
Querying Multiversion Data Warehouses

Waqas Ahmed1,2(B) and Esteban Zimányi1

1 Department of Computer & Decision Engineering (CoDE),
Université libre de Bruxelles, Brussels, Belgium

{waqas.ahmed,ezimanyi}@ulb.ac.be
2 Institute of Computing Science, Poznan University of Technology, Poznan, Poland

Abstract. Data warehouses (DWs) change in their content and struc-
ture due to changes in the feeding sources, business requirements, the
modeled reality, and legislation, to name a few. Keeping the history
of changes in the content and structure of a DW enables the user to
analyze the state of the business world retrospectively or prospectively.
Multiversion data warehouses (MVDWs) keep the history of content and
structure changes by creating multiple data warehouse versions. Query-
ing such DWs is complex as data is stored in multiple schema versions.
In this paper, we discuss various schema changes in a multidimensional
model, and elaborate their impact on the queries. Further, we also pro-
pose a system to support querying MVDWs.

1 Introduction

Data warehouses (DWs) store historical, subject-oriented, and often heteroge-
neous data that is fed by external data sources (EDSs). An inherent character-
istic of these data sources is that they change in their content and structure
independently of the DW that integrates data from them.

Data warehouses are modeled as multidimensional (MD) cubes and analytical
applications query these cubes to produce reports. A MD cube consists of facts,
measures and dimensions. A fact is a focus of analysis and a measure is an
associated numerical value that quantifies the fact. For example, the analysis
of sales in a store is a fact and the quantity of items sold can be a measure
to analyze the sales. Dimensions provide various perspectives to analyze a fact.
For example, a dimension customer can be used to analyze the sales made by
a store to a particular age group of customers. Dimensions consist of discrete
alphanumeric attributes which are organized in hierarchies. Each set of distinct
attributes of a dimension hierarchy is called a level. Hierarchies allow decision-
makers to analyze measures at various levels of detail. An example of a hierarchy
that belongs to dimension geography is store→city→region where store, city, and
region are the levels of hierarchy and each level stores specific characteristics
about the dimension. Instances of a level are called members.

W. Ahmed—This research is partially funded by the Erasmus Mundus Joint Doc-
torate IT4BI-DC

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds): ADBIS 2015, CCIS 539, pp. 346–357, 2015.
DOI: 10.1007/978-3-319-23201-0 36

Querying Multiversion Data Warehouses 347

The MD model was based on the assumption that the content and struc-
ture of a DW remain fixed, but the practice has proved this assumption wrong.
The content and structure of a MD cube may change due to changes in feeding
sources, the business requirements, the modeled reality, the analysis require-
ments, and legislation, to name a few. Maintaining the history of changes in the
content and structure of a DW enables users to analyze the state of the business
world in the past or future, and in some cases, it may be required for audit
and accountability purposes. A change in the value of dimension attribute is
an example of content change, whereas a change in the structure of a hierarchy
is an example of schema change. Three alternative approaches, namely slowly
changing dimensions (SCDs) [10], temporal data warehouses (TDWs) [2,11], and
multiversion data warehouses (MVDWs) [17,18] have been proposed to address
the issue of content and schema changes in DWs. SCDs only handle changes
in dimension members. TDWs provide support for storing and querying time-
varying dimension members and facts. MVDWs maintain the history of content
and schema changes by creating multiple DW versions.

Answering queries that require data from multiple schema versions (called
cross-version queries) is not trivial, in particular because of the data in multiple
versions may have different structure or the data may be present in one version
but missing in another. To address the issue of querying MVDWs, in this paper
(1) we provide a detailed discussion about schema changes in the MD model
and their impact on user queries, and (2) based on our discussion we propose a
system to support querying MVDWs.

The rest of this paper is organized as follows. Section 2 reviews related work.
In Sect. 3, we introduce a running example that will be used throughout the
rest of the paper. In Sect. 4, we discuss schema changes in the MD model and
their impact on user queries. In Sect. 5, we provide three possible approaches
to manage schema changes in relational databases, highlight the differences
among queries for each approach, and propose a system to support querying
MVDWs. Finally, Sect. 6 concludes the paper and provides considerations for
future research.

2 Related Work

The challenge of managing schema changes in database systems and query-
ing data across multiple schema versions is not new and the issues related to
the problems are discussed in [14]. In the literature, the solutions to managing
schema changes in databases are classified into three broad categories [6,14].
Schema modification allows changes in the schema but as a result, the exist-
ing data may become unavailable. Schema evolution supports schema changes
while preserving existing data. Finally, schema versioning enables to store data
in multiple schema versions.

In [3] is presented a system to automate database schema and integrity
constraint evolution. The presented PRISM and PRISM++ systems automat-
ically rewrite queries to support legacy applications and data migration. The

348 W. Ahmed and E. Zimányi

PRIMA [13] system also provides a mechanism to archive and query historical
data. In [8], the authors examined data and schema evolution in a branched envi-
ronment where data can evolve simultaneously under various schema versions.
The schema definitions are stored as XML-based documents and the data records
are stored in relational columns. In all of the these approaches, the challenge of
querying data from multiple schema versions is not addressed.

Golfarelli et al. [5] presented an approach that uses a graph-based
metaschema to create and query multiple schema versions in a DW. They intro-
duced the concept of an augmented schema to handle the issue of missing data
between versions. When the user creates a new schema version from an exist-
ing one, an augmented schema is also associated with the old version: It is the
most generic schema containing all the elements from both the new and the
old versions. In [19], the authors also presented a metadata-based version man-
agement system for MVDWs. In both of the above mentioned approaches, to
answer a cross-version query, firstly the user query is converted into individual
queries against each version, and then the results of these individual queries are
combined and presented to the user.

The model presented in [4] supports changes in the structure of dimension
members and also provides a list of integrity constraints to maintain the consis-
tency of data across multiple versions. Although the authors mentioned about
querying multiple schema versions, the question of how to answer cross-version
queries remained unanswered.

3 Running Example

Multiversion DWs manage the evolution of their content and structure by cre-
ating multiple DW versions. Each DW version consists of a schema version and
an instance version. The schema version defines the structure of data during a
specific period, whereas the instance version consists of the data stored using a
particular schema version. At a given instant, only one DW version is used to
store data and it is called the current version. Although it is possible to derive
multiple schema versions from the current version, for the sake of simplicity, we
only consider the sequential versioning approach [19], in which a new version
can be derived by applying changes to the current version only.

Each version has an associated begin application time (BAT) and end appli-
cation time (EAT) that represent a close-open interval during which a version is
used to store data. The interval [BAT, EAT) is called the validity period of the
version. The EAT of the current version is set to a special value “UC” (until
changed). A more detailed and formal definition of a MVDW can be found in [1].
Figure 1 shows the multiple versions in an example MVDW (for the moment,
ignore the query types in the figure).

We will use the following motivating example throughout the rest of the
paper. Our example MVDW is used to analyze the sales of a company. The cube
can be modeled as either a star or snowflake schema. In our example, we consider
a snowflake schema as it is more difficult to manage its evolution as compared

Querying Multiversion Data Warehouses 349

Fig. 1. Three versions of a DW and possible cases for a query computing the value of
a schema element present in the current version only

to a star schema [9]. The initial version V1[9/2013, UC) of the DW was created
in September 2013 and consisted of fact Sales and dimensions Time, Geography,
and Product. Dimension Geography consisted of levels Store, City, and Region.
Dimension Product consisted of levels Product and Category. Figure 2a shows
the schema of the DW in version V1.

(a) DW schema in version V1 (b) DW schema in version V2

(c) DW schema in version V3

Fig. 2. Schema versions in the example MVDW

In August 2014, the user extended the Product dimension by inserting a
new level Subcategory between Product and Category. Also, attribute Area was
removed and attribute Manager was added to level Store. These changes resulted
version V2[8/2014, UC). As a consequence, the validity period of V1 was changed
to [9/2013, 8/2014). Figure 2b shows the schema of the DW in version V2. In
January 2015, the user deleted level Store from Geography and made City the
base level of the dimension. She also added a new dimension Customer and a

350 W. Ahmed and E. Zimányi

measure Discount to Sales. Furthermore, attribute Representative of level City
was renamed to Director. As a result, version V3[1/2015, UC) was derived from
V2. Figure 2c shows the DW schema in version V3.

4 Schema Changes in a Data Warehouse

The possible changes to a dimension schema include: (1) adding a new level to
a dimension, (2) deleting a level from a dimension, (3) adding an attribute to a
level, (4) removing an attribute from a level, (5) renaming an attribute of a level,
and (6) changing the domain of an attribute of a level. Similarly, the possible
changes to a fact schema include: (1) adding a new dimension to the fact, (2)
deleting a dimension from the fact, (3) adding a new measure to the fact, (4)
deleting a measure from the fact, (5) renaming a measure in the fact and, (6)
changing the domain of a measure in the fact. We discuss next the impact of
these changes on querying a MVDW. For the discussion, we will use the queries
specified in Table 1.

Table 1. Queries implying data from multiple schema versions

No. Query Answerable

Q1 Total sales amount per customer and month from December 2013 till
August 2014.

No

Q2 Total sales amount per customer from January 2015 until today. Yes

Q3 Total sales amount per customer and month from June 2014 till June
2015.

Partially

Q4 Total sales amount per category until today. Yes

Q5 Total sales amount per subcategory for December 2014. No

Q6 Total sales amount per subcategory until today. Partially

Q7 Total quantity sold per product and city until today Yes

Q8 Total quantity sold per product and store in April 2015 No

Adding and/or Removing Levels. The addition of a new base level to a
dimension increases the granularity at which the facts are stored for that dimen-
sion. The effect of this addition is similar to adding a new dimension to a cube.
Consider the addition of dimension Customer in version V3. This change requires
not only adding a new dimension but also a new version of the fact so that
all newly added facts may have a customer dimension member associated with
them. It is worth noticing that the customer information related to sales will
not be available for the facts stored before January 2015 because the earlier
versions did not include the customer dimension. Query Q1 cannot be answered
because dimension Customer did not exist between December 2013 and August
2014 and the sales facts stored for this period do not have any customer members
associated with them. Query Q2 can be answered without any problem because
sales facts from January 2013 until today have associated customer members.
However, query Q3 can be answered partially, only from January 2015 onwards.

Querying Multiversion Data Warehouses 351

The addition of a new level to a dimension other than at the base level does
not require the creation of a new fact version. Consider the schema change where
level Subcategory was added between Product and Category. We assume that the
user does not assign the existing products to the subcategories and only newly
added products are assigned to the subcategories. Now consider query Q4, which
computes the total sales amount per category until today. Since the product to
category relation exists in all the versions of DW, the query can be answered
and the result set can be computed by traversing through two different lattices,
i.e., from September 2013 till July 2014 this information is directly available,
whereas from August 2014 until today, the products’ categories can be obtained
from the subcategories.

The effect of deleting a base level is almost similar to adding a new dimension
because a new base level of the dimension has to be defined. In our example,
in version V3, level Store was deleted from dimension Geography and City was
made the new base level. Consider query Q7, which requires to compute the
total quantity of a given product sold per city. The query can be answered
completely because in earlier versions V1 and V2, measure Quantity in fact Sales
can be related to the cities through level Store, whereas in the current version
this information is directly available. In case of query Q8, level Store ceased to
exist after January 2015, hence it cannot be answered.

Adding and/or Removing Attributes. The schema of dimensions change by
adding or removing attributes in a level. For example, in version V2, attribute
Area is deleted from level Store and Manager is added to the same level. The value
of attribute Area will not be available for store members that were stored after
August 2014. Similarly, the information about the managers of stores, which
existed in V1, will not be available.

Other changes in the attributes such as, changes in the domain of an
attribute, or renaming an attribute are trivial and can be handled either by mod-
ifying the existing attribute or adding a new attribute for each change. However,
in case of renaming an attribute, it is important to keep track of attribute names
in each version so that cross-version queries could be supported. In V2, attribute
Representative of level City was renamed to Director and it is important to keep
the record of this change to support the queries asking for Representative and/or
Director during the validity period of any of these two versions.

Adding or Removing Dimensions. The addition or removal of a dimension
from a fact changes the schema of the fact. It is similar to adding or removing
a base level of a dimension. The effect of changes in the measures is similar to
changes in the attributes of dimensions and such changes can be managed in the
same manner as in case of changes in the attributes.

To sum up our discussion in this section, consider a query Q that computes
the value of a schema element E over a period P , such that E is present in
the current version only. There are three possibilities for Q based on P : (1)
if P is contained within the validity period of the current version then Q is
answerable, (2) if P overlaps with the validity period of current version, Q is

352 W. Ahmed and E. Zimányi

Store
Key

Product
Key

Time
Key Quantity Amount

s1 p1 t1 5 20
s2 p1 t1 3 15
s3 p2 t2 2 18
s4 p2 t3 3 9

(a) Sales in V2 using the STV app-
roach

Store
Key

City
Key

Product
Key

Time
Key

Cust.
Key

Quantity Amount Discount

s1 null p1 t1 null 5 20 null

s2 null p1 t1 null 3 15 null

s3 null p2 t2 null 2 18 null

s4 null p2 t3 null 3 9 null

null c1 p3 t4 cu1 6 8 0.10

(b) Sales in V3 using the STV approach

City
Key

Product
Key

Time
Key

Cust.
Key Quantity Amount Discount

c1 p3 t4 cu1 6 8 0.10

(c) Sales in V3 using the MTV approach

Fig. 3. State of the Sales table in various versions using the STV and MTV approaches

partially answerable, and (3) otherwise, it is not possible to answer Q because
the value of E is unavailable. Figure 1 shows these three cases.

5 Manipulating Multiversion Data Warehouses

Three approaches [1,16] have been proposed for storing multiple versions of
a data warehouse, namely, (1) single-table version (STV), (2) multiple-table
version (MTV), and (3) hybrid-table version (HTV). In this section, we briefly
discuss each of these approaches and their impact on multiversion queries.

In the STV approach, each table has only one version throughout the lifetime
of the DW. Each table contains all attributes that have ever been defined for
it. This means that it is an append-only approach and the new attributes are
added to the table. In this approach, the schema of the DW is always growing.
For every new record, a default or null value is stored for the deleted attributes.
Figures 3a and 3b show fact Sales in versions V2 and V3, respectively. Notice that
new attributes CityKey and CustomerKey are added to link new levels City and
Customer. Similarly, a new measure Discount is added. The sales records stored
using earlier versions were not linked to the customers and cities, therefore for
those records null values are stored in these attributes. Although level Store is
deleted in the new version, the corresponding attribute StoreKey in Sales is not
deleted and all new records store a null value for it.

In the MTV approach, each change in the schema of a table produces a new
version of the table and new data is stored using this new version. Contrary to the
STV approach, attributes can be added or removed in the new version. Figure 3c
shows the Sales in V3 using the MTV approach. Notice that the deleted attribute
StoreKey does not exist in the new version. The MTV approach avoids the space
overhead which is incurred in case of the STV approach but in some scenarios,
it may require creating of fact versions because of new dimension versions. For
example, if a new version of a table corresponding to the base level of a dimension

Querying Multiversion Data Warehouses 353

is created, this requires to create a new fact version as well. Furthermore, all valid
dimension members from the previous dimension version must be inserted into
the new version so that they could be linked to the incoming facts, if needed.

The HTV approach combines the advantages of the STV and the MTV
approaches. It creates a new version only in case of the schema changes in facts
but maintains a single version for dimension tables. In this way, the problem
of space overhead and complexity of managing multiple dimension versions and
members loading can be avoided. In our example, in version V3, fact Sales con-
sists of two tables shown in Fig. 3c and 3a, respectively. However, the Product
and Store tables will consist of a single version as in the STV approach.

Analytical queries are complex in nature since they often involve aggregation
of data and joins across multiple dimensions. Querying a MVDW is even more
complex since the data may be stored across multiple versions with different
structure. Furthermore, as discussed above, queries to a MVDW also depend
upon the approach used for storing the various versions. For example, if the user
of our example MVDW is interested in average yearly sales for each city, then
for the STV approach, it can be computed by query shown in Fig. 4a. The same
query is different for the MTV approach because as a result of the first schema
change, a new version of Store was created. To link this new version with the
fact, a new version of the fact was also created. The second schema change also
produced another version of Sales. The query for the MTV approach should
consider all these three versions of the fact to aggregate the yearly sales amount
per city. Figure 4c shows the SQL query for the MTV approach. In case of HTV,
only the new fact versions are created therefore, the query shown in Fig. 4b is
simple as compared to the one for the MTV approach.

To make the user queries independent of the version management approach,
we propose that each DW version is defined as set of views [12]. Figures 5a
and 5b show the views defining the schema of level Store in version V1 and V2

in the STV and the HTV approaches, respectively. Since in case of the MTV
approach a new table is created, the view definition will be different. Figure 5c
shows the view defining the schema of level Store in version V2. Obviously, the
view definitions depend upon the approach used for storing the various versions
(i.e., STV, MTV, or HTV), but once defined, such views may serve as virtual
tables and thus user queries can be rewritten in term of such views [7,15] without
considering the underlying the version management approach.

In addition to the versions defined as views, the system also maintains the
metadata to support the coross-version queries. The metadata consists of the
mappings between views, columns in the views, columns data types, and column
names from one version to the other. In Fig. 6 we shows the partial metadata
of our example MVDW. The mapping V2 : Sales V1 → Sales V2 denotes that in
version V2, view Sales V2 represents the same level that was represented by view
Sales V1. Similarly, the mapping V3 : City V1.Representative → City V2.Manager
denotes that in version V3 column Representative of view City V1 is renamed to
Manager. Notice that this renaming resulted in the creation of a new version of
level City and consequently a view City V2. In our adopted numbering convention,

354 W. Ahmed and E. Zimányi

SELECT AVG(Amount) as ”Avg. Sales Amount”, C.Name , T.Year
FROM Sales S, Store E, City C, Time T
WHERE S.TimeKey = T.TimeKey and S. StoreKey = E. StoreKey and E. City = C. CityKey or

S. CityKey=C. CityKey
GROUP BY C.Name, T.Year

WITH SalesByCity AS (
SELECT S.Amount, C.Name , T.Year FROM Sales V1 S, Store E, City C, Time T
WHERE S.TimeKey = T.TimeKey and S. StoreKey = E. StoreKey and E. City = C. CityKey
UNION ALL
SELECT S2.Amount, C.Name , T.Year FROM Sales V2 S2, City C, Time T
WHERE S2.TimeKey = T.TimeKey and S2. CityKey = C.CityKey)
SELECT AVG(Amount) as ”Avg. Sales Amount”, C.Name , T.Year FROM SalesByCity
GROUP BY C.Name, T.Year

WITH SalesByCity AS (
SELECT S.Amount, C.Name , T.Year FROM Sales V1 S, Store V1 E, City C, Time T
WHERE S.TimeKey = T.TimeKey and S. StoreKey = E. StoreKey and E. City = C. CityKey
UNION ALL
SELECT S2.Amount, C.Name , T.Year FROM Sales V2 S2, Store V2 E2, Time T
WHERE S2.TimeKey = T.TimeKey and S2.StoreKey = E2.StoreKey and E2.CityKey = C.CityKey
UNION ALL
SELECT S3.Amount, C.Name , T.Year FROM Sales V3 S3, City C, Time T
WHERE S3.TimeKey = T.TimeKey and S3. CityKey = C.CityKey)
SELECT AVG(Amount) as ”Avg. Sales Amount”, C.Name , T.Year FROM SalesByCity
GROUP BY C.Name, T.Year

Fig. 4. Average sales amount per city per year: SQL queries for the STV, MTV, HTV
approaches, respectively

the version number in the view is independent of the schema version number.
Consider the query Q7 from Table 1, which computes total quantity of each
product until today. Suppose that the user writes this query corresponding to
current schema version but actually it requires data which was stored using
all three schema versions of the DW. The schema mappings in the metadata
provides the information that views Sales V1, Sales V2, and Sales V3 represent
the same fact Sales in all the schema versions, thus Q7 can be rewritten in term
of these views.

Now consider query Q3 which requires total sales amount per customer and
month from June 2014 till June 2015. The customer information exists only for
the facts starting from January 2015. Ideally, the system should inform the user
that though he/she asked the total sales for the customers from June 2014 , the
answer is partial and it excludes the facts stored before January 2015 because
dimension Customer did not exist in versions V1 and V2.

To support querying MVDWs we propose the architecture of a system shown
in Fig. 7. As a first step to answer a cross-version query, the system determines
the schema versions to be used. Either a user can explicitly specify a version(s)
or they can be obtained from the time interval mentioned in the query. Depend-
ing upon the schema elements in the query and versions involved, the system
determines whether the query is answerable, partially answerable, or not answer-
able at all. The metadata will be used to determine if there are any renamed

Querying Multiversion Data Warehouses 355

CREATE VIEW Store V1 AS (
SELECT StoreKey, Name, Area, CityKey
FROM Store)

(a) Store in version V1 using the
STV, MTV, and HTV approaches

CREATE VIEW Store V2 AS (
SELECT StoreKey, Name, Manager, CityKey
FROM Store)

(b) Store in version V2 using the STV
and HTV approaches

CREATE VIEW Store V2 AS (
SELECT StoreKey, Name, Manager, CityKey
FROM Store 2)

(c) Store in version V2 using the MTV approach

Fig. 5. Views defining the schema of level Store in two schema versions

View Mappings Column Mappings

V2 : Sales V1 → Sales V2 V2 : Sales V1.Amount → Sales V2.Amount
V2 : Store V1 → Store V2 V2 : . . .
V2 : Time V1 → Time V1 V3 : City V1.Representative → City V2.Manager
.

Fig. 6. Metadata of the example MVDW

Fig. 7. Proposed system to answer cross-version queries

attributes in the involved versions. Since each DW version is defined as a set of
views, in the next step the user query is rewritten in term of the views belong-
ing to the schema versions, which were determined in the first step. Finally,
the query is executed and the result set is annotated with information such as
missing or partial data.

6 Conclusions

The capability to maintain the history of changes in content and structure of a
DW enables the user to recreate the state of the business world in the past or sim-
ulate the effect of a prospective change. Multiversion data warehouses (MVDWs)
provide such capability by creating multiple schema and data versions. However,
querying data from multiple schema versions is not a straightforward task. Fur-
ther, the creation of each version may change the queries written for the already
existing versions. In this paper, we discussed how changes in a multidimensional

356 W. Ahmed and E. Zimányi

model impact on queries. Further, we showed that queries in a MVDW are depen-
dent upon the version management approach. Since it would be convenient from
the end user viewpoint to query a DW independently of the version management
approach, we proposed a system to query data from the MVDWs.

One disadvantage of MVDWs is that they create multiple data versions to
manage the content changes. This can further complicate the tasks of maintain-
ing and querying a MVDWs, and may negatively impact performance of the
system. One natural solution to the challenge of managing content and schema
changes in a DW is to combine both, the temporal and multiversion data ware-
houses. As future work, we plan to combine the two approaches as a single
solution which will be able to query multiple data versions stored in multiple
schema versions. Further we want to present our solution as a data warehouse
with temporal and multiversion functionality.

References

1. Ahmed, W., Zimányi, E., Wrembel, R.: A logical model for multiversion data
warehouses. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol.
8646, pp. 23–34. Springer, Heidelberg (2014)

2. Ahmed, W., Zimányi, E., Wrembel, R.: Temporal data warehouses: Logical models
and querying. In: Proc. of EDA, pp. 33–47 (2015)

3. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema
evolution process. VLDB Journal 22(1), 73–98 (2013)

4. Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data ware-
houses. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE
2002. LNCS, vol. 2348, p. 83. Springer, Heidelberg (2002)

5. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data
warehouses: Enabling cross-version querying via schema augmentation. Data &
Knowledge Engineering 59(2), 435–459 (2006)

6. Golfarelli, M., Rizzi, S.: A survey on temporal data warehousing. International
Journal of Data Warehousing and Mining 5(1), 1–17 (2009)

7. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4), 270–
294 (2001)

8. Huo, W., Tsotras, V.J.: Querying transaction–time databases under branched
schema evolution. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.)
DEXA 2012, Part I. LNCS, vol. 7446, pp. 265–280. Springer, Heidelberg (2012)

9. Kaas, C., Pedersen, T.B., Rasmussen, B.: Schema evolution for stars and
snowflakes. In: Proc. of ICEIS, pp. 425–433 (2004)

10. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to
Dimensional Modeling. John Wiley & Sons (2013)

11. Malinowski, E., Zimányi, E.: A conceptual model for temporal data warehouses and
its transformation to the ER and the object-relational models. Data & Knowledge
Engineering 64(1), 101–133 (2008)

12. Medeiros, C.B., Bellosta, M., Jomier, G.: Multiversion views: Constructing views
in a multiversion database. Data & Knowledge Engineering 33(3), 277–306 (2000)

13. Moon, H.J., Curino, C., Ham, M., Zaniolo, C.: PRIMA: archiving and querying
historical data with evolving schemas. In: Proc. of SIGMOD, pp. 1019–1022 (2009)

Querying Multiversion Data Warehouses 357

14. Roddick, J.F.: A survey of schema versioning issues for database systems. Infor-
mation & Software Technology 37(7), 383–393 (1995)

15. Srivastava, D., Dar, S., Jagadish, H.V., Levy, A.Y.: Answering queries with aggre-
gation using views. In: Proc. of VLDB, pp. 318–329 (1996)

16. Wei, H.-C., Elmasri, R.: Schema versioning and database conversion techniques for
bi-temporal databases. Annals of Mathematics and Artificial Intelligence 30(1–4),
23–52 (2000)

17. Wrembel, R.: A survey on managing the evolution of data warehouses. International
Journal of Data Warehousing & Mining 5(2), 24–56 (2009)

18. Wrembel, R.: On handling the evolution of external data sources in a data ware-
house architecture. In: Taniar, D., Chen, L. (eds.) Data Mining and Database
Technologies: Innovative Approaches. IGI Group (2011)

19. Wrembel, R., B ↪ebel, B.: Metadata management in a multiversion data warehouse.
In: Meersman, R. (ed.) OTM 2005. LNCS, vol. 3761, pp. 1347–1364. Springer,
Heidelberg (2005)

	Querying Multiversion Data Warehouses
	1 Introduction
	2 Related Work
	3 Running Example
	4 Schema Changes in a Data Warehouse
	5 Manipulating Multiversion Data Warehouses
	6 Conclusions
	References

