
A Conceptual Model of Temporal Data

Warehouses and its Transformation to the ER

and Object-Relational Models ?

E. Malinowski a,1,∗ E. Zimányi a

aDepartment of Computer & Network Engineering
Université Libre de Bruxelles

1050, Brussels, Belgium

1 Formalization of the MultiDim model

The following formalization is inspired from [2]. We first describe notations,
assumptions, and meta-variables required for defining the abstract syntax and
the semantics of the MultiDim model. Next, we give the abstract syntax of
the model that allows the translation from the graphical representation to
the equivalent textual representation. Finally, after describing the auxiliary
functions, we define the semantics of the MultiDim model.

1.1 Notations

We use SET, FSET, and TF to denote the class of sets, the class of finite
sets, and the class of total functions, respectively. Given S1, S2, . . . , Sn ∈ SET ,
Si]Sj indicates the disjoint union of sets, Si∪Sj denotes the union of sets, and
S1×S2× . . .×Sn represents the Cartesian product over the sets S1, S2, . . . , Sn.
P(S) indicates powerset of the set S.

We write finite sets as {c1, c2, . . . , cn}, lists as 〈c1, c2, . . . , cn〉, and elements

? The work of E. Malinowski was funded by the Cooperation Department of the
Université Libre de Bruxelles.∗ Corresponding author.

Email addresses: emalinow@ulb.ac.be (E. Malinowski), ezimanyi@ulb.ac.be
(E. Zimányi).
1 Currently on leave from the Universidad de Costa Rica.

Preprint submitted to Data & Knowledge Engineering 11 April 2007

of Cartesian product as (c1, c2, . . . , cn). For any set, we use ⊥ to denote the
undefined value of the set.

1.2 Predefined data types

A data signature describes the predefined data types, operations, and predi-
cates. The MultiDim model includes the basic data types int , real , and string ;
the inclusion of other data types is straightforward. These predefined data
types as well as the operations and predicates on these have the usual seman-
tics, and this interpretation is fixed, that is, defined once and for all.

The syntax of a data signature DS be given as follows:

• the sets DATA,OPNS ,PRED ∈ FSET ,
• a function input ∈ TF such that input : OPNS → DATA∗,
• a function output ∈ TF such that output : OPNS → DATA, and
• a function args ∈ TF such that args : PRED → DATA+.

If σ ∈ OPNS , input(σ) = 〈d1, . . . , dn〉 and output(σ) = d, this is denoted
as σ : 〈d1, . . . , dn〉 → d. If π ∈ PRED , with args(π) = 〈d1, . . . , dn〉, this is
denoted as π : 〈d1, . . . , dn〉.

The predefined data types and some operators and predicates on them are as
follows.

DATA ⊇ {int , real , string}
OPNS ⊇ {+i,−i, ∗i : int × int → int

+r,−r, ∗r : real × real → real

/i : int × int → real

/r : real × real → real

cat : string × string → string

. . .}
PRED ⊇ {<i, >i,≤i,≥i, 6=i: int × int

<r, >r,≤r,≥r, 6=r: real × real

<s, >s,≤s,≥s, 6=s: string × string

. . .}

2

1.3 Meta variables

SD ∈ Schema DECL – MultiDim schema declarations
DD ∈ Dim DECL – dimension declarations
LD ∈ Lev DECL – level declarations
CPD ∈ CPRel DECL – child-parent relationship declarations
FD ∈ FactRel DECL – fact relationship declarations
ICD ∈ IC DECL – integrity constraints declarations
HD ∈ Hier DECL – hierarchy declarations
AD ∈ Att DECL – attribute declarations
CPS ∈ CP SPEC – the set of child-parent specifications
IS ∈ Inv SPEC – the set of level involvement specifications
TS ∈ Temp SPEC – the set of specifications for temporal support
D ∈ Dimensions – the set of dimension names
F ∈ FactRels – the set of fact relationship names
L ∈ Levels – the set of level names
CP ∈ CPRels – the set of child-parent relationship names
H ∈ Hier – the set of hierarchy names
A ∈ Attributes – the set of attribute names
K ∈ 2Attributes – the set of subsets of attribute names
d ∈ DATA – the set of basic data types supported by the MultiDim model
min,max ∈ Integer constants – the set of integer constants
temp ∈ {LS, V T, TT, LT} – the set of temporality types
t ∈ {Time,SimpleTime,ComplexTime,Instant,InstantSet,Interval,

IntervalSet} – the set of temporal data types
gr ∈ {sec,min, hour , day ,week ,month, year} – the set of granules

for temporality

1.4 Abstract syntax

SD ::= DD; LD;CPD; FD; ICD;
DD ::= DD1 ; DD2

| Dimension D includes level L
| Dimension D includes HD

LD ::= LD1 ; LD2

| Level L has AD

| Level L with temporality TS has AD

CPD ::= CPD1 ;CPD2

| C-P relationship CP involves L1, L2

| C-P relationship CP involves L1, L2

has distributing factor

3

| C-P relationship CP involves L1, L2

with temporality TS

| C-P relationship CP involves L1, L2

with temporality TS has distributing factor
FD ::= FD1 ; FD2

| Fact relationship F involves IS

| Fact relationship F involves IS has AD

ICD ::= ICD1 ; ICD2

| K is primary key of L
| Participation of L in CP is (min,max)
| Snapshot participation of L in CP is (min,max)
| Lifespan participation of L in CP is (min,max)
| Exclusive participation of L in CPS

HD ::= HD1 , HD2

| hierarchy H composed of CPS

AD ::= AD1 , AD2

| Attribute A of A′
D

A′
D ::= type d

| type d with temporality TS

CPS ::= CPS1 ,CPS2

| CP
IS ::= IS1 , IS2

| L
| L as role

TS ::= TS1 , TS2

| (temp, t, gr)
d ::= int | real | string

temp ::= LS | V T | TT | LT
t ::= Time | SimpleTime | ComplexTime | Instant | Interval

| InstantSet | IntervalSet
gr ::= sec | min | hour | day | month | year

1.5 Examples using the abstract syntax

In this section we show examples of the textual representation of a schema for
temporal data warehouses. For brevity, only part of the textual representation
is given.

The textual representation of the schema in Figure 1 is given next.

1.5.1 Level definitions

Level Branch has

4

Product groups

Store

Store number

Name

Address

Manager name

Area

LS

Sales organiz.

Customer

Customer id

First name

Last name

Birth date

Sales

 Quantity

 AmountVT

LS
LS

x

Profession

Profession name

Description
...

Sector

Sector name

Description
...

Branch

Branch name

Description
...

x
Customer type

LS

VT Address

Product

Product number

Name

Description

Size

Distributor
VT

LS

Sales district

District name

Representative

Contact info

District area

No. employees
VT

LS

LS

LS

Category

Category name

Description

Responsible

Max. amount
VT

LS

Fig. 1. Example of a schema including temporal and non-temporal elements.

Attribute Branch name of type string ,
Attribute Description of type string ,
. . .;

Level Sector has
Attribute Sector name of type string ,
Attribute Description of type string ,
. . .;

Level Profession has
Attribute Profession name of type string ,
Attribute Description of type string ,
. . .;

Level Customer with temporality (LS, IntervalSet, month) has
Attribute Customer id of type integer ,
Attribute First name of type string ,
Attribute Last name of type string ,
Attribute Birth date of type string ,
Attribute Address of type string
with temporality (V T, IntervalSet, month),

Level Product with temporality (LS, IntervalSet, month) has
Attribute Product number of type integer ,
Attribute Name of type string ,
Attribute Description of type string ,
Attribute Size of type real

5

with temporality (V T, IntervalSet, month),
Attribute Distributor of type string

with temporality (V T, IntervalSet, month);
Level Store with temporality (LS, IntervalSet, year) has

Attribute Store number of type integer ,
Attribute Name of type string ,
Attribute Address of type string ,
Attribute Manager name of type string ,
Attribute Area of type string ;

. . .;

1.5.2 Child-parent relationship definitions

C-P relationship SectBra involves Sector , Branch;
C-P relationship ProfBra involves Profession, Branch

with temporality (LS, IntervalSet, month);
C-P relationship CustSect involves Customer , Sector ;
C-P relationship CustProf involves Customer , Profession

with temporality (LS, IntervalSet, month);
C-P relationship ProdCat involves Product , Category ;
C-P relationship StoSD involves Store, Sales district

with temporality (LS, IntervalSet, month);

1.5.3 Dimension definitions

Dimension Product includes
hierarchy Product groups composed of ProdCat ;

Dimension Customer includes
hierarchy Customer type composed of CustSect , CustProf ,

SectBra, ProfBra;
Dimension Store includes

hierarchy Sales organiz. composed of StoSD ;

1.5.4 Fact relationship definitions

Fact relationship Sales involves
Customer , Product , Store;

has
Attribute Quantity of type int

with temporality (V T, instant, month),
Attribute Amount of type real

with temporality (V T, instant, month)

6

1.5.5 Constraint definitions

Customer id is primary key of Customer ;
Product number is primary key of Product ;
Store number is primary key of Store;
. . .
Snapshot participation of Product in ProdCat is (1, 1);
Lifespan participation of Category in ProdCat is (1, n);
Snapshot participation of Category in ProdCat is (1, 1);
Lifespan participation of Category in ProdCat is (1, n);
. . .
Exclusive participation of Customer in CustSect , CustProf ;
Exclusive participation of Branch in SectBra, ProfBra;

1.6 Semantics

In this section we define the semantics of the textual representation of the Mul-
tiDim model. We begin by defining the semantics of the predefined data types,
as well the model of time. Then, after presenting some auxiliary functions, we
give the functions definining the semantics of the different components of the
model.

1.6.1 Semantics of predefined data types

The semantics of the predefined data types is given by three functions

• A function DJDATAK ∈ TF such that DJDATAK : DATA → SET . We
assume ∀d ∈ DATA (⊥∈ DJDATAK(d)) where ⊥ represents an undefined
value indicating an incorrect use of a function or an error.

• A function DJOPNS K ∈ TF such that DJOPNSK : OPNS → TF and
σ : d1 × . . . × dn → d implies DJOPNS K(σ) : DJDATAK(d1) × . . . ×
DJDATAK(dn) → DJDATAK(d) ∈ DATA for every d ∈ DATA.

• A function DJPREDK ∈ TF such that DJPREDK : PRED → REL and
π : d1 × . . . × dn → d implies DJPREDK(π) ⊆ DJDATAK(d1) × . . . ×
DJDATAK(dn) → DJDATAK(d) ∈ DATA for every d ∈ DATA.

For example, the semantics of the predefined data types and one of their
operators are defined as follows:

DJDATAK(int) = Z ∪ {⊥}
DJDATAK(real) = R ∪ {⊥}
DJDATAK(string) = A∗ ∪ {⊥}

7

DJ+iK : DJDATAK(int)×DJDATAK(int) → DJDATAK(int)

=

{
i1 × i2 → i1 + i2 if i1, i2 ∈ Z
⊥ otherwise

1.6.2 The time model

We assume that the real time line is represented in the database by a baseline
clock that is discrete and bounded on both ends [1–3]. The time domains are
then ordered, finite sets of elements isomorphic to finite subsets of the inte-
ger numbers. The non-decomposable elements of the time domain are called
chronons. Depending on application requirements consecutive chronons can
be grouped into a larger unit called a granule, such as a second, a minute, or
a day. Granularity represents the size of the granule, i.e., it is the time unit
used for specifying the duration of the granule. We denote a granule as g. The
granule gnow denotes the granule representing current time.

Following Gregersen and Jensen [2], we include a domain for each combi-
nation of the temporality types temp ∈ {LS, V T, TT, LT} and granulari-
ties gr. These domains are denoted Dgr

temp = {gtemp
1 , gtemp

2 , . . . , gtemp
n }, e.g.,

Dmonth
V T = {Jan,Feb,Mar , . . . , Dec}. The domain of each temporal type is the

union of domains represented by different granularities: Dtemp =
⋃

gr(D
gr
temp),

e.g., for TT is DTT =
⋃

gr(D
gr
TT).

The real-world instants are represented by a granule according to the cho-
sen granularity, e.g., a granule gday = 02/10/2006 using a granularity day. A
time interval is defined as the time between two instants called begin and end
instants, i.e., [gbegin , gend]gr, e.g., [25/09/2006, 02/10/2006]day. Thus, a time
interval is a sequence of consecutive granules between the starting (gbegin) and
ending (gend) granules with granularity gr, e.g., all days between 25/09/2006
and 02/10/2006. We also denote Intgr

temp the interval for each temporality
types, e.g., for V T it is Intgr

V T

We also use set of instants and sets of intervals. An instant set over time
domains is a finite union of instants, i.e., ISgr = ggr

1 ∪ . . . ∪ ggr
n . We denote

ISgr
temp the instant set for each temporality type temp, i.e., for valid time,

transaction time, lifespan, and loading time. Furthermore, an interval set,
or a temporal element, over time domains is a finite union of intervals, i.e.,
TEgr = [gbegin1

, gend1]
gr∪ . . .∪ [gbeginn

, gendn]gr. We denote TEgr
V T , TEgr

TT , TEgr
LS

and TEgr
LT as temporal elements of valid-time, transaction-time, lifespan, and

loading time domains, respectively. Since our time domains are discrete and fi-
nite, we can define a temporal element as an element of the powerset P(Dgr

temp).

8

1.6.3 Semantic domains

The MultiDim model includes the following value domains:

DS ∪ {⊥} – the set of surrogates
DL

S ⊆ DS – the set of surrogates assigned to L ∈ Levels
DCP

S ⊆ DS – the set of surrogates assigned to CP ∈ CPRels
DLS =

⋃
gr(D

gr
LS) ∪ {⊥} – the lifespan domain

DVT =
⋃

gr(D
gr
VT) ∪ {⊥} – the valid time domain

DTT =
⋃

gr(D
gr
TT) ∪ {⊥} – the transaction time domain

DLT =
⋃

gr(D
gr
LT) ∪ {⊥} – the data warehouse loading time domain

DJDATAK – the set of basic domains

1.6.4 Auxiliary functions

This section presents auxiliary functions required for defining the semantic
functions.

Function attOf takes as argument a level declaration or an attribute declara-
tion and returns the attribute names:

attOf (Level L has AD) =
attOf (Level L with temporality TS has AD) = attOf (AD)

attOf (AD1 , AD2) = attOf (AD1) ∪ attOf (AD2)
attOf (Attribute A is A′

D) = A

Function tempOf takes as argument a temporal specification and returns the
temporality types of the specification, i.e., a subset of {LS, VT, TT, LT}:

tempOf (TS1 , TS2) = tempOf (TS1) ∪ tempOf (TS2)
tempOf ((temp, t, gr)) = {temp}

Function instants takes as argument a temporal specification and returns a set
of functions t (tuples). The domain of each function is the set of temporality
types of the specification. The value domain of the temporality types is their
underlying temporal domain. Intuitively, the function returns the set of instant
tuples of a temporal specification.

instants(TS) = {t | t ∈ TF ∧ dom(t) = {tempOf (TS)} ∧
∀Ti ∈ tempOf (TS)((Ti, t, gr) ∈ TS ∧ t[Ti] ∈ Dgr

Ti
}

Function contains takes as input an instant tuple c of a temporal specification
and a set of instances of a child-parent relationship and returns the subset of
the instances that contain c in its temporal support.

contains(c, {t1, . . . , tn}) =

9





∅ if n = 0
contains(c, {t1, . . . , tn−1}) ∪ {tn} if ∀Ti ∈ dom(c)(c[Ti] ∈ tn[Ti])
contains(c, {t1, . . . , tn−1}) otherwise

Function cnt takes as input a level member m, a level L, and a set of instances
of a child-parent relationship and returns the number of tuples in the child-
parent set in which the member m participates.

cnt(m, L, {t1, . . . , tn}) =



0 if n = 0
cnt(m,L, {t1, . . . , tn−1}) if n ≥ 1 ∧ tn[sL] 6= m
cnt(m,L, {t1, . . . , tn−1}) + 1 if n ≥ 1 ∧ tn[sL] = m

Function lifespan takes as input an identifier of a level member m and a level
L, and returns the lifespan of the member, if any, or the empty set otherwise.

lifespan(m,L) =

{
t[LS] if ∃t ∈ L(L)(t[s] = m ∧ LS ∈ dom(t))
∅ otherwise

Predicate inSch takes as first argument a name of a level, of a child-parent
relationship, or of a fact relationship, as well as a schema declaration. It returns
true if the mentioned element is declared in the schema and false otherwise.

inSch(L, SD) = inSch(L,DD; LD;CPD; FD; ICD;) = inSch(L,LD) =



true if Level L has AD ∈ LD

true if Level L with temporality TS has AD ∈ LD

false otherwise

inSch(CP , SD) = inSch(CP , DD; LD;CPD; FD; IC D;) =
inSch(CP ,CPD) =



true if C-P relationship CP involves L1, L2 ∈ LD

true if C-P relationship CP involves L1, L2

has distributing factor ∈ LD

true if C-P relationship CP involves L1, L2

with temporality TS ∈ LD

true if C-P relationship CP involves L1, L2

with temporality TS has distributing factor ∈ LD

false otherwise

inSch(F, SD) = inSch(F,DD; LD;CPD; FD; IC D;) = inSch(F, FD) =



true if Fact relationship F involves IS ∈ LD

true if Fact relationship F involves IS has AD ∈ LD

false otherwise

Function parOf takes as argument the name of a child-parent relationship and
returns the levels that participate in the relationship.

10

parOf (CP) ={
parOf (C-P relationship CP . . .) if C-P relationship CP . . . ∈ SD

⊥ otherwise
parOf (C-P relationship CP involves IS) =

parOf (C-P relationship CP involves IS has . . .) =
parOf (C-P relationship CP involves IS with . . .) = parOf (IS)

parOf (IS1 , IS2) = parOf (IS1) ∪ parOf (IS2)
parOf (L) = {L}

Function tempSpec takes as argument the name of a child-parent relationship
and returns the specification of its temporal support if the relationship is
temporal and the empty set otherwise.

tempSpec(CP) =



∅ if C-P relationship CP involves L1, L2 ∈ ED

∅ if C-P relationship CP involves L1, L2

has distributing factor ∈ ED

TS if C-P relationship CP involves L1, L2

with temporality TS ∈ ED

TS if C-P relationship CP involves L1, L2

with temporality TS has distributing factor ∈ ED

⊥ otherwise

Recall that a level may participate several times in a fact relationship using
different roles. The functions role and level takes an involvement of a level in
a fact relationship and provides the role name or the level name, respectively.

role(L) = L
role(L as role) = role
level(L) = level(L as role) = L

1.6.5 Semantic functions

We give next the signature and the definition of the semantic functions.

The semantic function I determines the surrogate sets of the levels that are
involved in a fact relationship or in a child-parent relationship.

IJLK : Levels → DL
S

IJIS1 , IS2K = IJIS1K× IJIS2K
IJLK = IJL as roleK =

{
DL

S if L ∈ Levels
⊥ otherwise

The semantic function T determines the time domains of the temporal support
specified for a given level, child-parent relationship, or attribute.

11

T : Temp SPEC → DVT ∪DTT ∪DLS ∪DLT

T Jwith temporality TS1 , TS2K = T JTS1K× T JTS2K
T J(temp, instant, gr)K = Dgr

temp

T J(temp, instantSet, gr)K = P(Dgr
temp)

T J(temp, interval, gr)K = (Intgr
temp)

T J(temp, intervalSet, gr)K = P(Intgr
temp)

The semantic function A defines the value domains of attribute declarations.
If the attribute is of a predefined data type, then the value domain is that
of the specified data type. If the attribute of type includes temporal support,
this indicates that the value of this attribute changes over time. Therefore,
the value domain of this attribute is a function from a time domain to a value
domain.

A : Attributes× DATA× Temp SPEC →
DJDATAK ∪ (T JTSK→ DJDATAK)

AJAD1 , AD2K = AJAD1K×AJAD2K
AJAttribute A of A′

DK = AJA′
DK

AJtype dK =

{
DJDATAK(d) if d ∈ DATA
⊥ otherwise

AJtype d with temporality TSK ={
T JTSK→ DJDATAK(d) if d ∈ DATA ∧ TS ∈ Temp SPEC
⊥ otherwise

The function S defines the semantics of a MultiDim schema composed of de-
finitions of levels, child-parent relationships, fact relationships, and integrity
constraints. It defines each component of the underlying database and predi-
cates that ensure validity and consistency of the database.

S : SD → SJSDK
SJSDK = SJLD;CPD; FD; ICDK
SJLD;CPD; FD; ICDK = LJLDK] CPJCPDK] FJFDK] ICJICDK

The function L defines the semantics of levels. The attributes of a level have
an associated value domain. The association between a set of attributes A =
{A1, A2, . . . , An} and the set of value domains D is given by a function dom :
A → D. A member of a level with its attributes can be seen as a tuple. A tuple
t over a set of attributes A is actually a function that associates each attribute
Ai ∈ A with a value from the value domain dom(Ai). For an attribute A we
denote this value t[A].

The semantics of a level is thus a set of functions t (tuples). The domain of
each function t is the surrogate attribute s and the set of attribute names
belonging to the level L. The value domain of the surrogate attribute s is the
set DL

S of surrogate values assigned to the level L while the value domain of
the attributes of the level L is determined by the semantics of the attribute

12

declarations.

If the level has temporal support, this means that the database keeps lifespan,
transaction time, and/or loading time for the members of the level. Recall that
lifespan indicates the time during which the corresponding real-world mem-
ber exists, transaction time refers to the time during which the member was
current in the database, and loading time refers to the time when a member
was introduced in the data warehouse. Therefore, the timestamps recording
these temporality types must be associated with the member.

The function L applied to a composition of level definitions returns the disjoint
union of the functions applied to each component. This is because each level
defines a unique set of tuples, which is stored separately in the database.

L : Levels × Temp SPEC × Att DECL → IJLK×AJADK ∪
IJLK× T JTSK×AJADK

LJLD1 ; LD2K = LJLD1K] LJLD2K
LJLevel L has ADK =

{t | t ∈ TF ∧ dom(t) = {s, attOf (AD)} ∧ t[s] ∈ DL
S ∧

∀Ai ∈ attOf (AD) (t[Ai] ∈ AJAttribute Ai of A′
DK)}

LJLevel L with temporality TS has ADK =
{t | t ∈ TF ∧ dom(t) = {s, tempOf (TS), attOf (AD)} ∧ t[s] ∈ DL

S ∧
∀Ti ∈ tempOf (TS)(t[Ti] ∈ T J(Ti, t, gr)K) ∧
∀Ai ∈ attOf (AD)(t[Ai] ∈ AJAttribute Ai of A′

DK)}

The function CP define the semantics of child-parent relationships. A child-
parent relationship relates a child and a parent level and may have in addition
temporal support and/or a distributing factor. Their semantics is thus a set of
tuples t relating a child and a parent member. Members are identified through
their surrogates with the value domain defined by I. If the relationship in-
cludes a distributing factor, the domain of the function t includes additionally
an attribute d; its value domain is the set of real numbers. If the relationship
includes temporal support, the timestamps for the different temporality types
must be kept.

Since each child-parent relationship defines a unique set of tuples, if the func-
tion CP is applied to a composition of child-relationship relationship defini-
tions, it returns the disjoint union of the functions applied to each component.

CP : CPRels × Inv SPEC × Temp SPEC × Attributes →
IJISK ∪ IJISK×DJDATAK ∪ IJISK× T JTSK ∪
IJISK× T JTSK×DJDATAK

CPJCPD1 ;CPD2K = CPJCPD1K] CPJCPD2K
CPJC-P relationship CP involves L1, L2K =

{t | t ∈ TF ∧ dom(t) = {sL1 , sL2} ∧
t[sL1] ∈ IJL1K ∧ t[sL2] ∈ IJL2K}

13

CPJC-P relationship CP involves L1, L2

has distributing factorK =
{t | t ∈ TF ∧ dom(t) = {sL1 , sL2 , d} ∧
t[sL1] ∈ IJL1K ∧ t[sL2] ∈ IJL2K ∧ t[d] ∈ DJDATAK(real)}

CPJC-P relationship CP involves L1, L2 with temporality TSK =
{t | t ∈ TF ∧ dom(t) = {sL1 , sL2 , tempOf (TS)} ∧ t[sL1] ∈ IJL1K ∧
t[sL2] ∈ IJL2K ∧ ∀Ti ∈ tempOf (TS)(t[Ti] ∈ T J(Ti, t, gr)K) ∧
(LS ∈ tempOf (TS) ⇒ t[LS] ⊆ lifespan(sL1 , L1)∩ lifespan(sL2 , L2))}

CPJC-P relationship CP involves L1, L2 with temporality TS

has distributing factorK =
{t | t ∈ TF ∧ dom(t) = {sL1 , sL2 , tempOf (TS), d} ∧ t[sL1] ∈ IJL1K ∧
t[sL2] ∈ IJL2K ∧ ∀Ti ∈ tempOf (TS)(t[Ti] ∈ T J(Ti, t, gr)K) ∧
(LS ∈ tempOf (TS) ⇒ t[LS] ⊆ lifespan(sL1 , L1)∩lifespan(sL2 , L2))∧
t[d] ∈ DJDATAK(real)}

Notice that the two last definitions above enforce the constraint that the
lifespan of an instance of a temporal child-parent relationship must be included
in the intersection of lifespans of its participating members.

The function F defines the semantics of fact relationships. A fact relationship
relates several levels and may have attributes. Its semantics is thus a set of
tuples t defining a member from each of its levels, as well as values for its
attributes. Recall that a level may participate several times in a fact relation-
ship using different roles. If this is the case the role name is used instead of
the level name in the domain of function t. Members are identified through
their surrogates with the value domain defined by I. If the fact relationship
has attributes, the domain of the function t includes additionally the set of
attribute names. The value domains of these attributes are determined by the
semantics of the attribute declarations. As for the level and the child-parent
relationships, a fact relationship defines a unique set of tuples that are stored
separately in the database.

F : FactRels × Inv SPEC × Att DECL → IJISK ∪ IJISK×AJADK
FJFD1 ; FD2K = FJFD1K] FJFD2K
FJFact relationship F involves ISK =

{t | t ∈ TF ∧ dom(t) = {⋃Li∈IS
srole(Li)} ∧

∀Li ∈ IS (t[srole(Li)] ∈ IJlevel(Li)K)}
FJFact relationship F involves IS has ADK =

{t | t ∈ TF ∧ dom(t) = {⋃Li∈IS
srole(Li), attOf (AD)} ∧

∀Ai ∈ attOf (AD) (t[Ai] ∈ AJAttribute A of A′
DK) ∧

∀Li ∈ IS (t[srole(Li)] ∈ IJlevel(Li)K)}

The function IC defines the semantics of the integrity constraints. The seman-
tics of a constraint is a set of predicates that the database must satisfy. In the
textual representation all constraints are separate constructs, so the predicates

14

must first verify that the constructs (e.g, levels, relationships) mentioned in
the constraints belongs to the schema using the function inSch.

IC : ICD → PRED
ICJICD1 ; ICD2K = ICJICD1K ∧ ICJICD2K

The primary key constraint ensures that the values of the key attributes are
unique for all members of the level.

ICJK is primary key of LK = inSch(L, SD) ∧
((K ⊆ attOf (Level L has AD) ∧ ∀ti, tj ∈ LJLevel L has ADK
(ti[K] = tj[K] ⇒ ti[s] = tj[s])) ∨
(K ⊆ attOf (Level L with temporality TS has AD) ∧
∀ti, tj ∈ LJLevel L with temporality TS has ADK ∧
(T JTSK→ ti[K]=T JTSK→ tj[K] ⇒ T JTSK→ ti[s]=T JTSK→ tj[s]))

The cardinality constraints ensure that a child member can be related to
minimum min and maximum max parent members. Three cases must be con-
sidered: usual cardinality constraints for non-temporal relationships as well as
snapshot and lifespan cardinality constraints for temporal relationships. In the
case of usual cardinality constraints, for every member m of the level L we use
the function cnt to determine the number of tuples belonging to the semantics
of the child-parent relationship in which m participates. Snapshot cardinality
constraints must be satisfied at each instant tuple c of the temporal domain of
the relationship. Therefore, we use the function contains to obtain the subset
of the tuples belonging to the semantics of the child-parent relationship that
contains the instant tuple c. Then the function cnt is applied to this subset. In
addition, if the level participating in the relationship is temporal, then for each
instant belonging to the lifespan of a member m, it must be related to a valid
member of the other level through an instance of the relationship. Finally,
lifespan cardinality constraints must be satisfied during the whole temporal
domain of the relationship.

ICJParticipation of L in CP is (min,max)K =
inSch(L, SD) ∧ inSch(CP , SD) ∧ L ∈ parOf(CP) ∧ ∀m ∈ DL

S

(min ≤ cnt(m,L, CPJC-P relationship CP . . .K) ≤ max)
ICJSnapshot participation of L in CP is (min, max)K =

inSch(L, SD) ∧ inSch(CP , SD) ∧ L ∈ parOf(CP) ∧
∀c ∈ instants(tempSpec(CP)) ∀m ∈ DL

S (min ≤
cnt(m,L, contains(c, CPJC-P relationship CP . . .K)) ≤ max) ∧
∀m ∈ DL

S ∀c ∈ lifespan(m,L) ∃t ∈ CPJC-P relationship CP . . .K
(t[sL] = m ∧ c ∈ t[LS])

ICJLifespan participation of L in CP is (min,max)K =
inSch(L, SD) ∧ inSch(CP , SD) ∧ L ∈ parOf(CP) ∧ ∀m ∈ DL

S

(min ≤ cnt(m,L, CPJC-P relationship CP . . .K) ≤ max)

15

A member of a level that participates exclusively in a set of child-parent
relationships (i.e., a member of a splitting or joining level) cannot be involved
in more than one of these relationships.

ICJExclusive participation of L in CPSK = inSch(L, SD) ∧
∀CP i ∈ CPS(inSch(CP i, SD)) ∧ ¬(∃CP i,CP j ∈ CPS

∃t1 ∈ CPJC-P relationship CP i involves . . .K
∃t2 ∈ CPJC-P relationship CP j involves . . .K
(i 6= j ∧ t1[sL] = t2[sL]))

Notice that in the above formalization dimensions and hierarchies do not have
semantic interpretations. However, they are needed for defining meaningful
OLAP operations. Dimensions are required for the drill-across operation that
allows to compare measures from different fact relationships. Hierarchies are
needed for defining aggregations for the roll-up and drill-down operations.
Such operations are beyond the scope of this paper.

References

[1] O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases: Research
and Practice. Springer, 1998.

[2] H. Gregersen and C. Jensen. Conceptual modeling of time-varying information.
Technical report, Time Center, TR-35, 1998.

[3] C. Jensen and R. Snodgrass. Temporally enhanced database design. In
M. Papazoglou, S. Spaccapietra, and Z. Tari, editors, Advances in Object-
Oriented Data Modeling, pages 163–193. MIT Press, 2000.

16

