarity .

@ In graph framework, clustering is dividing vertices such nodes of a

community must be more connected with nodes of this community,
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But What is a Community?

@ In the clustering framework a community is a cluster of nodes in a
graph,

@ But a very important question is what is a cluster?,

@ Even in the clustering literature there is non complete agreement
between all authors, ([EC02]),

@ But, objects inside a cluster must be more similar than objects
outside of this cluster,

@ Objects are clustered or grouped based in maximizing intra-class
similarity and minimizing inter-class similarity .

@ In graph framework, clustering is dividing vertices such nodes of a
community must be more connected with nodes of this community,
than with nodes outside of the cluster ( [Sha07], [For10]).

@ It implies that it must exists at least a path between two nodes of a
cluster, and this path must be internal to the cluster.
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Then in a Community...

Connections must be minimum between groups and maximum within
groups.

®
@ @
° &
@
s e
® ® @0
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Wasserman Criteria

Four criteria:
@ Complete mutuality: all member of a subgroup must be “linked”
with all members of the subgroup,
@ Reachability: existence (and length) of paths between vertices of
a subgroup,
@ Nodal degree: imposes a constraint on the number of adjacent
vertices,
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Wasserman Criteria

Four criteria:

Complete mutuality: all member of a subgroup must be “linked”
with all members of the subgroup,

Reachability: existence (and length) of paths between vertices of
a subgroup,

Nodal degree: imposes a constraint on the number of adjacent
vertices,

Internal versus external cohesion: the former must be higher than
the latter.
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Complete mutuality

@ In a very strict sense, in a
community, all member of a
subgroup must be “friends” with
all members of the subgroup,

@ In graph theory, it corresponds to
a clique,

@ But define of a community as a
clique is very too strict (Alba
1973) calls it “a quite stingy”),
that leads to relaxed definitions of
the notion of clique...

A cliques with 4 nodes. A cliques with 5 nodes.

X

A cliques with 6 nodes. A cliques with 7 nodes.

EXY
\//
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Reachability

@ An n-clique is a maximal subgraph such, for any pair of vertices,
there exists at least a geodesic no larger than n.

@ The classical clique is then a 1-clique.
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Reachability

@ An n-clique is a maximal subgraph such, for any pair of vertices,
there exists at least a geodesic no larger than n.

@ The classical clique is then a 1-clique.

@ But a geodesic path of an n-clique could run outside of this latter,
and then the diameter of the subgraph ¢ an exceed n...

@ That is why was defined n-clan which is an n-clique with diameter
not larger than n.
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Nodal degree

For a given graph G and a cluster C:

@ A k-plex is a maximal subgraph such each vertice is adjacent to all
other vertices of the subgraph except for k of them.

@ Conversely a k-core is a maximal subgraph such each vertice is
adjacent to, at least, k other vertices of the subgraph.
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Internal versus external cohesion

For a given graph G and a cluster C:
@ deg;(C): internal degree of C is the number of internal edges of
C: degi(v,C) =1I(v)n C|,
@ dege(C): external degree of C is the number of edges with one
vertice inside C, and the other outside of C:
dege(v, C) = [T(v) N (V\ C)l,
@ deg(C) = deg;(C) + dege(C): degree of C,
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Internal versus external cohesion

For a given graph G and a cluster C:

@ deg;(C): internal degree of C is the number of internal edges of
C: degi(v,C) =1I(v)n C|,

@ dege(C): external degree of C is the number of edges with one
vertice inside C, and the other outside of C:
dege(v, C) = [T(v) N (V\ C)l,

@ deg(C) = deg;(C) + dege(C): degree of C,

@ If dege(v, C) =0, then v € C is surely a good assignation for v,

@ Conversly if degi(v, C) = 0, then we must have v ¢ C.
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Internal versus external cohesion

For a given graph G and a cluster C:

@ deg;(C): internal degree of C is the number of internal edges of

C: degi(v,C) =1I(v)n C|,

@ dege(C): external degree of C is the number of edges with one
vertice inside C, and the other outside of C:
dege(v, C) = [T(v) N (V\ C)l,
deg(C) = deg;(C) + dege(C): degree of C,
If dege(v, C) =0, then v € C is surely a good assignation for v,
Conversly if deg;(v, C) = 0, then we must have v ¢ C.

A LS-set, or strong community is a subgraph C such for each
node v € C we have deg;(v, C) > dege(v, C).
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Internal versus external cohesion

For a given graph G and a cluster C:

@ Graph density is the ratio between existing number of edges and

maximum possible number of edges: §(G(C)) = |V(C)|(||EV((CC))‘|71)/2
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@ Graph density is the ratio between existing number of edges and

maximum possible number of edges: §(G(C)) = |V(C)|(||EV((CC))‘|71)/2

@ Intra-cluster density: quotient of the number of internal edges of C

and the maximal possible number of internal nodes:

s ,vel
51(C) = e

@ Inter-cluster density: quotient of the existing number of edges with
one vertice inside C, and the other outside of C and maximum

possible number of edges in this configuration:

R C,v¢C
5o(C) = llsgjreegell
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Internal versus external cohesion

For a given graph G and a cluster C:

@ Graph density is the ratio between existing number of edges and

maximum possible number of edges: §(G(C)) = |V(C)|(||EV((CC))‘|71)/2

@ Intra-cluster density: quotient of the number of internal edges of C

and the maximal possible number of internal nodes:

s ,vel
51(C) = e

@ Inter-cluster density: quotient of the existing number of edges with
one vertice inside C, and the other outside of C and maximum

possible number of edges in this configuration:

, C,v¢C
5:(C) = ltsgjieeigell

For a given partition {Cy, - - - , Cx} we want

K
> 6i(Ci) = 6i(GICy, -+, Ck) >> 6(G).
e
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Internal versus external cohesion

@ Using the cut size, the number of edges joining vertices of C with
vertices of V'\ C,

@ The conductance of a community C is defined to taking into
account the order of the cluster and the outside of the cluster:
_ c(C,V\C)
(€)= in{deg(C), deg(V\ O)}

where deg(C) and deg(V \ C) are the total degrees of C and of
the rest of the graph. The min(®(C)) is obtained when C has a
low cut size and when the total degree of the cluster and its
complement are equal.
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Internal versus external cohesion

@ A community with strong inner ties must have a higher Relative
density
~ degi(C)
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Internal versus external cohesion

@ A community with strong inner ties must have a higher Relative
density
~ degi(C)

@ The edge connectivity of a graph G is the minimal number of
nodes to be removed so that G is disconnected, and is denoted
k(G).
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Internal versus external cohesion

@ A community with strong inner ties must have a higher Relative
density

~ degi(C)

@ The edge connectivity of a graph G is the minimal number of
nodes to be removed so that G is disconnected, and is denoted

k(G).
@ A community C can be defined as an Highly connected subgraph
(HCS) such
k(C) > g
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Measures of Belonging to a Community

Dissimilarity Measures

A distance measure d between
two objects must fulfill the
following criteria:

@ separation: d(u,u) =0,
@ symmetry: d(u, v) = d(v, u),
© triangle inequality:

Similarity Measures

A similarity measure s must fulfill
the following criteria:
@ s(u,u) = k, where kis a
constant,
Q s(u,v)=s(v,u),
Q s(u,v) < s(u,u) = k.

d(u,v) < d(u,w)+d(w,v).

v

eBISS 2011, 07/07/2011

Cuvelier (ECP)



Measures of Belonging to a Community

Dissimilarity Measures Similarity Measures

A distance measure d between A similarity measure s must fulfill
two objects must fulfill the the following criteria:
following criteria: @ s(u,u) =k, where kis a
@ separation: d(u, u) =0, constant,
@ symmetry: d(u,v) =d(v,u), | @ s(u,v)=s(v,u),
© triangle inequality: Q s(u,v) < s(u,u) = k.
d(u,v) < d(u,w) +d(w,v). )

Link Between Similarities and Dissimilarity

A dissimilarity measure d can be converted into a similarity measure
using a strictly decreasing functions ¢ with some boundary conditions :

d=¢(s)and s = ¢~ '(d).
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Classical Distance Recall

Recall Distances for Classical Vectors

For two vectors in R%, u = (uq,--- ,up)and v = (v, -+, Vp):

@ Euclidean:
n

d(u,v) = | Y (uk — vk)?
k=1
@ Manhattan distance: d'(u,v) = S"7_; |uk — k|
@ Tchebychev’s distance d*°(u, v) = maXk=1.... n|Uk — Vk

@ Cosine:
Uy -V

\/Zk 1(Uk \/Zk 1(vi)?
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Measures for Graphs: structural equivalence

Given the adjacency matrix A = {a;;}, u; and u; are structurally
equivalent if they have the same neighbors, i.e. if d;; = 0:

dij= | > (aik— ax)?

k#i.j

Structural Equivalence

@
001 10
10010
A={ 11010 o
00100 ® @
10110
&
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Measures for Graphs: Pearson Correlation

Another measure directly defined on A is the Pearson correlation
matrix: ;
k1@ — i) (8 — )
Cij = (4)
ntUj

with i = Y @i/ and oj = \/Sk(@ix — )2/

sssssssssssssssssss

1.00 016 -0.16 0.16 0.66 ?
016 100 066 —-0.66 0.66
A=< -016 066 1.00 —1.00 0.16 @ '3 »
0.16 -066 —-1.00 1.00 -0.16
066 066 016 -0.16 1.00 &
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Measures for Graphs: Jaccard Index

Another popular seed to build (dis)similarity measure is the Jaccard
index which measures similarity between sets:
|AN B

JAB) = 20 (5)

A first use of the Jaccard index in the graph theory context is to
measure the overlap of the neighborhoods of two nodes v and u:

_ [rv)nT(u)|

= IF(v) U () ©)

w(v, u)
which is equal to zero when there is no common neighbors, and one
when v and u are structurally equivalent. And, as 0 < J(A,b) <1, itis
easy to define the Jaccard distance:

|JAUB| — |AN B|

Js(A,B) =1—-J(A,B) = AUB

(7)
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Measures for Graphs: Tanimoto coefficient

Tanimoto coefficient is an extension of the cosine similarity which
coincide with the Jaccard index for binary vectors:

n
Z a - by
_ k=1
" n n n :
Zak-i-Zbk—Z&k-bk
k=1 k=1 k=1

The Tanimoto coefficient gives the quotient between the number of
shared features by A and B, divided by the whole number of features
for Aand B.

T(A,B)
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e Detection Algoritms
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Partitional Algorithms - Introduction

k-means: The Data

K<l [>[54] [+
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Partitional Algorithms : k-means

k-means algorithms try to maximize the intra-cluster dissimilarity:

k
= Z Z d(X, Ci)

i=1 XEC,‘
Algorithm:

Starting:Determine an initial vector (or centers) (c$°) e (0))
Repeat until stationarity: t < t + 1

Assignment: observations go to the cluster with the closest centroid:
¢ = {x: d(x.¢l") < d(x, ")) = 1,...,k}
Update: Compute the new centroids (c; (1) . ,((“”)).

(t+1

XEC (1)

Cuvelier (ECP)
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Partitional Algorithms - Instability

k-means: The Data

14
1

12
1

10
1

K<l [>[54] [+
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Partitional Algorithms - Spherical Clusters

k-means: The Data

15
1

K<l [>[54] [+
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Partitional Algorithms - Drawbacks

Drawbacks

@ choice of k: an inappropriate
choice leads too non
significant results,

@ spherical clusters: algorithms
works better when spherical
clusters are in data,

@ instability: the random starting
partition can leads to a local
optimum for the criterion
function.

k-means

Complexity: O(m? x n x k) where m is the number of attributes, n the
number of objects to cluster and k the number of clusters.

Cuvelier (ECP)
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Agglomerative Hierarchical Algorithms - Intro

Hierarchical Clustering: The Data HClust, Complete Link
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Agglomerative Hierarchical Algorithms - Intro

Hierarchical Clustering: The Data
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Hierarchical Clustering: The Data
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Agglomerative Hierarchical Algorithms - For SNA

Zachary's Karate Club Network

Figure: The Zachary Karate club network.

At the starting point, the n objects to cluster are their own classes:

{{x1}, - ,{xn}}, then at each stage we merged the two more similar

clusters.

eBISS 2011, 07/07/2011
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Agglomerative Hierarchical Algorithms - For SNA

Dendrogram for the Zachary Karate Club network

Figure: A dendrogram for the Zachary Karate club network.

At the starting point, the n objects to cluster are their own classes:
{{x1}, - ,{xn}}, then at each stage we merged the two more similar
clusters.
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Agglomerative Hierarchical Algorithms - The Link

Choice

For a given dissimilarity measure d between objects, several
dissimilarities between clusters D exist:
@ the single linkage:

D(A,B) =min{d(x,y): x € A, y € B},
@ the complete linkage:
D(A,B) = max{d(x,y) : x € A, y € B},
@ the average linkage:
D(A, B) = M > ) dx.y).
xeAyeB

Drawbacks: vertices of a community may be not correctly classified.
Complexity: O(n?) for the single linkage and O(n? log n) for complete
and average linkages.
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Divisive Hierarchical Algorithms - Betweenness
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Divisive Hierarchical Algorithms - Betweenness
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Divisive Hierarchical Algorithms - Betweenness
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Divisive Hierarchical Algorithms - Betweenness

@ Find the connecting edges to find the communities.

@ Edge betweenness is the number of shortest paths between all
vertex pairs that run along the edge.

@ Divide the graph finding and "‘removing" edges connecting
community, two communities, i.e. edges on the maximum of
shortest paths between these Communities (max edge
betweenness):

@ compute the edge betweenness for all edges of the running graph,
@ remove the edge with the largest value (which gives the new
running graph).

@ Stop when no improvement on a criterion like the modularity:

M(Cy,--,C) = Z dege(Ci) — Z deg;(Ci)

Cuvelier (ECP) eBISS 2011, 07/07/2011 41/56



Divisive Hierarchical Algorithms - Betweenness

@ Find the connecting edges to find the communities.

@ Edge betweenness is the number of shortest paths between all
vertex pairs that run along the edge.

@ Divide the graph finding and "‘removing" edges connecting
community, two communities, i.e. edges on the maximum of
shortest paths between these Communities (max edge
betweenness):

@ compute the edge betweenness for all edges of the running graph,
@ remove the edge with the largest value (which gives the new
running graph).

@ Stop when no improvement on a criterion like the modularity:

M(Cy,--,C) = Z dege(Ci) — Z deg;(Ci)

Complexity edge betwneenness on a graph can be computed in
O(n - m) for unweighted graphs and in O(n - m + n?logn) for the
weighted.
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Spectral Methods - intro

Adjacency Matrix

[eNeoNeoNeoRB gl S ®]
OO OO —~0 —
QOO -0 =+ =
[eNe oo loNe]
- -4 OO0 O OO0
- O+ 0 0O0O0
o= 2 000O0

Figure: Two connected
components.
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Spectral Methods - intro

Adjacency Matrix

011 0[{0 00
» ® 1010[/000
@ 110 1|0 00
. @ W=]0010|0O00
0 00 O[O0 11
0 00O(1T O 1
6} 0 00O|1T 10O
Spectral Decomposition
Figure: Two connected W = QAQ™"
components.
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Spectral Methods - intro

Eigenvectors matrix

1 1 11/ 0 00
® A 1 -1 11,0 00
o 3 0 01/ 0 00
¢ o= 1 o 21/ 0 00
® 0 0 00| 0 2 1
0 0 00| 1 1
0 0 00|-1 1 f

®

spectrum={4,3,1,0} U {3,3,0}
Spectral Decomposition
Figure: Two connected
components. W= QAQ™'
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Spectral Methods - intro

Eigenvectors matrix
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- a4 240000

O OO OO = =
|

O OO MNO = —

QOO O|—— = = -

®
OO O —=w-— =

spectrum={4,3,1,0} U {3, 3,0}
Spectral Decomposition
Figure: Two connected
components. W= QAQ™'
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Spectral Methods - intro

Eigenvectors matrix

1 0 0 1 1 0 1
® A 1 0 0 -1 10 f
® -3 0 0 0 0 0 f
® Q= i 0 0 0 -2 0 1
@ 0O 0 -2 0 010
0o 1 i 0 010
0o -1 i 0 010
©)
spectrum={4,3,3,3,1,0,0} Spectral
Decomposition
Figure: Two connected
components. W= QAQ™'
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Spectral Methods - intro

Adjacency Matrix

Two 'Almost' Connected Components.

® 01 10/0 00
» ® 1010[/000
@ 110 1(1 0O
. @ W=]0010|0O00
0 00 O[O0 11
0 00O(1T O 1
@ 0 00O|1T 10O
Spectral Decomposition
Figure: Two almost connected W = QAQ™"
component.
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Spectral Methods - intro

Eigenvectors matrix

® .. . . .| —18 1

o ® S —18 1

@ .. . . .1 =10 1

® Q=| . . . . .|-18 1

¢ 15 1

L. 25 1

® . . . . .| 25 1

spectrum={---} Spectral Decomposition

Figure: Two almost connected - 1
component. W= QAQ
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Spectral Methods - Algorithm

For efficiency reason it is recommended to not work directly with the
adjacency matrix W but with the Laplacian matrix:

L=D-W.

where D is such that we found the degrees deg(v;) on the diagonal, and then
choose a normalization:

Lw=D""Lor Lsym = D-"/2LD~"/2
Algorithm for spectral clustering is the following:
@ compute the eigenvalues and sort them such A\ > Ao > --- > A,
@ compute the last k eigenvectors u,_ k- - - , Up,
@ form matrix U € R™* with u,_« - - - , U, as columns, and matrix Y = U!,

© cluster the points (¥i)i=1,....n Using the k-means algorithm into clusters
A1 y T aAk:

@ build the communities Cy, - - - , Cx such C; = {vj|y; € A}
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Spectral Methods - For More than Graphs

Efficient even for non "graph™ data: it is sufficient to have a similarity
measure s(u, v) to build the weight/adjacency matrix W:

spectral clustering

Complexity issue: the computation of the k eigenvectors of the
Laplacian matrix require a time in O(n®).
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Galois Lattices - Introduction

To cluster from a binary table cwith objects and attributes,

| [ Preying [ Flying | Bird | Mammal |

Lion X X
Finch X X

Eagle X X X

Hare X
Ostrich X

Bee X

Bat X X
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Galois Lattices - Introduction

we can compute a similarity table...

] | Lion | Finch | Eagle | Hare | Ostrich | Bee | Bat |
Lion 2 0 1 1 0 0 1
Finch
Eagle
Hare
Ostrich
Bee
Bat

alalalo|win
~lo|o|=|olo

3
3
0
0
1
]

N = O ===

1
1
0
1
0
0

- OO = = O
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Galois Lattices - Introduction

do a hierarchical classification

Hierarchical Classification of Species

Bee

Height

7
)

Bat
Lion
Hare
Ostrich

—

Eagle J

Finch
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Galois Lattices - Introduction

do a hierarchical classification and choose one class per object!

Hierarchical Classification of Species

Bee

Height

7
)

Bat
Lion
Hare
Ostrich

—

Eagle J

Finch
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Galois Lattices - Introduction

...or extract all the concepts and shared propeties!

BatBee Eagle Finch Hare Lion Ostrich

hiarnmal
Bat Hare Lion

Preying
Eagle Lion

B
Eagle Finch Ostrich

Flying
Bat Bee Eagle Finch

Mammal Preying

Bird Flying
Eagle Finch

b /
Y /Bird Flying Preying
y Eagle

N .

Cuvelier (ECP) SNDA eBISS 2011, 07/07/2011 45 /56



Galois Lattices: Intension

Attributes A

o (LI Preying [ Flying [ Bird | Mammal |
@ Lion X x
8 || Finch X X
8 Eagle X X X
Hare X
Ostrich X
Bee X
L Bat X X )
For X € O:

f(X) ={ae AVo € X, ola}.

Cuvelier (ECP)
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Galois Lattices: Extension

Attributes A

o | | Preying | Flying | Bird | MammifA're |
» Lion X X
g Moineau X X
g Eagle X X X
Hare X
Ostrich X
Bee X
Bat X X
) /
For Y € A:

g(Y)={oe€ Ovac Y,ola}.
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Galois Lattices: Concepts

Attributes A

o | [ Preying | Flying | Bird | MammifA're |
» || Lion X X
g Moineau X X
g Eagle X X X
Hare X
Ostrich X
Bee X
Bat X X )

A conceptis (X, Y) € O x Asuch:
f(X)=Y&g(Y)=X.
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Galois Lattices: POSET

Attributes A

o | | Preying | Flying | Bird | MammifA're |
» || Lion X X
S || Moineau X X
g Eagle X X X
Hare X
Ostrich X
Bee X
Bat X X )

X1, Y1),(X2, Yg) € OxA: (X1, Y1) < (Xg, Yg) = X1 - X2( or Y1 D) Yg)
{Moineau, Eagle, Ostrich}, {Birdx}) D

{Moineau, Eagle}, {Flying, Birdx}) >

{Eagle}, {Preying, Flying, Birdx})

~ A~~~

Cuvelier (ECP) eBISS 2011, 07/07/2011 49 /56



Galois Lattices for Social Networks

@
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Galois Lattices for Social Networks

1] % X X

2 X X X
3| x X X X
4 X X | X

5 X | X X

6| x X X | x| x
7| x X X | X | %
8| x| x| x x| x| x
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Galois Lattices for Social Networks
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Galois Lattices for Social Networks

Conceptual Metrics based on Galois Lattices.

Relatedness
Relatedness(O)= % of objects which share properties with O.

Closeness(O)= % of shared properties of with its related objects.

Relatedness — High Low

J Closeness

High Clustered

Low Marginal

Filter the p % of marginal objects for a chosen p €]0, 1][.
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Galois Lattices vs Similarity Based Clusterings

] Criteria H GL \ SBC \
Similarity Equality | Proximity
Uniqueness of results Y N
Completeness of final structure Y N
Attribute Weight N Y
Continuous value management Hard Y

Complexity: if we denote |O| the number of objects, |A| the number of
attributes and |L| the size of the lattices (i.e. the number of concepts),
then algorithms have a complexity time in O(|O|?|A||L|) or
O(|Ol|APIL]).
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EVARIST: eBuzz Monitoring on Twitter

Treillis Complet

#ereputation

avis | | imem autes e || wbicont || cv

Nee—=
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EVARIST: eBuzz Monitoring on Twitter

Concepts > 0.1, Nuage de Tags en Réseau Topigraphique
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Pajek

navigation

= Pajek

= News

Network Analysis
How to

= Kako

Download

Events

= Resources

Links

u User's Comments
Pajek mailing list
= DIMFM ePrints

search

toolbox

@ Index

(%] Recent changes
g Backlinks
iogin

[©, Show pagesource ||[]0Id revisions

Trace: » How_to » network_analysis » resources » pajek » start » download

Download

Pajek
Pajek runs on Windows and is free for noncommercial use.

It also runs on @ Unix or @Mac
{Pajek manual. History.

Pajek for Windows 32 bit
Download the @ESNA 2 @version 2.04 / Book edition 2, (May 16, 2011) - installation pack. To install it run pajexBE2 and follov

Download the @ previous version 2.03, (January 26, 2011) of Pajek installation pack. To install it run pajex203 and follow the in
Download the @ ESNA @Book Edition version (October 1, 2004) of Pajek.

Pajek for Windows 64 bit

On Windows 64 bit a special version of Pajek can use up to 4GB of available computer memory.

Download the @version 2.04 - 64bit / Book Edition 2, (May 16, 2011) of Pajek installation pack. To install it run pajeké4-BE2 ar
Data sets

Pajek data sets.
= Data sets for experimenting with Pajek

Slides

San Diego Sunbelt XXIX workshop: T slides 1, Fslides 2, @data.

ISS 2011, 07/07/2011 53 /56




© Home || News || Download || Documentation H W wiki

Screenshots ||5’}' Mailing lists HH Bugs H License ‘

Download

The latest released version of the igraph library is 0.5 4.

@ R package — Do
The simplest way to ins
A& Windows binary
& Mac OSX universal binary

© Source package (for Linux and similar)

nload this if you pre

ronment

| the igraph R package is igraph”) in your R

please try this before downloading from here

@ Python extension module — Download this if you would like to use igraph as a Python
¥ Windows installer for Python 2.6
A% Windows installer for Python 2.7
B OS X Snow Leopard installer (Python 2.5)
B 0S X Snow Leopard installer (Python 2.6)
€ |Source code
@ Python Package Index page

nsion module

® Ruby gem — Interface
@ External homepage

ne Ruby language, developed by Dr. Alex Cutteridge

¢ C library — This is what you need if you in
© |Source code

d to use igraph in C projects

‘@ Browse all igraph releases — Al file r
@ Co to SourceForge

t SourceFarge
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makes graphs handy

The Open Graph Viz Platform

Gephi is an interactive visualization and
exploration platform for all kinds of networks and
complex systems, dynamic and hierarchical
graphs.

Runs on Windows, Linux and Mac 0S X. Gephi is
open-source and free.
Learn More on Gephi Platform »

4+ Download FREE

Release Notes | System Requirements

» Features » Screenshots
P Quick start P Videos

Gephi has been accepted again for Google Summer of Code 2011! The program is the best way for students around the world to
start contributing to an open-source project.
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Conclusions

Definition of a community or cluster, is not an easy task.
In fact, what is a cluster is in the eyes of the beholder,
One person’s noise could be another person’s signal.

Cluster analysis is structure seeking although its operation is
structure imposing.

@ In data clustering many choices must be done before any analysis
(cluster definition , algorithms, measures, ...) which influence
strongly the result.

@ But, in spite of all these warnings, clustering algorithms allow us to

retrieve valuable pieces of information in social networks, by
finding communities.
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