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Abstract. The Semantic Web (SW) has drawn the attention of data
enthusiasts, and also inspired the exploitation and design of multidimen-
sional data warehouses, in an unconventional way. Traditional data ware-
houses (DW) operate over static data. However multidimensional (MD)
data modeling approach can be dynamically extended by defining both
the schema and instances of MD data as RDF graphs. The importance
and applicability of MD data warehouses over RDF is widely studied
yvet none of the works support a spatially enhanced MD model on the
SW. Spatial support in DWs is a desirable feature for enhanced analy-
sis, since adding encoded spatial information of the data allows to query
with spatial functions. In this paper we propose to empower the spatial
dimension of data warehouses by adding spatial data types and topolog-
ical relationships to the existing QB4OLAP vocabulary, which already
supports the representation of the constructs of the MD models in RDF.
With QB4SOLAP, spatial constructs of the MD models can be also pub-
lished in RDF, which allows to implement spatial and metric analysis
on spatial members along with OLAP operations. In our contribution,
we describe a set of spatial OLAP (SOLAP) operations, demonstrate a
spatially extended metamodel as, QB4SOLAP, and apply it on a use case
scenario. Finally, we show how these SOLAP queries can be expressed
in SPARQL.

1 Introduction

The evolution of the Semantic Web (SW) and its tools allow to employ com-
plex analysis over multidimensional (MD) data models via On-Line Analyti-
cal Processing (OLAP) style queries. OLAP emerges when executing complex
queries over data warehouses (DW) to support decision making. DWs store large
volumes of data which are designed with MD modeling approach and usually
perceived as data cubes. Cells of the cube represent the observation facts for
analysis with a set of attributes called measures (e.g. a sales fact cube with
measures of product quantity and prices). Facts are linked to dimensions which
give contextual information (e.g. sales date, product, and location). Dimensions
are perspectives which are used to analyze data, organized into hierarchies and
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levels that allow users to analyze and aggregate measures at different levels of
detail. Levels have a set of attributes that describe the characteristics of the level
members.

In traditional DWs, the “location” dimension is widely used as a conventional
dimension which is represented in an alphanumeric manner with only nominal
reference to the place names. This neither allow manipulating location-based
data nor deriving topological relations among the hierarchy levels of the location
dimension. This issue yields a demand for truly spatial DWs for better analysis
purposes. Including encoded geometric information of the location data signif-
icantly improves the analysis process (i.e. proximity analysis of the locations)
with comprehensive perspectives by revealing dynamic spatial hierarchy levels
and new spatial members. The scope of this work is first focuses on enhancing
the spatial characteristics of the cube members on the SW, and then describing
and utilizing SOLAP operators for advanced analysis and decision making.

In our approach we consider enabling SOLAP capabilities directly over
Resource Description Framework (RDF) data on the SW. Importance and
applicability of performing OLAP operations directly over RDF data is studied
in [9,12]. To perform SOLAP over the SW cousistently, an explicit and precise
vocabulary is needed for the modeling process. The key concepts of spatial cube
members need to be defined in advance to realize SOLAP operations since they
employ spatial measures with spatial aggregate functions (e.g. union, buffer,
and, convex-hull) and topological relations among spatial dimension and hierar-
chy level members (e.g. within, intersects, and, overlaps). Current state of the
art RDF and OLAP technologies is limited to support conventional dimension
schema and analysis along it’s levels. Spatial dimension schema and SOLAP
require an advanced specialized data model. As a first effort to overcome the
limitations of modeling and querying spatial data warehouses on the Semantic
Web we give our contributions in the following.

Contributions. We propose an extended metamodel solution that enables rep-
resentation and RDF implementation of spatial DWs. We base our metamodel on
the most recent QB4OLAP vocabulary and present an extension to support the
spatial functions and spatial elements of the MD cubes. We discuss the notion
of a SOLAP operator and observe it with examples, then we give the semantics
of each SOLAP operator formally and finally, show how to implement them in
SPARQL by using sub-queries and nested set of operators.

In the remainder of the paper, we first present the state of the art, in Sect. 2.
As a prerequisite for our contribution in Sect. 3, we give the preliminary concepts
and explain the structure of a SOLAP operator. Then, in Sect.4 we define the
semantics of MD data cube elements in RDF, present QB4SOLAP and formalize
the SOLAP operators over MD data cube elements. We present a QB4SOLAP
use case in Sect. 5 and then, we show how to write the defined SOLAP queries
over this use case in SPARQL in Sect.6. Finally, in Sect.7, we conclude and
remark to the future work directions.
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2 State of the Art

DW and OLAP technologies have been proven a successful approach for analysis
purposes on large volumes of data [1]. Aligning DW/OLAP technologies with
RDF data makes external data sources available and brings up dynamic sce-
narios for analysis. The following studies are found concerning DW/OLAP with
the SW.

DW/OLAP and Semantic Web: The potential of OLAP to analyze SW
data is recognized in several approaches, thus MD modeling from ontologies is
studied in the works of [8,17]. However these approaches do not support standard
querying of RDF data in SPARQL but require a MD or a relational database
query engine, which limits the access to frequently updated RDF data. Kémpgen
et al. propose an extended model [12] on top of RDF Data Cube Vocabulary
(QB) [6] for interacting with statistical linked data via OLAP operations in
SPARQL, but it has the limitations of the QB and thus cannot support full
OLAP dimension structure with aggregate functions. It also has only limited
support for complete MD data model members (e.g. hierarchies and levels).
Etcheverry et al. introduce QB4OLAP [9] as an extended vocabulary of QB
with a full MD metamodel, which supports OLAP operations directly over RDF
data with SPARQL queries. However, none of these vocabularies and approaches
support spatial DWs, unlike our proposal.

Spatial DW and OLAP: The constraint representation of spatial data has
been focus in many fields from databases to AI [18]. Extending OLAP with
spatial features has attracted the attention of data warehousing communities as
well. Several conceptual models are proposed for representing spatial data in data
warehouses. Stefanovic et al. [11] investigates on constructing and materializing
the spatial cubes in their proposed model. The MultiDim conceptual model is
introduced by Malinowski and Ziményi [16] which copes with spatial features
and extended in [20], to include complex geometric features (i.e. continuous
fields), with a set of operations and MD calculus supporting spatial data types.
Goémez et al. [10] propose an algebra and a very general framework for OLAP
cube analysis on discrete and continuous spatial data. Even though spatial data
warehousing is widely studied, it has not implemented yet on the Semantic Web.

Geospatial Semantic Web: The Open Geospatial Consortium — OGC pursue
an important line of work for geospatial SW with GeoSPARQL [3] as a vocabu-
lary to represent and query spatial data in RDF with an extension to SPARQL.
Kyzirakos et al. presents a comprehensive survey in data models and query lan-
guages for linked geospatial data in [14], and propose a semantic geospatial data
store - Strabon with an extensive query language — stSPARQL in [13], which
is yet limited to a specific environment. LinkedGeoData is a significant contri-
bution on interactively transforming OpenStreetMap' data to RDF data [19].
GeoKnow [15] is a more recent project with focus on linking geospatial data
from heterogeneous sources.

! http://www.openstreetmap.org.
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The studies shows that, SW and RDF technologies evolve to give better func-
tionality and standards for spatial data representation and querying. It is also
argued above that spatial data is very much needed for DW/OLAP applications.
However modeling and querying of spatial DWs on the SW is not addressed in
any of the above papers. There are recent efforts on creating an Extract-Load-
Transform (ETL) framework from semantic data warehouses [7] and publishing/-
converting open spatial data as Linked Open Data [2], which motivates modeling
and querying spatial data warehouses on the Semantic Web. Spatial data requires
specific treatment techniques, particular encoding, special functions and differ-
ent manipulation methods, which should be considered during the design and
modeling process. Current state of the art geospatial Semantic Web focuses on
techniques for publishing, linking and querying spatial data however does not
elaborate on analytical spatial queries for MD data. In order to address these
issues we propose a generic and extensible metamodel based on the best practices
of MD data publishing in RDF. Then we show how to create spatial analytical
queries with SOLAP on MD data models. We base ourselves on existing works
by extending the most recent version of the QB4OLAP vocabulary with spatial
concepts. Furthermore, we introduce the new concept of SOLAP operators that
navigate along spatial dynamic hierarchy levels and implement these analytical
spatial queries in SPARQL.

3 Spatial and OLAP Operations

In this section we give define the spatial and spatial OLAP (SOLAP) operations.

3.1 Spatial Operations

In order to understand spatial operations, it is important to understand what is
a spatial object. A spatial object is the data or information that identifies a real-
world entity of geographic features, boundaries, places etc. Spatial objects can
be represented in object/vector or image/raster mode. Database applications
that can store spatial objects need to specify the spatial characteristics, encoded
as specific information such as geometry data type which is the most common
and supports planar or Euclidean (flat-earth) data. Point, Line, and, Polygon
are the basic instantiable types of the geometry data type.

Geometries are associated with a spatial reference system (SRS) which
describes the coordinate space in which the geometry is defined. There are several
SRSs and each of them are identified with a spatial reference system identifier
(SRID). The World Geodetic System (WGS) is the most well-known SRS and
the latest version is called WGS84, which is also used in our use case.

Spatial data types have a set of operators that can function among applica-
tions. We grouped these operations into classes. Our classification is based on
the common functionality of the operators. These classes are defined as follows:

Spatial Aggregation. The operators in the spatial aggregation, S,4q class
aggregate two or more spatial objects. The result of these operators returns
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a new composite spatial object. Union, Intersection, Buffer, ConvexHull, and,
MBR - Minimum Bounding Rectangle are example operators of this class.

Topological Relation. The operators in the topological relation, 7;.; class are
commonly contained in the RCC8? and DE-9DIM? models. Topological relations
are standardized by OGC as Boolean operators which specify how two spatial
objects are related to each other with a set of spatial predicates for example:
Intersects, Disjoint, Equals, Overlaps, Contains, Within, Touches, Covers, Cov-
eredBy, and, Crosses.

Numeric Operation. The operators in the class of numeric operation, N,,
take one or more spatial objects and return a numeric value. Perimeter, Area,
# of Interior Rings, Distance, Haversine Distance, Nearest Neighbor (NN), and
# of Geometries are some of the example operators of this class.

3.2 SOLAP Operations

OLAP operations emerge when executing complex queries over multidimensional
(MD) data models. OLAP operations let us interpret data from different per-
spectives at different levels of detail. Spatially extended multidimensional models
incorporate spatial data during the analysis and decision making process by
revealing new patterns, which are difficult to discover otherwise. In connection
with our definition of MD models in the first paragraph of Sect. 1, hereafter we
enhance and describe the spatially extended MD data cube elements.

A spatially extended MD model contains both conventional and spatial
dimensions. A spatial dimension is a dimension which includes at least one spatial
hierarchy. Dimensions usually have more than one level which are represented
through hierarchies and there is always a unique top level All with just one
member. A hierarchy is a spatial hierarchy if it has at least one spatial level in
which the application should store the spatial characteristics of the data, which
is captured by it is geometry and can be recorded in the spatial attributes of
the level. A spatial fact is a fact that relates several dimensions in which, two
or more are spatial. For example, consider a “Sales” spatial fact cube, which
has “Customer” and “Supplier” (company) as spatial dimensions with a spatial
hierarchy as “Geography” that expands into (hierarchic) spatial levels; “City —
State — Country — Continent — All” from the customer and supplier’s loca-
tion. All these spatial levels record the spatial characteristics i.e. with a spatial
attribute of a city (center) as “point” coordinates. Measures in the cube express
additional and essential information for each MD data cell which is not exhibited
through the dimensions and level attributes. Typically, spatially extended MD
models have spatial measures which are represented by a geometry i.e. point,
polygon, etc.

2 RCC8 — Region Connection Calculus describes regions in Euclidean space, or in a
topological space by their possible relations to each other.

3 DE-9DIM — Dimensionally Extended Nine-Intersection Model is a topological model
that describes spatial relations of two geometries in two-dimensions.
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Spatial OLAP operates on spatially extended MD models. SOLAP
enhances the analytical capabilities of OLAP with the spatial information of
the cube members. The term SOLAP used in [4] and their similar works as
a visual platform, which is designed to analyze huge volumes of geo-referenced
data by providing visualization of pivot tables, graphical displays and interactive
maps. We define the term SOLAP concisely as a platform (and query language)
independent high-level concept, which is applicable on any spatial multidimen-
sional data. We explain and exemplify in the following how SOLAP operators
are interpreted.

Each operator in SOLAP should include at least one spatial condition by
using the aforementioned operators from the spatial operation classes defined
in Sect.3.1. Spatial operations in SOLAP create a dynamic interpretation of
the cube members as a dynamic spatial hierarchy or level. These interpretations
allow new perspectives to analyze the spatial MD data which cannot be accessed
in a traditional MD model. For instance, the classical OLAP operator roll-up
aggregates measures along a hierarchy to obtain data at a coarser granularity.
In the spatial dimension schema Fig. 1, the (classical) roll-up relation, Customer
to City is shown with black straight arrows. On the other hand, in SOLAP, a
new “dynamic spatial hierarchy” is created on the fly to roll-up among spatial
levels by a spatial condition (closest distance), which is given as Customer to
Closest-City (of the Supplier), shown with curved arrows in gray. The details of
this operator in comparison with OLAP and SOLAP are given in the following
example.

Example: Roll-up. The user wants to sum the total amount of the sales
to customers up to the city level with the roll-up operator. The instance
data for Sales fact is given in Tablel and shown on the map in Fig. 2.
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Fig. 1. S-Dim. Schema

Fig. 2. Example map of sales (instance) data
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Table 1. Sample (instance) data for sales

Table 2. Roll-up

City Customer | Supplier sales Total sales

Ditsseldorf|cl Zl = ;3 11 City Sales
isseldorf|c pes. |- pcs. pcs. Ditsseldorf | 21pes.

c2 10pcs. |- - 10pcs.
Dortmund | 34pcs.
Dortmund |c3 Tpcs. |4pcs. |- 11pcs. Minster 30ncs
cd - 20pcs. |3pcs. | 23pcs. Pes.

Miinster |cb — — 30pcs. | 30pcs.

Table 4. Customer to Supplier Distance (km.s)

Table 3. S-Roll-up Sup. City  |Diisseldorf Dortmund Miinster
. Sup.

City Sales Cust. City Cust. P sl s2 s3
Diisseldorf | 25pcs. Diisseldorf cl 15 km.s 45km.s 30 km.s
Dortmund | 20pcs. c2 15 km.s 60 km.s 60 km.s
Miinster | 33pcs. Dortmund c3 15 km.s 30 km.s 45 km.s
c4 45 km.s 15km.s 15 km.s
Miinster c5 60 km.s 45km.s 15 km.s

The amount of the sales are shown in parentheses along with the quanti-
ties of the sold parcels (from supplier to customer). The arrows on the map,
between the supplier and customer locations are used to represent the distance.
The summarized data for sale instances (Tablel) does not originally contain
the records of the supplier — customer distance (as given in Table4) which
can lead to increase in the storage space. If there are no sales to customers
from the corresponding suppliers, a dash (—) is used in Table1. The syntax
of the traditional roll-up operator is ROLLUP(Sales, (Customer — City),
SUM(SalesAmount)) which aggregates the “total sales to customers up to
city level” (results in Table 2). Alternatively, the user may like to view the “total
sales to customers by city of the closest suppliers”, in which some customers
can be closer to their suppliers from other cities, as emphasized in Table4.
This query is possible with traditional OLAP, if only Table4 is recorded in
the base data which requires extra storage space. For a better support and flex-
ibility we define a spatial roll-up operator that aggregates the total sales along
the dynamic spatial hierarchy, which is created based on a spatial condition
(in this example, distance between customer and supplier locations). The syn-
tax for s-roll-up is; S-ROLLUP(Sales,[CLOSEST (Customer,Supplier)]
— City’,SUM(SalesAmount)). The spatial condition transforms the
customer—-city hierarchy as a dynamic spatial hierarchy, which depends on
the proximity of the suppliers that is calculated during runtime. The user has the
flexibility to make analyses with different spatial operations in SOLAP. Spatial
extensions of common OLAP operators (roll-up, drill-down, slice, and dice) are
formally defined in Sect. 4.3.
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4 Semantics of Spatial MD Data and OLAP Operations

In this section, we first present our approach on how to support spatial MD
data in RDF by using the QB4SOLAP vocabulary. Afterwards, we define the
general semantics of each SOLAP operator to be implemented in SPARQL as
a proof of concept to the QB4SOLAP metamodel. The concepts introduced in
this metamodel are an extension to the most recent QB4OLAP vocabulary [9].

Figure 3 shows the proposed and extended QB4OLAP vocabulary for the
cube schema RDF triples. Capitalized terms in the figure represent RDF classes
and non-capitalized terms represent RDF properties. Classes in external vocab-
ularies are depicted in light gray background and font. RDF Cube (QB),
QB40OLAP, QB4SOLAP classes are shown with white, light gray, dark gray back-
grounds, respectively. Original QB terms are prefixed with gb:. QB4OLAP and
QB4SOLAP classes and properties are prefixed with gb4o: and gb4so:. In order
to represent spatial classes and properties an external prefix from OGC, geo: is
used in the metamodel. Since QB4OLAP and QB4SOLAP are RDF-based mul-
tidimensional model schemas, we first define formally what an RDF triple is, and
then discuss the basics of describing MD data using QB4OLAP and spatially
enhanced MD data in QB4SOLAP.

An RDF triple t consists of three components; s is the subject, p is the predicate,
and o is the object, which is defined as: triple (s,p,0) € t = (ZUB)xZ x (ZUBULi)
where the set of IRIs is T , the set of blank nodes is B, and the set of literals is Li.
Given an MD element x of the cube schema CS, CS(z) € (ZUBULi) returns a set
of triples 7, with IRIs, blank nodes and literals. The notation of the triples in the
following definitions is given as (z rdf:type ex:SomeProperty). If the concepts
are defined with a set of triples, after the first triple, we use a semicolon “;” to
link predicates (p) and objects (o) with the subject (s) concept z. The blank
nodes B are expressed as _: and nesting unlabeled blank nodes are abbreviated
in square brackets “[]”.

4.1 Defining MD Data in QB40OLAP

In order to explain the spatially enhanced MD models we first describe MD ele-
ments described in Sect. 1 with the RDF formalization in QB4OLAP vocabulary.

Cube Schema. A data structure definition (DSD) specifies the schema of a data
set (i.e., a cube, which is an instance of the class qb:DataSet). The DSD can be
shared among different data sets. The DSD of a data set represents dimensions,
levels, measures, and attributes with component properties. The DSD is defined
through a conceptual MD cube schema CS, which has a set of dimension types D,
a set of measures M and, with a fact type F as CS = (D, M, F). For example, a
cube schema CS can be used to define a physical structure of a company’s sales
data to be represented as a MD data cube. We define the cube schema elements
in the following definitions.
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gb:ComponentSpecification

4—' gb:DataStructureDefinition |
b:component

q T

gb:componentRequired : boolean qb:sliceKey )
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| gb4so:Contains gb4so:Crosses | gb4o:0OneToMany |4 gb4o:ManyToMany|

Fig. 3. QB4SOLAP vocabulary meta-model

Attributes. An attribute ¢ € A = {a1,4a2,...,a,} has a domain (a : dom)
in the cube schema CS with a set of triples t, € 7 where ¢, is encoded as
(a rdf :type gb:AttributeProperty; rdfs:domain xsd:Schema)

The domain of the attribute is given with the property rdfs:domain? from
the corresponding schema and rdfs:range defines what values the property can
take i.e.; integer, decimal, etc. from the given, xsd:Schema elements®. Attributes
are the finest granular elements of the cube, which exists in levels to describe
the characteristics of level members e.g., customer level attributes could be as;
name, id, address, etc.

Levels. A level | € £ = {l1,ls,...,l,} consists of a set of attributes A;,
which is defined by a schema [(a; : dom,...,a, : dom,), where [ is the level
and each attribute a is defined over the domain dom. For each level | € L

* RDF Schema http://www.w3.org/TR,/rdf-schema,.
5 XML Schema http://www.w3.org/TR/xmlschemall-1/.
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in the cube schema CS, there is a set of triples {; € 7 which is encoded as
(I rdf :type gbdo:LevelProperty; qgbdo:hasAttribute a). Relevant levels for
customer data include; customer level, city level, country level, etc.

Hierarchies. A hierarchy h € H = {hi,hs,...,h,} in the cube schema
CS, is defined with a set of triples ¢, € 7, and encoded as (h rdf:type
gbdo:HierarchyProperty; qb4o:hasLevel [; gb4o:inDimension D).

Each hierarchy h € H is defined as h = (Lp,, Rp); with a set of £ (hierarchy)
levels, which is a subset of the set L£; levels of the dimension D where £; C
Ly € D. L4 contains the initial base level of the dimension in addition to
hierarchy levels Lj. For example, customer—location hierarchy can be defined
by the levels; customer, city, country, etc. where customer is the base level and
contained only in L.

Due to the nature of the hierarchies, a hierarchy entails a roll-up relation Ry,
between its levels, Ry, = (L, £p, card) where £, and £, are respectively child
and parent levels, where the lower level is called child and higher level is called
parent. Cardinality card € {1 — 1,1 —n,n — 1,n — n} describes the minimum
and maximum number of members in one level that can be related to a member
in another level, e.g., R, = (city, country, many — to — one) shows that the
roll-up relation between the child level city to parent level country is many-to-
one, which means that each country can have many cities. In order to represent
cardinalities between the child and the parent levels, blank nodes are created
as hierarchy steps, _hps € B. Hierarchy steps relate the levels of the hierarchy
from a bottom (child) level to an upper (parent) level, which is defined with a
set of triples ts € 7 and encoded as (:ihps rdf:type gbdo:HierarchyStep;
gb4o:childLevel lh.; qb4do:parentLevel lh,; gb4o:cardinality card) where
lhe € Ly lhy € Ly and card € {1 —1,1 —n,n—1,n—n}.

Dimensions. An n-dimensional cube schema has a set of dimensions D =
{dy,ds,...,d,}. And each d € D is defined as a tuple d = (£,H); with a set
of L4 levels, organized into Hy hierarchies. Dimensions, inherently have all the
levels from the hierarchies they have, and an initial base level. For each dimen-
sion d € D, in the cube schema CS, there is a set of triples t4 € 7, which is
encoded as (d rdf :type gb:DimensionProperty; qb4o:hasHierarchy h). For
example, customerDim is a dimension with a location and a customer type hier-
archy where location expands to levels of customer’s location (e.g., city, country,
etc.) and customer type expands to levels of customer’s type (e.g.,profession,
branch, etc.).

Measures. A measure m € M = {my,ma,...,my}, is a property, which
is associated to the facts. Measures are given in the cube schema CS with
a set of triples t,,, € 7, which is encoded as (mrdf:type qb:MeasureProperty;
rdfs:subProperty0f sdmx-measure:obsValue; rdfs:domain xsd:Schema).
Measures are defined with a sub-property from the Statistical Data and
Metadata Exchange - (sdmaz) definitions, sdmx-measure:obsValue which is
the value of a particular variable for a particular observation®. Similarly to

5 http://sdmx.org/.
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the attributes rdfs:domain specifies the schema of the measure property and,
rdfs:range defines what values the property can take i.e.; integer, decimal, etc.
in the instances. For example, quantity and price are measures of a fact (e.g.,
sales) where the instance values can be given respectively, in the form: “13”
"“xsd:positivelnteger and “42.40” " "xsd:decimal. Measures are associated with
observations (facts) and related to dimension levels in the DSD as explained in
the following.

Facts. A fact f € F = {f1, fo,..., fn} is related to values of dimensions
and measures. The relation is described in components in the schema level
of the facts cube definition, by a set of triples t; € 7, which is encoded as
(F rdf:type gb:DataStructureDefinition; gb:component[qbdo:level [;
gb4o:cardinality card]; qb:component[gb:measure m; gb4o:aggregate
Function BIF]). Cardinality, card € {1 — 1,1 — n,n — 1,n — n} repre-
sents the cardinality of the relationship between facts and level members. The
specification of the aggregate functions for measures is required in the def-
inition of the cube schema. Standard way of representing typical aggregate
functions is defined by QB4OLAP namely built-in functions such as; BIF €
{Sum, Avg, Count, Min, Maz}. For example, a fact schema F can be sales of
a company which has associated dimensions and measures defined as components
respectively e.g. product and price.

Finally, the facts F = {f1, fa,..., fn} are given on the instance level where
each fact f has a unique IRI Z, which are observations. This is encoded as
(f rdf:type gb:0bservation). An example of a fact instance f with it’s rela-
tion to measure values and dimension levels is a “sale” transacted to customer
“John” (value of the dimension level), for a product “chocalate” (value of another
dimension level), which has a unit price of “29.99” (value of a measure) euros,
and quantity of “20” (value of another measure) boxes. Cardinality of the dimen-
sion level customer and fact member is many—to—one where several sales can be
transacted to the same customer (i.e. John). Specification of the aggregate func-
tion for measure unit price is “average” while quantity can be specified as “sum”.

We gave the cube schema CS = (D, M, F) members above where dimensions
d € D are defined as a tuple of dimension levels £; and hierarchies H, d =
(L4, H), and a hierarchy h € H is defined with hierarchy levels £; such that
h = (Ly), where L;, C L4, and a level [ contains attributes A; as | = (A4;).

4.2 Defining Spatially Enhanced MD Data in QB4SOLAP

QB4SOLAP adds a new concept to the metamodel, which is geo: Geometry class
from OGC schemas”. We define the QB4SOLAP extension to the cube schema
in the description of the following spatial MD data elements, which are explained
in Sect. 3.2.

Spatial Attributes. Each attribute is defined over a domain (Sect.4.1). Every
attribute with geometry domain (a : domg, € A) is a member of geo:Geometry

" OGC Schemas http://schemas.opengis.net/.
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class and they are called spatial attributes as, which are defined in the
cube schema CS by a set of triples ¢,, € 7 and encoded as (as rdf:type
gb:AttributeProperty; rdfs:domain geo:Geometry). The type (point, poly-
gon, line, etc.) of the each spatial attribute is assigned with rdfs:range predicate
in the instances. For example, a spatial attribute can be the “capital city” of a
country which is represented through a point geometry.

Spatial Levels. Each spatial level I, € £ is defined with a set of triples ;s € 7
in the cube schema CS, and encoded as (Is rdf:type gb4do:LevelProperty;
gb4o:hasAttribute a,as; geo:hasGeometry geo:Geometry). Spatial levels
must be a member of geo:Geometry class and might have spatial attributes. For
example country level is a spatial level which has a polygon geometry and might
also record geometry of the capital city in the level attributes as a point type.

Spatial Hierarchies. Each hierarchy hy € H is spatial, if it relates two or
more spatial levels [5. Spatial hierarchy step defines the relation between the
spatial levels with a roll-up relation as in conventional hierarchy steps (Sect.4.1).
QB4SOLAP introduces topological relations, 7,..; (Sect. 3.1) besides cardinalities
in the roll-up relation which is encoded as R = (L., £, card, 7;;) for the spatial
hierarchy steps.

Let tsps € T a set of triples to represent a hierarchy step for spatial levels in
hierarchies, which is given with a blank node :_shps € B and encoded as (:-shps
rdf :type gb4o:HierarchyStep; gb4o:childLevel slh.;; gb4o:parentLevel
slhpi; gbdo:cardinality card; qb4so:hasTopologicalRelation 7,.;) where
slhe; € Le, slhy; € L. For example, a spatial hierarchy is “geography” which
should have spatial levels (e.g. customer, city, country, and continent) with the
roll-up relation Ry, = (city, country, many — to — one, within), which also spec-
ifies that child level city is “within” the parent level country, in addition to the
hierarchy steps from Sect. 4.1.

Spatial Dimensions. Dimensions are identified as spatial if only they have at
least one spatial hierarchy. More than one dimension can share the same spatial
hierarchy and the spatial levels, which belongs to that hierarchy. QB4SOLAP
uses the same schema definitions of the dimensions as in Sect.4.1. For exam-
ple, a spatial dimension is customer dimension, which has a spatial hierarchy
geography.

Spatial Measures. Each spatial measure ms € M is defined in the cube schema
CS by a set of triples ¢,,s € 7 and encoded as (ms rdf:type gb:MeasurePro
perty; rdfs:subProperty0f sdmx-measure:obsValue; rdfs:domain geo:
Geometry). The class of the numeric value is given with the property rdfs:domain
and rdfs:range assigns the values from geo:Geometry class, i.e., point, polygon,
etc. at the instance level.

Spatial measures are represented by a geometry thus they use a different
schema than conventional (numeric) measures. The schemas for spatial measures
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have common geometry serialization standards® that are used in OGC schemas.
For example a spatial measure is coordinates of an accident location, which is
given as a point geometry type and associated to an observation fact of accidents.

Spatial Facts. Spatial facts F; relates several dimensions of which two or more
are spatial. If there are several spatial dimension levels (I), related to the fact,
topological relations 7. (Sect.3.1) between the spatial members of the fact
instance may be required which is not necessarily imposed for all the spatial
fact cubes. Ideally a spatial fact cube has spatial measures (my), as its members
which makes it possible to aggregate along spatial measures with the spatial
aggregation functions S,44 (Sect. 3.1). Representation of a complete spatial fact
cube at the schema level in RDF is given by a set of triples ¢y, € 7, and encoded
as (Fs a gb:DataStructureDefinition; qb:component [gbdo:levells;
rdfs:subProperty0f sdmx-dimension:refArea; gb4o:cardinality card;
gb4so:TopologicalRelation 7,.]; qb: component[gb:measure m,,sdmx—
measure:obsValue;qbdo:aggregateFunction BIF']). QB4SOLAP extends
the built-in functions of QB4OLAP with spatial aggregation functions as BIF' =
BIF U S,44 which is added with a class qb4so:SpatialAggregateFunction to
the metamodel in Fig. 3. An example of a spatial fact instance f; with it’s relation
to measure values and dimension levels is a traffic “accident” incident occured on
a highway “E-45" (value of the highway spatial dimension level) with coordinate
points of the location “57.013, 9.939” (value of the location spatial measure).
Cardinality of the dimension level highway and fact member is many—to—one
where several accidents might take place in the same highway. Specification of
the spatial aggregate function for spatial measure location (coordinate points)
can be specified as “convex hull” area of the accident locations.

4.3 SOLAP Operators

The proposed vocabulary QB4SOLAP allows publishing spatially enhanced mul-
tidimensional RDF data which allows us to query with SOLAP operations. Sub-
queries and aggregation functions in SPARQL 1.1° make it easily possible to
operate with OLAP queries on multidimensional RDF data. Moreover, spa-
tially enhanced RDF stores, provide functions to an extent for querying with
topological relations and spatial numeric operations. In the following, we define
common OLAP operators with spatial conditions in order to formalize spatial
OLAP query classes. Spatial conditions can be selected from a range of opera-
tion classes that can be applied on spatial data types (Sect.3.1). Let S be any
spatial operation where & = (Sqgq U Zret UNp) to represent a spatial condition
in a SOLAP operation. The following OLAP operators are given with a spatial
extension to the well-known OLAP operators defined over cubes based in Cube
Algebra operators [5].

8 The Well Known Text (WKT) serialization aligns the geometry types with ISO 19125
Simple Features [ISO 19125-1], and the GML serialization aligns the geometry types
with [ISO 19107] Spatial Schema.

9 http://www.w3.org/ TR /sparqll1-query/.
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S—Roll—up. Given a cube C, a dimension d € C, and an upper dimension level
l, € d, such that [ {(a: domg) —* I, where [ (a : dom,) represents the level in
dimension d with attributes (as) whose domain is a geometry type. Let R be
the spatial roll-up relation which comprises S and traditional roll-up relation R
such that Rs = S(d,l{(a : domg)) U R(C,d,l,) — C'.

Initially, in the semantics of S—Roll-up above, spatial constraint S is applied
over a dimension d on the spatial attributes as along levels [. As a result of the
roll-up relation R, the measures are aggregated up to level [, along d which
returns a new cube C’. Note that applying S, on spatial level attributes as of
dimension D, operates on the hierarchy step | — [, with a dynamic spatial
hierarchy (Ref. Sect.3.2). For example, the query “total sales to customers by
city of the closest suppliers” implies a S-Roll-up operator.

S—Drill-down. Analogously, S—-Drill-down is an inverse operation of S—Roll-
up, which disaggregates previously summarized data down to a child level. For
example, the query “average sales of the employees from the biggest city in its
country” implies a S-Drill-down operator by disaggregating data from (parent)
country level to (child) city level by imposing also a spatial condition (area from
N,y to choose the biggest city).

S—Slice. Given a cube C with n dimensions D = {d,ds,...,d,} € C, let &’
be the traditional slice operator which removes a dimension d from the cube C.
And let S, be the spatial slice operator, which comprises S, the spatial function
to fix a single value in the level £ = {ly,ls,...,l,} € d defined as follows;
S, =8'(C,d) U S(d,l{a:domg)) —C'.

Note that the spatial function is applied on the spatial attributes of the
selected level, measures are aggregated along dimension d up to level All. The
result returns a new cube C’ with n — 1 dimensions D’ = {d;,ds,...,d,_1} €
C'. For example, the query “total sales to the customers located in the city
within a 10 km buffer area from a given point” implies a S-Slice operator, which
dynamically defines the city level by (fixing) a specified buffer area around a
given custom point in the city.

S—Dice. Dice operation is analogous to relational algebra - R selection; o4(R),
instead the argument is a cube C; 04(C). In SOLAP dice is not a select opera-
tion rather a nested “select” and a “spatial filter” operation. S-Dice Dy keeps the
cells of a cube C that satisfy a spatial Boolean S(¢) condition over spatial dimen-
sion levels, attributes and measures which is defined as; Dy = (C,S8(¢)) — C’
where S(¢) = S(0apb(C)) V S(04p0(C)) and a, b are spatial levels (Is), geometry
attributes (a : domg) or measures (m,ms) while v is a constant value and the
result returns a sub-cube C’ C C. For example, the query “total sales to the
customers which are located less than 5 Km from their city” implies a S-Dice
operator.

In this paper, we focus on direct querying of single data cubes. The integra-
tion of several cubes through S-Drill-across or set-oriented operations such as
Union, Intersection, and Difference[5] is out of scope and remained as future
work. The actual use of these query classes in SPARQL with the instance data
is given in Sect. 6.
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5 Use Case Scenario: GeoNorthwind Data Warehouse

Figure4 consists of the conceptual schema of the GeoNorthwind DW use case.
GeoNorthwind DW has synthetic data about companies and their sales, however
it is well suited for representing MD data modeling concepts due to its rich
dimensions and hierarchies. It is a good proof of concept use case to show how
to implement spatial data cube concepts on the SW. We show next how to
express the conceptual schema of GeoNorthwind in QB4SOLAP.

Time — Supplier e @ City o
[=%
Date SupplierID g CityName
DayNbWeek CompanyName 3 P \{/
DayNameWeek Address 0]
DayNbMonth PostalCode N/ State &
DayNbYear ]
WeekNbYear ™ StateName
Customer o | > EnglishStateName
Calendar =l StateType
CustomerlD g StateCode
CompanyName 3 StateCapital
Month Address 0] CapitalGeo
PostalCode N
MonthNumber © Y
MonthNa\r{Pe % County &
< Sales CountryName
Quarter Quantity CountryCode
Quarter Orde UnitPrice: Avg +! gou_f:"IYGCaP't_al
\{/ Date |Discount: Avg +! apialtseo
SalesAmount Population
Year DueDate | Freight Elevation ()
/NetAmount Subdivision
Year
\{/ Employee
Product
2 EmployeelD
Category 5 ProductID FirstName
2| ProductName LastName
CategorylD ® | QuantityPerUnit Title
CategoryName © |UnitPrice BirthDate
Description Discontinued HireDate

Fig. 4. Conceptual MD schema of the GeoNorthwind DW

In the use case, measures are given in the Sales cube. All measures are con-
ventional. The members of the GeoNorthwind DW are given with gnw: prefix.
The underlying syntax for RDF representation is given in Turtle!" syntax in the
boxes. An example of a measure in the cube schema is given in the following as
defined in Sect.4.1.

gnw:quantity a rdf:Property, qb:MeasureProperty;
rdfs:subProperty0f sdmx-measure:obsValue;rdfs:range xsd:integer.

10 http://www.w3.org/ TR /turtle/.
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In the following, a spatial attribute of a spatial level gnw:state is given
along with the level and attribute properties. Spatial level has a geometry as
gnw:statePolygon independently having a spatial attribute gnw:capitalGeo.
Each spatial attribute in the schema is defined separately by using common
RDF and standard spatial schemas'! to represent their domain and data type
as described in Sect. 4.2.

gnw:state a gb4o:LevelProperty; gbd4o:hasAttribute gnw:stateName,
gnw:stateType, gnw:stateCapital, gnw:capitalGeo;
geo:hasGeometry gnw:statePolygon.
gnw:captialGeo a gb:AttributeProperty;
rdfs:domain geo:Geometry; rdfs:range geo:Point, geo:wktLiteral, virtrdf:Geometry.

In the next listing, an example of a spatial dimension from the use case data
is gnw:customerDim, which is given with its spatial hiearchy gnw:geography
(Sects.4.1 and 4.2). The spatial hierarchy is organized into levels (i.e. city,
state, country etc.) where gb4o:hasLevel predicate indicates the levels that
compose the hierarchy. Each hierarchy in dimensions is represented with
gb4o:inDimension predicate, referring to the dimension(s) it belongs to. The
levels given in the dimension hierarchy are all spatial, and the sample represen-
tation of a spatial level is given above.

gnw:customerDim a rdf:Property, gb:DimensionProperty;
gb4o:hasHierarchy gnw:geography.

gnw:geography a gb4o:HierarchyProperty; qb4o:hasLevel gnw:city,
gnw:state, gnw:region, gnw:country, gnw:continent;
gb4o:inDimension gnw:customerDim, gnw:supplierDim.

Each hierarchy step is added to the schema as a blank node (-:hsi) by
gb4o:HierarchyStep property, in which the cardinality and topological rela-
tionships are represented in between the child and parent levels as follows;

_:hsl a gb4o:HierarchyStep; qgb4o:inHierarchy gnw:geography;
gb4o:childLevel gnw:customer, gnw:supplier;
gb4o:parentlLevel gnw:city; qb4o:cardinality qb4o:ManyToOne;
gqb4so:hasTopologicalRelation gb4so:Within.

The components of the facts are described at the schema level in the
cube definition. The dimension level for gnw:customer is given with
sdmx-dimenson:refArea property, which indicates the spatial characteristic of
the dimension. Measures require the specification of the aggregate functions in
the cube definition. As there are only numeric measures in the use case data,

' For our tests we used Virtuoso Universal Server and virtrdf :Geometry is a special
RDF typed literal which is used for geometry objects in Virtuoso. Normally, WGS84
(EPSG:4326) is the SRID of any such geometry.



Modeling and Querying Spatial Data Warehouses on the Semantic Web 19

aggregate function for the sample measure gnw:quantity is given as qb4o: sum.
The general overview of the cube schema CS which is given with the related
components as follows:

### Cube definition ###

gnw:GeoNorthwind rdf:type gb:DataStructureDefinition;

### Lowest level for each dimension in the cube ###

qb:component [gb4o:level gnw:customer, sdmx-dimension:refArea;
gb4o:cardinality qb4o:ManyToOne].

### Measures in the Cube ###

gb:component [gqb:measure gnw:quantity; qb4o:aggregateFunction gb4o:sum].

A spatial fact cube may contain spatial measure components besides spatial
dimension according to QB4SOLAP. The implementation scope of this work cov-
ers only spatial facts, with spatial dimension and numerical measure components.

6 Querying the GeoNorthwind DW in SPARQL

We show next how some of the spatial OLAP queries from Sect.4.3 can be
expressed in SPARQL!'2.

Query 1 (S-Roll-Up): Total sales to customers by city of the closest suppliers.

SELECT 7city (SUM(7sales) AS 7totalSales)
WHERE {70 a gb:0Observation; gnw:customerID 7cust;
gnw:supplierID 7?sup; gnw:salesAmount 7?7sales.
?cust gbd4o:inLevel gnw:customer;gnw:customerGeo ?custGeo;
gnw:customerName ?custName; skos:broader 7city.
?city qb4o:inlLevel gnw:city.?sup gnw:supplierGeo ?supGeo.
#Inner Select:Distance to the closest supplier of the customer
{SELECT ?custl (MIN(?distance) AS ?minDistance)
WHERE{70 a gb:0bservation; gnw:customerID 7custl;
gnw:supplierID ?supl. ?supl gnw:supplierGeo ?suplGeo.
?custl gnw:customerGeo ?custiGeo.
BIND (bif:st_distance( 7custlGeo, 7?suplGeo ) AS 7?distance)l}
GROUP BY ?custil 1}
FILTER (?cust = ?custl && bif:st_distance(?custGeo, 7supGeo)=
?minDistance)} GROUP BY ?city ORDER BY ?totalSales

The query above shows the spatial roll-up operation example from Sect. 3.2
with the actual use case data. We have explained the semantics of s-roll-up oper-
ator in Sect. 4.3. The inner select verifies the spatial condition in order to find the
closest distance to suppliers from the customers. The outer select prepares the
traditional roll up of the total sales from customer (child) level to the city (par-
ent) level. Filter on customer and supplier distance creates the aforementioned
dynamic spatial hierarchy based on the proximity of the suppliers.

Query 2 (S-Slice): Total sales to the customers located in the city within a
10 km buffer area from a given point.

12 SPARQL endpoint is available at: http://extbi.ulb.ac.be:8890/sparql.
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SELECT ?custName ?cityName (SUM(?sales) AS 7totalSales)

WHERE {70 rdf:type qb:0Observation; gnw:customerID ?cust;
gnw:salesAmount 7sales. ?cust gnw:customerName ?custName;
skos:broader ?city. ?city gnw:cityGeo ?cityGeo;

gnw:cityName ?cityName.
FILTER(bif:st_within(?cityGeo, bif:st_point(2.3522,48.856),10))}
GROUP BY ?custName 7cityName ORDER BY 7custName

The semantics of the above (s-slice) operator is given in Sect. 4.3. Traditional
slice operator removes a dimension, by fixing a single value in a level of dimension
with a given fixed value (i.e. CityName = “Paris”). On the other hand, s-slice
dynamically defines the city level, by a specified buffer area around a given
custom point in the city. Thus, s-slice removes the dimension customer and its
instance in city Paris, but only the customer instances within 10 km buffer area
of the desired location. The project content with corresponding data sets and
full query examples are available at: http://extbi.cs.aau.dk/QB4SOLAP /index.

php.

7 Conclusion and Future Work

In this paper, we studied the modeling issues of spatially enhanced MD data
cubes in RDF, defined the concept of SOLAP operators and implemented them
in SPARQL. We showed that in order to model spatial DWs on the SW, an
extended representation of MD cube elements was required. We based our rep-
resentation on the most recent QB4OLAP vocabulary and make it viable for
spatially enhanced MD data models through the new QB4SOLAP metamodel.
This allows users to publish spatial MD data in RDF format. Then, we define
well-known OLAP operations on data cubes with spatial conditions, in order
to introduce spatial OLAP query classes and formally define their semantics.
Subsequently, we present a use case and implement real-world SOLAP queries
in SPARQL, to validate our approach.

Future work will be conducted in two areas: (1) defining complete formal
techniques and algorithms for generating SOLAP queries in SPARQL based on
a high-level MD Cube Algebra as in [5], and extending the coverage of SOLAP
operations over multiple RDF cubes in SPARQL, i.e., to support S-Drill-Across;
(2) implement our QB4SOLAP approach on a more complex case study with
spatial measures and facts which can support spatial aggregation (S-Aggregation)
operator over measures with geometries. In order to support this S-Aggregation
operator in SPARQL we will also investigate on creating user-defined SPARQL
functions.
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Doctorate in “Information Technologies for Business Intelligence — Doctoral College
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