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Abstract. More and more RDF data is exposed on the Web via SPARQL
endpoints. With the recent SPARQL 1.1 standard, these datasets can be
queried in novel and more powerful ways, e.g., complex analysis tasks
involving grouping and aggregation, and even data from multiple SPARQL
endpoints, can now be formulated in a single query. This enables Busi-
ness Intelligence applications that access data from federated web sources
and can combine it with local data. However, as both aggregate and feder-
ated queries have become available only recently, state-of-the-art systems
lack sophisticated optimization techniques that facilitate efficient execu-
tion of such queries over large datasets. To overcome these shortcomings,
we propose a set of query processing strategies and the associated Cost-
based Optimizer for Distributed Aggregate queries (CoDA) for executing
aggregate SPARQL queries over federations of SPARQL endpoints. Our
comprehensive experiments show that CoDA significantly improves per-
formance over current state-of-the-art systems.

1 Introduction

In recent years, we have witnessed the growing popularity of the Semantic Web
and the Open Data movement. Nowadays a plethora of data is available in RDF
format, published as Linked Open Data [6], accessible free of charge, and often
queryable via SPARQL endpoints. Using these data in combination with the
SPARQL 1.1 standard [24], organizations can build novel and powerful analytics
applications that integrate their private data with web RDF datasets, enabling
analyses that were not possible before. For example, a company wants to ana-
lyze its revenue in different countries against macro-economic indicators of these
countries. Such information is unavailable locally, but can instead be obtained
from the World Bank (http://www.worldbank.org/), accessed as Linked Open
Data (http://worldbank.270a.info/) and queried via a SPARQL endpoint. Thus,
the company has efficient access to up-to-date information without the costs of
local maintenance, and as the company is accessing Linked Data, more informa-
tion (geographical, census, etc.) for further analyses can efficiently be retrieved
from linked sources, such as GeoNames [22] and DBpedia [4]. Such analytical
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queries, however, are based on complex queries involving grouping and aggrega-
tion as well as subqueries that need to be evaluated at remote sources. Formulat-
ing this in a single SPARQL statement has only recently become possible with
the SPARQL 1.1 standard, which supports grouping, aggregation, and SERVICE
subqueries.

Motivating Example. Analytical queries are not only beneficial for companies,
but also in other scenarios. In March 2011, an earthquake in the Pacific triggered
a powerful tsunami and led to a huge devastation at the Japanese coast, which
eventually caused a nuclear accident (http://goo.gl/AcqLpe). After these events,
the Japanese government made daily announcements of radioactivity statistics
observed hourly at 47 prefectures. These observations from March 16, 2011 to
March 15, 2012 were converted to RDF data by Masahide Kanzaki and made
publicly available via a SPARQL endpoint (http://www.kanzaki.com/works/
2011/stat/ra/). An example observation in RDF format is given below.

#observation

<http ://www.kanzaki.com/works /2011/

stat/ra /20110414/ p13/t08 >

rdf:value "0.079"^^ ms:microsv ;

ev:place <http :// sws.geonames.org/

1852083/ > ;

ev:time <http :// www.kanzaki.com/

works /2011/ stat/dim/d/

20110414 T08PT1H > ;

scv:dataset <http :// www.kanzaki.com/

works /2011/ stat/ra/set/moe > .

#dimension - place

<http ://sws.geonames.org /1852083/ >

vcard:region "Tokyo"@en ;

vcard:locality "Shinjuku"@en ;

gn:lat "35.69355" ;

gn:long "139.70352" .

#dimension - time

<http ://www.kanzaki.com/works /2011/ stat

/dim/d/20110414 T08PT1H >

rdfs:label "2011 -04 -14 T08";

tl:at "2011 -04 -14 T08 :00:00+09:00"

^^xsd:dateTime ;

tl:duration "PT1H "^^xsd:duration .

The places that the observations were recorded at are represented by a URI
from GeoNames. With the observations of radioactivity in multiple geographical
locations (cities in our case) and information about their upper administrative
divisions (prefectures in Japan) retrievable from GeoNames, interesting analyses
become possible. For instance, we can compute the average radioactivity sepa-
rately for each prefecture in Japan to find out which prefectures were more
affected than others. Or we can compute the minimum and maximum radioac-
tivity for each prefecture and hence identify the changes in radioactivity over the
one-year observations. Formulating such queries involves grouping and aggrega-
tion as well as combining information from two SPARQL endpoints. Listing 1.1
shows an example query that computes the average radioactivity for all prefec-
tures in Japan. This query could be executed at a triple store with information
about radioactivity and uses the LOD Cloud Cache SPARQL endpoint (http://
lod2.openlinksw.com/sparql) to query GeoNames data remotely.
SELECT ?regName (AVG(? radioValue) AS ?average)
WHERE { ?s ev:place ?placeID; ev:time ?time; rdf:value ?radioValue .

SERVICE <http :// lod2.openlinksw.com/sparql > {
?placeID gn:parentFeature ?regionID . ?regionID gn:name ?regName . }

} GROUP BY ?regName

Listing 1.1. Aggregate query over radioactivity observations

http://goo.gl/AcqLpe
http://www.kanzaki.com/works/2011/stat/ra/
http://www.kanzaki.com/works/2011/stat/ra/
http://lod2.openlinksw.com/sparql
http://lod2.openlinksw.com/sparql
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This looks like a simple query but current state-of-the-art triple stores supporting
SPARQL 1.1, such as Virtuoso v07.10.3207, Sesame v2.7.11, and Jena Fuseki
v1.0.0 (based on ARQ) timed out while trying to answer this query. Inspecting
a query execution plan was not possible for Virtuoso, Jena, and Sesame since
they do not support a comfortable explain function for SPARQL queries as
known from relational database systems, so we used Wireshark (http://www.
wireshark.org) to analyze the network traffic. We found out that Virtuoso and
Fuseki query the GeoNames endpoint for every single radioactivity observation,
while Sesame is trying to download all triples that match the pattern from the
remote endpoint. In the first case, a triple store needs to send more than 400,000
requests to answer the query, and in the second case it needs to download more
than 7.8 million triples from GeoNames.

The strategies implemented by these state-of-the-art triple stores are obvi-
ously insufficient in the scenario we consider in this paper. As the SPARQL 1.1
standard is not yet completely supported by all SPARQL endpoints [9], there
is only little research regarding the evaluation of queries involving aggregation
and grouping. To the best of our knowledge, this is the first paper to investigate
aggregate queries in the context of federations of SPARQL endpoints and their
optimization. In summary, the contributions of this paper are:

– the Mediator Join, SemiJoin, and Partial Aggregation query processing strate-
gies for this scenario

– a cost model and techniques for estimating constants and result sizes for triple
patterns, joins, grouping and aggregation

– the combination of these with the processing strategies into the Cost-based
Optimizer for Distributed Aggregate queries (CoDA) approach for aggregate
queries in federated setups that is generally able to choose the best execution
strategy among a number of alternatives

– a comprehensive experimental evaluation showing that CoDA is efficient, scal-
able, and robust over different scenarios, and significantly faster than state-
of-the-art triple stores.

The remainder of the paper is structured as follows. Related work is discussed
in Sect. 2. Section 3 identifies several alternative strategies for processing aggre-
gated SPARQL queries in a federated setup. Section 4 introduces a cost-based
query optimizer for aggregate queries over federations of SPARQL endpoints.
The results of our evaluation are presented in Sect. 5; Sect. 6 concludes the paper.

2 Related Work

Federated query processing in database management systems (DBMS) has been
a topic of research for several decades. In contrast to well-structured classic data
models, federated RDF systems support arbitrary RDF datasets (even without
explicit schema) and allow the use of special constructs to perform joins and
express bindings (such as VALUES) not present in SQL-based systems.

http://www.wireshark.org
http://www.wireshark.org
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The literature proposes a number of approaches for querying federated RDF
sources. Some of these approaches require the availability of VoID [23] statistics.
SPLENDID [15], for instance, uses VoID statistics to select a query execution
plan for a federated query. For triple patterns not covered in the VoID statistics,
the system requests the information by issuing SPARQL ASK queries. The sys-
tem makes use of a cost-based model and cardinality estimations for selecting
a query plan. However, the SPLENDID system and its cost-model do not cover
the combination of grouping, aggregation, and SERVICE subqueries.

FedX [20] uses SPARQL ASK queries for triple patterns in a query to collect
basic information that can be used for source selection. It implements bound joins
with SPARQL UNION keyword (similar to a semi-join) to group triple patterns
related to one source and, thus, reduces the number of queries that are sent. FedX
has originally been developed based on the SPARQL 1.0 standard and does not use
cost-based query optimization. Hence, it does not provide any particular optimiza-
tion techniques for our use case and would always use a semi-join based strategy,
which is only one of the options our optimizer (CoDA) chooses from.

ANAPSID [1] uses a catalog of endpoint descriptions to decompose a user query
into subqueries that can be executed by separate endpoints. The query engine
implements a technique based on the symmetric hash join [12] and the XJoin [21]
to execute subqueries in a non-blocking fashion. SIHJoin [18] also uses a hash join
implementation to enable pipelining in combination with a lightweight cost-model
with weight factors calibrated for remote systems. Both approaches were not desig-
ned with regard to aggregate queries and use a hash join implementation so that
results from a join can already be forwarded to other operators in the query exe-
cution tree. However, pipelining is not helpful for analytical queries since the com-
plete result of the query is needed for the aggregation.

Avalanche [5] and WoDQA [2], on the other hand, do not maintain data
source registrations. Avalanche depends on third parties such as search engines
to find a proper data source for executing a query. Statistics about cardinalities
and data distributions are considered for breaking a query into a set of subqueries
that in combination provide a full query answer. Then, these subqueries are
executed in parallel against several endpoints. WoDQA uses VoID directories
such as CKAN (http://ckan.net) and VoIDStore (http://void.rbkexplorer.com)
to find possible sources of data. The system uses VoID statistics to group triple
patterns into subqueries in a federated form and executes it by Jena ARQ.

An RDF data processing system that supports simple transactional queries
as well as complex analytical queries is proposed in [25]. Aggregate queries are
efficiently resolved by the system by using special look-up mechanisms. However,
the system does not consider aggregate queries in a federated environment.

SPARQL-DQP [7] on the other hand, discusses semantics of the SPARQL 1.1
federation extension on a theoretical level and introduces the notion of well-defined
patterns. It focuses on the optimization of federated queries in the presence of
OPTIONAL subqueries but it was not designed to optimize and support analyt-
ical queries. Different strategies to implement federated queries in SPARQL 1.1
are discussed in [10]. Several limitations that may cause incorrect results and the
potential validity restrictions are identified and fixes are proposed.

http://ckan.net
http://void.rbkexplorer.com
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In summary, only very few approaches consider analytical queries [7,25] but
not in the context of a federated setup. Most state-of-the-art approaches for
federated query processing are designed with a focus on SPARQL 1.0 [1,2,5,
15,20] and lack full support of the more recent SPARQL 1.1 standard or do
not offer support or particular optimizations for analytical queries. In contrast,
this paper proposes a cost-based approach to optimize and execute aggregate
SPARQL queries over federations of endpoints.

3 Federated Processing of Aggregate Queries

In this section, we will systematically outline several strategies that can be used
to evaluate aggregated queries in federations of SPARQL endpoints. Section 4
will then introduce a cost-based approach to choose the best strategy for a query.

For ease of presentation, this section focuses on queries with a single SERVICE
subquery. But the discussed principles can be extended to the general case of
well-designed patterns with strongly bound variables [8]. The proposed approach
can be combined with rule-based rewriting so that subpatterns, and especially
joins, are evaluated in a cost-minimizing order. If an endpoint imposes limits on
result sizes, then additional techniques, such as pagination [10], are used.

In the following, we use PAGG to represent the original user query and Pe

denotes the SERVICE subquery evaluated at SPARQL endpoint e. PM repre-
sents the subquery that is created from the original query PAGG by extracting
Pe, adding a join on their common variables var(Pe) ∩ var(PM ), and, depend-
ing on the strategy, preserving grouping and aggregation. PM is evaluated on
the same endpoint M that PAGG was sent to. Note that this section focuses on
the implementation of the joins combining the partial results of the subqueries
evaluated by remote endpoints. We do not make any restrictions on the local
implementations that the remote endpoints use to evaluate joins contained in
the subqueries they receive.

Mediator Join Strategy (MedJoin). The first strategy we describe is based
on the mediator join technique that is used by many approaches for federated
SPARQL query processing. The mediator/federator is the SPARQL engine that
receives a query PAGG from the user. The query optimizer at the mediator M
defines Pe and PM and sends Pe to endpoint e whereas PM is processed on
the endpoint m. Parallelization can be exploited by processing PM and Pe at
the same time. The main principle is to find all solutions to Pe and PM first
and then compute the remaining operations at the mediator, including the join
(on ?placeID in the example below) that combines the partial results as well
as grouping and aggregation. Listings 1.2 and 1.3 illustrate PM and Pe for our
running example query (Listing 1.1).

SELECT ?placeID ?radioValue WHERE {

?s ev:place ?placeID; ev:time ?time.

?s rdf:value ?radioValue.

}

Listing 1.2. MedJoin: query PM

SELECT ?placeID ?regName WHERE {

?placeID gn:parentFeature ?regionID.

?regionID gn:name ?regName.

}

Listing 1.3. MedJoin: query Pe
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Note that due to the fact that SPARQL does not remove duplicate results, we
do not need to keep all variables in the select clauses of Pe and PM . If duplicates
were removed (like in SQL), we would have to keep all variables in the subqueries
to ensure that the number of tuples that form the result are preserved, otherwise
the average function in our example query would not return the correct result.

In principle, constructs such as OPTIONAL and FILTER are assigned to the
subqueries that their variables refer to. If there is a complex expression, e.g.,
a FILTER is defined on a condition involving variables from different subqueries
(e.g., ?a <?b), then the FILTER is evaluated after the partial results are combined
at the mediator. The strength of this strategy is that partial queries can be
evaluated in parallel. However, it can easily become expensive if the intermediate
results are very large or when the datasets are very big.

Semi Join Strategy (SemiJoin). This strategy is based on the bound join
or semi-join technique [14,20], which was already available based on UNION or
FILTER constructs in SPARQL 1.0. The recent SPARQL 1.1 standard, however,
supports the VALUES clause, which allows for a much more elegant solution.

The main principle of this strategy is to execute the subquery with the smal-
lest result first and use the retrieved results as bindings for the join variables in
the other subquery. The intuition is that for selective joins, sending a few partial
results to an endpoint is much faster than receiving the complete result for the
more general subquery. It is then the task of the cost optimizer to identify the
most promising order of execution of subqueries. Constructs, such as FILTER
and OPTIONAL, can be assigned to subqueries as discussed for MedJoin. Let us
consider an example query with a FILTER.

SELECT ?regName (AVG(? radioValue) AS ?average) WHERE {
?s ev:place ?placeID . ?s ev:time ?time . ?s rdf:value ?radioValue .
SERVICE <http :// lod2.openlinksw.com/sparql >{

?placeID gn:parentFeature ?regionID . ?regionID gn:name ?regName .
} FILTER(? radioValue < 0.08) . } GROUP BY ?regName

This query can be evaluated efficiently by evaluating query PM (Listing 1.4) and
then using the obtained bindings for the join variable ?placeID in the VALUES
clause of the query Pe (Listing 1.5).
SELECT ?placeID ?radioVal
WHERE {

?s rdf:value ?radioVal ;
ev:place ?placeID; ev:time ?time.
FILTER (? radioValue < 0.08) . }

Listing 1.4. SemiJoin: query PM

SELECT ?placeID ?regName
WHERE { ?placeID gn:parentFeature ?rgID.

?rgID gn:name ?regName.
VALUES (? placeID) {
<http ://sws.geonames.org /1852083/ >...} }

Listing 1.5. SemiJoin: query Pe

In contrast to MedJoin, this strategy evaluates the subqueries sequentially and
is particularly efficient for selective joins. However, as the VALUES clause is not
yet widely supported by existing endpoints [9], the SPARQL 1.0 compliant alter-
natives of UNION (or FILTER) must often be used.

Partial Aggregation Strategy (PartialAgg). For queries where the grouping
attributes of the original query contain a subset of the variables of the subquery
that is executed first and the aggregate values are contained in the subquery that
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is evaluated second, further optimization is possible. The Partial Aggregation
Strategy (PartialAgg) builds upon MedJoin by extending the subquery executed
second with a GROUP BY clause and aggregate functions. The goal is to reduce
the size of the partial result and compute partial aggregate values early so that
PAGG can be evaluated more efficiently.

Using PartialAgg our running example query (Listing 1.1) is decomposed into
PM (below) and Pe (Listing 1.5). First, PM is computed, the result bindings are
fed into the VALUES clause of Pe, and PAGG combines the partial results via a
join and computes final grouping and aggregation.
SELECT ?placeID (SUM(? radioValue) AS ?sum) (COUNT(? radioValue) AS ?count)
WHERE { ?s ev:place ?placeID; ev:time ?time; rdf:value ?radioValue . }
GROUP BY ?placeID

Note that PM here groups by ?placeID whereas the original query (Lis-
ting 1.1) groups by ?regName, this is because PM uses the join attributes
var(Pe)∩ var(PM ) in the GROUP BY clause. Whereas a particular placeID would
occur in many results for PM in the MedJoin strategy, the additional grouping
here guarantees that the result set contains only one. Hence, the size of the
intermediate result is reduced.

When performing such an optimization, however, we need to take into
account whether the aggregate function in the original query is algebraic or
distributive [16]. Computing aggregates for distributive functions (SUM, MIN,
MAX, COUNT) is straightforward, while for computing AVG we first need to
compute both SUM and COUNT in separate and in the final step divide the
sum of all intermediate SUMs by the sum of all intermediate COUNTs, i.e.,
AV G =

∑N
i=1 SUMi∑N

i=1 COUNTi
.

4 Cost-Based Query Optimization

For each user query, the query optimizer needs to decide which of the strategies
that we discussed in the previous section to use. In this section, we present CoDA
(Cost-based Optimizer for Distributed Aggregate Queries). A cost-based opti-
mizer, finds the best strategy by computing query execution costs for different
alternative query execution plans and choosing the one with minimum costs. In
the remainder of this section, we first sketch how the query optimizer works,
then we introduce the cost model. Finally, we present details regarding cardinal-
ity estimation and processing costs.

Query Optimizer. To find the best query execution plan, we need to systema-
tically examine alternative query execution plans that produce the same result.
We first decompose the original query into multiple subqueries as described
in Sect. 3. We obtain a query PM and endpoint queries Pe1 , . . . , Pen . We then
optimize the subqueries in separate, e.g., reordering the triple patterns based on a
cost model so that the execution costs are minimized. Afterwards, we enumerate
all possible plans that combine these subqueries using the strategies introduced
in Sect. 3. For each of these alternative plans, we estimate execution costs (as
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described in the remainder of this section) and choose the plan with the minimum
costs for query execution.

4.1 Cost Model

The overall costs of a distributed query execution plan (CQ) consist of the
costs for communication between endpoints and mediator (CC) and the costs
for processing the query on the data endpoint (CP ), i.e.: CQ = CP + CC . To
simplify the cost model, we estimate the costs for all subqueries in the same
way. By calibrating the cost factors for each involved endpoint separately, the
cost model can consider different sytem characteristics and estimate subqueries
at the mediator and remote subqueries alike.

The cost model estimates CQ for each subquery in separate and computes the
costs of the complete query plan by combining the costs of its subqueries with the
additional operators in PAGG that compute the final result. For subqueries that
are executed in parallel, as for the MedJoin strategy, the cost model needs to
consider parallel execution. As the subquery that takes the longest determines
the time when the result is available, we take the maximum time of these parallel
subqueries, e.g., CQ(S1, S2) = max (CQ(S1), CQ(S2)), where CQ(Si) denotes the
costs of subquery Si.

The communication costs CC for a subquery Si are estimated as: CC(Si) =
CO + cSi

· Cmap, where CO denotes the overhead to establish communication,
cSi

denotes the estimated number of transmitted solution mappings contained
in the subquery, and Cmap denotes the costs of transferring a single solution
mapping. For SemiJoin cSi

· Cmap includes the costs for transferring data in
both directions.

Processing costs (CP ) are determined by I/O and CPU costs and are very spe-
cific to the particular triple store and available indexes, current load, hardware
characteristics, implemented algorithms, etc. As such details are not available
for endpoints, we estimate processing costs based on the amount of data that
the query is evaluated on. We assume, however, that indexes are used to access
triples matching a triple pattern efficiently. We obtain CP =

∑M
t=1(ctp · CG),

where ctp is the estimated number of solution mappings selected by triple pat-
tern t contained in the subquery, and CG denotes the costs of processing a single
triple.

Finally, the costs for processing grouping and aggregation costs for PAGG

are estimated as ctpAGG
· CG, where ctpAGG

represents the number of observa-
tions involved in aggregation and CG represents the costs for processing a single
observation.

4.2 Estimating Cost Factors

The cost estimation formulas introduced above rely on several system-specific
constants, i.e., CO, Cmap, and CG. As each endpoint has different characteris-
tics, we need to obtain estimates for every endpoint involved in a query. CoDA
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estimates these values based on several probe queries. The estimates are reused
for future queries and repeated regularly to account for changes at the endpoints.

Cmap is estimated using template queries such as: SELECT * WHERE {?s #p
?o . FILTER(?o=#o)} LIMIT #L. This query is executed several times with dif-
ferent values for #L, #o and #p and measures the time it takes to receive an
answer from the endpoint. Values for #o are taken from a query such as SELECT
DISTINCT(?o) WHERE {?s #p ?o} LIMIT #L. This is done to measure Cmap on
real values present in the dataset. Based on the pairwise difference between the
queries’ execution times and the number of retrieved results, we estimate the
average time for a single result Cmap.

CO is estimated based on queries that do not retrieve data from triple stores
such as: SELECT(1 AS ?v){} or ASK{}. Multiple queries are executed to deter-
mine an average.

CG is estimated based on queries such as: SELECT COUNT(*) WHERE {?s ?p
?o} GROUP BY #g. Again, multiple queries with different valid values for #g and
#c are used to build an average. By measuring the time it takes to receive the
results and substracting the message overhead CO and the costs of transferring
the result based on Cmap, we can estimate CG. Note that CG represents the
costs to process a single input triple. Hence, before computing the average over
multiple queries, we need to divide by the number of triples that the aggregate
query was computed on – this can conveniently be derived from the query result
(COUNT(*) is the number of input triples for each group).

Note that these estimates might not be perfectly accurate but this is accept-
able for our purposes because we do not aim at accurately predicting execution
costs but only to find out which execution plan is more efficient than the others.

4.3 Result Size Estimation

Another important part of the cost model is estimating the size of partial results
(result cardinality). Similar to [15,17], we base our estimations on VoID statis-
tics [3,23] as this is a standardized format and is most commonly used. Never-
theless, not all SPARQL endpoints offer such statistics. In such cases, we send a
series of SPARQL queries with COUNT functions to the endpoint to compute the
statistics.

VoID statistics can logically be divided into three parts: dataset statistics,
property partition, and class partition. The dataset statistics describe the com-
plete dataset: the total number of triples (void:triples, ct), the total number
of distinct subjects (void:distinctSubjects, cs), and the total number of dis-
tinct objects (void:distinctObjects, co). The property partition contains such
values for each property of the dataset (cp,t, cp,s, cp,o). Finally, the class partition
shows the number of entities of each class (void:entities).

Estimating Result Sizes for Basic Triple Patterns. To estimate result sizes
for complex queries, we first need to estimate the result size of basic queries (a
single triple pattern and, optionally, a condition expressed by a FILTER).
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Based on statistics, we estimate the result size cres of a triple patterns as
follows: (?s ?p ?o) is directly given by ct, (s ?p ?o) is estimated as ct

cs
, (?s

?p o) as ct
co

, and (s ?p o) as ct
cs·co . When the predicate of the triple pattern

is specified, (?s p ?o) is given by cp,t, (s p ?o) is estimated as cp,t
cp,s

, (?s p

o) as cp,t
cp,o

, and (s p o) is assumed to be 1. Tighter estimates based on VoID
statistics are possible when the property rdf:type is used [17].

We further introduce several optimizations that are often used in relational
database systems [13]. As distributions are skewed, we assume a Zipfian distribu-
tion of values and multiply cres with the correction coefficient of 1.1 (close to Zip-
fian ideal). In case a FILTER involves an inequality comparison (e.g. ?x >= 10),
we assume that one third of the triples satisfy the requirements and divide ct or
cp,t in the above formulas by a factor of 3. If a FILTER contains an expression
with the inequality operator (e.g. ?x! = 10), we need to replace 1

cs
with cs−1

cs
because we select all except 1 out of cs different values. The same consideration
holds for co, cp,s, and cp,o.

Estimating Result Sizes for Joins. To estimate the sizes of join results, we
need to distinguish between different shapes of joins: (1) star-shaped joins are
characterized by multiple triple patterns joining on the same variable (e.g., ?s1
p1 ?o1 . ?s1 p2 ?o2) and (2) path-shaped joins are characterized by multiple
triple patterns that join on different variables (e.g., ?s1 p1 ?o1 . ?o1 p2 ?o2).

To estimate the result size, we use the cardinality estimation model pro-
posed in [17]. The model proposes formulas for different types of joins. For
example, for queries such as SELECT ?y WHERE { ?x p1 ?y . ?x p2 ?o1 .
FILTER(?o1=10) } (star-shaped join) the cardinality is calculated as cres =

cp2,t
cp2,o1

·cp1,t
max(cp2,x,cp1,x)

, while for queries such as SELECT ?x WHERE { ?x p1 ?y . ?y

p2 ?o1 . FILTER(?o1=10) } (path-shaped join) the cardinality is calculated

as cres =
cp2,t
cp2,o1

·cp1,t
max(cp1,y,cp2,y)

.

Estimating Result Sizes for Grouping and Aggregation. The upper
bound for the cardinality of grouping and aggregation is the size of the input,
i.e., for a non-restrictive grouping we have cres = cin. If the GROUP BY clause
contains only a subset (?x1, . . .?xn) of the variables contained in the query, then
cres (or more specifically cAGG) is bound by the product of the variables’ distinct
bindings

∏n
i=1 distinct(?xi).

When solution reducers are present in the query, such as FILTER statements
and/or triples with literals, that are connected to grouping variables through
joins, we assume that the number of distinct values is reduced proportionally:
distinct(?x) = cpx,x

cpy,y·N where cpx,x is the number of distinct bindings for variable
?x, cpy,y the number of distinct bindings for variable ?y, which is connected
to ?x through star-shaped or path-shaped joins, and N is the reduction factor,
which is equal to 1 in case of a solution reducer with equality, 1/3 in case of a
solution reducer with inequality, and cpy,y−1

cpy,y
in case of the a solution reducer

with negation [13].



Processing Aggregate Queries in a Federation of SPARQL Endpoints 279

5 Evaluation

In this section, we present the results of evaluating the strategies presented in
this paper. Our solution uses the .NET Framework 4.0 and dotNetRDF (http://
dotnetrdf.org/) to implement a mediator that accepts queries, optimizes their
execution using the proposed strategies (SemiJoin, PartialAgg, and MedJoin),
and sends subqueries to the SPARQL endpoints, which are using Virtuoso as
local triple store.

5.1 Experimental Setup

We evaluate our strategies based on a standard benchmark originally designed to
measure the performance of aggregate queries in relational database systems: the
Star Schema Benchmark (SSB) [19]. This benchmark is well-known in the data-
base community and was chosen for its simple design (refined decision support
benchmark TPC-H [11]) and its well-defined testbed.

lineorder

customer supplier

date

month
year

discount

quantity

region rdfh:lo_orderdate

rdfh:lo_supplier

part

Fig. 1. Simplified description of the SSB
dataset

RDF Dataset. The data in SSB is
generated as relational data. We used
different scale factors (1 to 5–6 M
to 30 M observations) to generated
multiple datasets of different sizes. We
translated the datasets into RDF using
a vocabulary that strongly resembles
the SSB tabular structure. For example,
a lineorder tuple is represented as a
star-shaped set of triples where the sub-
ject (URI) is linked via a property (e.g.,
rdfh:lo orderdate) to a an object
(e.g., rdfh:lo orderdate 19931201)
which in turn can be subject of another
star-shaped graph. Values such as quantity and discount are connected to
lineorder entities as literals. A simplified schema of the RDF structure is
illustrated in Fig. 1. Converted datasets contain 110,5 M (scale factor 1) to
547,5 M (scale factor 5) triples.

Queries. SSB defines 13 queries. They represent 4 “prototypical” queries with
different selectivity factors. A brief description of the queries is given in Table 1.
We converted all 13 queries into SPARQL and used the SERVICE keyword to
query federated endpoints.

Configuration. To test the queries in a federation of SPARQL endpoints, we
partitioned the datasets as follows:

– To simulate two endpoints (one endpoint containing main observation data
and one SERVICE endpoint containing supporting data), we created two par-
titions: partition 1 (lineorders, parts, customers, and suppliers) and partition
2 (dates).

http://dotnetrdf.org/
http://dotnetrdf.org/
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Table 1. SSB queries

Query prototypes Query no Query parameters for various

selectivities

Prototype 1. Amount of revenue increase that would
have resulted from eliminating certain
company-wide discounts.

Q1.1 Discounts 1, 2, and 3 for quantities less
than 25 shipped in 1993.

Q1.2 Discounts 1, 2, and 3 for quantities less
than 25 shipped in 01/1993.

Q1.3 Discounts 5, 6, and 7 for quantities less
than 35 shipped in week 6 of 1993.

Prototype 2. Revenue for some product classes, for
suppliers in a certain region, grouped by more
restrictive product classes and all years.

Q2.1 Revenue for ‘MFGR#12’ category, for
suppliers in America

Q2.2 Revenue for brands ‘MFGR#2221’ to
‘MFGR#2228’, for suppliers in Asia

Q2.3 Revenue for brand ‘MFGR#2239’ for
suppliers in Europe

Prototype 3. Revenue for some product classes, for
suppliers in a certain region, grouped by more
restrictive product classes and all years.

Q3.1 For Asian suppliers and customers in
1992-1997

Q3.2 For US suppliers and customers in
1992-1997

Q3.3 For specific UK cities suppliers and
customers in 1992-1997

Q3.4 For specific UK cities suppliers and
customers in 12/1997

Prototype 4. Aggregate profit, measured by subtracting
revenue from supply cost.

Q4.1 For American suppliers and customers
for manufacturers ‘MFGR#1’ or
‘MFGR#2’ in 1992

Q4.2 For American suppliers and customers
for manufacturers ‘MFGR#1’ or
‘MFGR#2’ in 1997-1998

Q4.3 For American customers and US
suppliers for category ‘MFGR#14’
in 1997-1998

– To simulate three endpoints (two SERVICE endpoints containing supporting
data), we created three partitions: partition 1 (lineorders, parts, customers),
partition 2 (dates), and partition 3 (suppliers).

– To simulate four endpoints (three SERVICE endpoints containing supporting
data), we created four partitions: partition 1 (lineorders, parts), partition 2
(dates), partition 3 (suppliers), and partition 4 (customers).

All the queries and the datasets used for the experiments are available at http://
extbi.cs.aau.dk/coda.

We used four different machines for our experiments depending on the con-
figuration. We used the most powerful machine (CPU Intel(R) Core(TM) i7-950,
RAM 24 GB, HDD 1.5 TB RAID5, 1 TB SATA, 600 GB SAS RAID0) for par-
tition 1. We used three identical machines (CPU AMD(R) Opteron(TM) 285
2.6 GHz, RAM 8 GB, HDD 80 GB) for serving data of partitions 2 to 4. 64-bit
Ubuntu 14.04 LTS operating system was installed on all computers. As a medi-
ator, we used a virtual machine with one dedicated core of Xeon E3-1240V2
3.4 GHz (2 threads), 10 GB RAM, 100 GB HDD, and 64-bit Windows Server
2008 Service Pack 1 as operating system. All machines were located on the same
LAN. All benchmark queries were executed 5 times following a single warm-
up run. During this warm-up run, all statistics and system measurements were

http://extbi.cs.aau.dk/coda
http://extbi.cs.aau.dk/coda
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obtained, stored in the system, and later used for the subsequent query exe-
cutions. Statistics were gathered with the help of COUNT queries. Statistics
collection took between 18 (scale factor 1) to 129 (scale factor 5) seconds. The
execution time for each query is measured on the mediator from the time the
query is received from a user till the time the complete results are reported back.
We used a timeout of 1 h for the experiments.

5.2 Experimental Results

As discussed in Sect. 1, we initially experimented with three systems (Virtuoso,
Sesame, and Jena Fuseki). Sesame is always trying to download all triples that
match the patterns defined in the SERVICE subquery from the remote endpoint
and is timing out even for small datasets. Jena Fuseki and Virtuoso are using
the same strategy to evaluate SERVICE subqueries with grouping and aggrega-
tion. We chose Virtuoso v07.10.3207 as representative for this strategy in our
experiments and include results for a native Virtuoso setup, in which Virtuoso
is optimizing the distributed execution of the aggregate query.

In our first line of experiments, we measured the runtime for the benchmark
queries in the configuration with one SPARQL endpoint. For the SemiJoin strat-
egy, due to issues with large numbers of bindings in the VALUES clause in existing
endpoints [9], we often have to partition the set of bindings that we aim to pass
in a VALUES statement into smaller partitions and send a separate messages for
each of the partitions.

Table 2 shows the results for scale factors 1 to 5. CoDA clearly chooses the
best strategy for all queries. For scale factor 1, the CoDA algorithm selected
the SemiJoin strategy for queries with highly selective subqueries (where the
number of intermediate subquery results are low) (Q1.1, Q1.2, Q1.3, Q3.1, Q3.4,
and Q4.2), the MedJoin strategy for queries with high selectivity (Q2.3), and
the PartialAgg strategy for the rest.

CoDA scales well with the increase in the number of triples as the results for
scale factors 2 to 5 in Table 2 show. Due to the increased number of triples to
process, the strategy for Query 2.3 changes from MedJoin to PatrialAgg. CoDA
also changed the strategies for queries 1.1 and 4.1 due to different estimations of
CC and CP for various scale factors. In general, CoDA chooses the best strategy
for all queries (the difference between the CoDA approach and the best approach
for query Q3.4 in scale factor 2 is due to the overhead of optimization, which is
only 14 ms).

Figure 2 shows the execution times for several queries with high selectivity
(Q4.3, Q3.3, Q3.4) and low selectivity (Q2.2, Q3.2, Q2.3) for different strategies
and scale factors – due to timeouts in execution, some lines end earlier than
others. MedJoin and native Virtuoso do not scale well and some queries time
out while SemiJoin and PartialAgg return answers for all the queries. This can
be explained by the internal logic behind the strategies. For example, Virtuoso
sends SPARQL requests for every aggregated observation, while MedJoin needs
to transfer much data to the mediator. Due to the result size restrictions (the
maximum result set size for Virtuoso is 1,048,576), the system downloads all
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data in chunks but still times out. In contrast, SemiJoin and PartialAgg transfer
only necessary data and are thus reducing the communication costs.

We also evaluated the influence of the number of endpoints. For this purpose,
we chose an example query from our workload (Q4.3) that is complex enough
to be rewritten into a query with up to three SERVICE endpoints and selective
enough not to require all triples for the calculation (Fig. 3). Going up to three
endpoints, only the PartialAgg strategy was able to answer the query. With
data coming from two or three endpoints, the number of values that needs to
be passed in the SemiJoin strategy increases and system performance quickly
degrades (yellow lines in Fig. 3). With the partition of the dataset into more
endpoints, MedJoin also needs to load much more data into the mediator site to
answer the query and for the scale factors 3 to 5 this leads to timeouts (green
lines in Fig. 3). The same reason (the need to send more requests to answer the
query) leads to the timeout in the Virtuoso strategy (red lines) for queries with
more than one SERVICE endpoint. Therefore, the obvious choice of the CoDA
strategy is PartialAgg (blue lines) in these cases.

Table 2. Benchmark results for scale factor 1 to 5, in seconds

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

Scale Factor 1

Virtuoso T/O T/O 760 500,3 107,8 21,3 215,8 21,2 1,4 1,4 863 969 7,3

SemiJoin 1,3 0,2 0,1 12,7 13,5 12,6 14,1 11,0 6,5 0,2 4,8 8,1 4,5

PartialAgg 1,6 1,4 0,8 9,4 4,5 3 17,5 2,8 0,5 0,3 4 18,5 1,0

MedJoin 249,5 213,4 82,9 11 5,2 2,9 98,9 3,4 0,8 0,3 26,4 32 1,1

CoDA 1,3 0,2 0,1 9,4 4,5 2,9 14,1 2,8 0,5 0,2 4 8,1 1,0

Scale Factor 2

Virtuoso T/O T/O T/O 950,9 T/O 462,9 992,2 42,9 1,8 1,9 T/O 1054 46,5

SemiJoin 3,6 0,9 0,5 25,7 102,8 101 15,4 11,1 89,7 0,32 30,6 35,5 20,6

PartialAgg 17,1 16,5 7,3 16,2 9,5 5,9 18,4 5,8 0,8 0,34 77,3 37,4 10,5

MedJoin T/O T/O T/O T/O 143,7 31,5 612,7 36,7 1,8 1,7 T/O T/O 246,7

CoDA 3,6 0,9 0,5 16,2 9,5 5,9 15,4 5,8 0,8 0,33 30,6 35,5 10,5

Scale Factor 3

Virtuoso T/O T/O T/O 1465 T/O T/O T/O 63,5 2,8 3,1 T/O T/O 68,5

SemiJoin 46,3 5,4 2,2 330,7 303,4 344,1 20,2 14,2 250,7 0,6 45,4 105,3 39,8

PartialAgg 18,4 18,8 8,3 29,5 13,2 8,2 23,2 8,6 1,1 0,7 217,4 606 33,9

MedJoin T/O T/O T/O T/O 205,7 39,5 1312 44,8 2 2,4 T/O T/O 305,3

CoDA 18,4 5,4 2,2 29,5 13,2 8,2 20,2 8,6 1,1 0,6 45,4 105,3 33,9

Scale Factor 4

Virtuoso T/O T/O T/O T/O T/O T/O T/O 86,9 4,7 4,7 T/O T/O 118,4

SemiJoin 64,2 6.9 2,4 368,5 430,3 455,4 23,7 14,5 275,6 0,7 54,2 116,2 73,5

PartialAgg 33,9 27,6 9,8 146,2 15,2 12,9 27,2 12,5 1,6 0,8 980,8 1017 68,3

MedJoin T/O T/O T/O T/O 267,5 43,6 T/O 64,5 2,3 3,9 T/O T/O T/O

CoDA 33,9 6.9 2,4 146,2 15,2 12,9 23,7 12,5 1,6 0,7 54,2 116,2 68,3

Scale Factor 5

Virtuoso T/O T/O T/O T/O T/O T/O T/O 109,2 5,3 5,7 T/O T/O 143,4

SemiJoin 77,7 8,4 2,9 453,4 460,3 503,6 60,9 15,8 352,9 1,2 59,2 126,8 123,6

PartialAgg 37,7 29,2 18,4 249,5 19,8 14,9 78,5 14,4 2,2 1,7 1565 1577 105,1

MedJoin T/O T/O T/O T/O 301,2 46,3 T/O 80,4 3,3 5,8 T/O T/O T/O

CoDA 37,7 8,4 2,9 249,5 19,8 14,9 60,9 14,4 2,2 1,2 59,2 126,8 105,1
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Fig. 2. Execution times for queries with low and high selectivity, one endpoint
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Fig. 3. Execution of query 4.3 over several endpoints (Colour figure online)

In summary, the experimental results show that CoDA is able to select the
best strategy and thus executes all queries for RDF data of all tested data sizes.

6 Conclusions and Future Work

Motivated by the increasing availability of RDF data over SPARQL endpoints,
the new powerful aggregation functionality in SPARQL 1.1, and the desire to
perform ad-hoc analytical queries, this paper investigated the problem of effi-
ciently processing aggregate queries in a federation of SPARQL endpoints.
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More precisely, the paper proposed the Mediator Join, SemiJoin, and Partial
Aggregation query processing strategies for this scenario. The paper also pro-
posed a cost model, and techniques for estimating constants and result sizes
for triple patterns, joins, grouping and aggregation, and the combination of
these with the processing strategies into the Cost-based Optimizer for Distrib-
uted Aggregate queries (CoDA) approach for aggregate SPARQL queries over
endpoint federations. The comprehensive experimental evaluation, based on an
RDF version of the widely used Star Schema Benchmark, showed that CoDA
is efficient and scalable, able to pick the best query processing plan in different
situations, and significantly outperforms current state-of-the art triple stores.

Interesting directions for future work include using more complex statistics
with precomputed join result sizes and correlation information to better esti-
mate cardinalities, optimizing the execution of more complex queries (e.g., with
optional patterns or complex aggregation functions), and investigating the influ-
ence of ontological constraints and inference/reasoning in the context of federated
aggregate SPARQL queries.
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