Towards Exploratory OLAP Over Linked Open
Data — A Case Study

Dilshod Ibragimov!2(®) | Katja Hose?, Torben Bach Pedersen?,
and Esteban Zimanyi!

! Université Libre de Bruxelles, Brussels, Belgium
{dibragim,ezimanyi}@ulb.ac.be
2 Aalborg University, Aalborg, Denmark
{diib,khose,tbp}@cs.aau.dk

Abstract. Business Intelligence (BI) tools provide fundamental support
for analyzing large volumes of information. Data Warehouses (DW) and
Online Analytical Processing (OLAP) tools are used to store and analyze
data. Nowadays more and more information is available on the Web in
the form of Resource Description Framework (RDF), and BI tools have
a huge potential of achieving better results by integrating real-time data
from web sources into the analysis process. In this paper, we describe a
framework for so-called exploratory OLAP over RDF sources. We pro-
pose a system that uses a multidimensional schema of the OLAP cube
expressed in RDF vocabularies. Based on this information the system
is able to query data sources, extract and aggregate data, and build a
cube. We also propose a computer-aided process for discovering previ-
ously unknown data sources and building a multidimensional schema of
the cube. We present a use case to demonstrate the applicability of the
approach.

Keywords: Exploratory OLAP - LOD - QB40OLAP

1 Introduction

In the business domain, there is a constant need to analyze big volumes of
information for intelligent decision making. Business intelligence tools provide
fundamental support in this direction. In general, companies use data warehouses
to store big volumes of information and OLAP tools to analyze it. Data in
such systems are generated by feeding operational data of enterprises into data
warehouses. Then, OLAP queries are run over data to generate business reports.
Multidimensional Expressions (MDX) query language is the de-facto standard
for OLAP querying.

Traditionally, such analyses are performed in a “closed-world” scenario, based
only on internal data. With the advent of the Web, more and more data became
available online. These data may be related to, for example, the market, com-
petitors, customer opinions (e.g., tweets, forum posts), etc. Initially, these data
were not suitable for machine processing. Later, a framework that extends the

© Springer-Verlag Berlin Heidelberg 2015
M. Castellanos et al. (Eds.): BIRTE 2013 and 2014, LNBIP 206, pp. 114-132, 2015.
DOI: 10.1007/978-3-662-46839-5_8

OLAP Example Over LMDB 115

principles of the Web from documents to data converting the Web of Documents
into the Web of Data was proposed. According to the standards, to facilitate a
discovery of the published data, these data should comply with the Linked Data
principles [32]. RDF was chosen as a standard model for data interchange on the
Web [34]. With these principles in action, the whole Internet may be considered
as one huge distributed dataspace.

With data being publicly available, businesses see the benefits of incorpo-
rating additional, real-time data into the context of information received from
data warehouses or analyzing these data independently. Companies may explore
new data opportunities and include new data sources into business analyses.
A new type of OLAP that performs discovery, acquisition, integration, and ana-
lytical querying of new external data is necessary. This type of OLAP was termed
Ezploratory OLAP [2].

In the past years the scientific community has been working on bringing these
new BI concepts to end-users. The main focus of research was providing an easy
and flexible access to different data sources (internal and external) for non-skilled
users so that the users can express their analytical needs and the system is able
to produce data cubes on-demand. Optimally, the internal complexity of such
systems should be transparent to end-users.

In [1] a vision to new generation BI and a framework to support self-service
BI was proposed. The process, according to this framework, is divided into sev-
eral steps and consists of query formulation, source discovery and selection, data
acquisition, data integration, and cube presentation phases. Based on this frame-
work, we propose our approach to performing exploratory OLAP over Linked
Open Data (LOD). For the sake of simplicity, our scenario considers only data
available in RDF format and accessible over SPARQL endpoints [35].

The novel contribution of this paper are:

— We define a multidimensional schema of an OLAP cube exclusively in RDF.
This multidimensional schema allows to define remote data sources for query-
ing during the OLAP analysis phase.

— We propose a computer-aided approach to deriving the schema of the OLAP
cube from previously unknown sources.

The remainder of the paper is structured as follows: in Sect. 2, we introduce
a case study for exploratory OLAP scenario where the multidimensional schema
and sources of data are already known. We show how we can retrieve data and
build an OLAP cube. In Sect.3, we propose ideas for sources discovery and
schema generation for such cases. In Sect. 4, we present a conceptual framework
for achieving exploratory OLAP over LOD. In Sect.5, we discuss the related
work. Finally, in Sect. 6, we conclude this paper and identify future work.

2 A Movie Case Study

This scenario is based on the dataset originating from the Linked Movie
Database! (LinkedMDB) website, which provides information about movies.

! http://data.linkedmdb.org.

http://data.linkedmdb.org

116 D. Ibragimov et al.

actor

editor
PK | editorid PK | actor_actorid
director
: actor_name
editor_name - PK | director_directorid
A A
| |—> director_name
genre film
PK | genreid < PK | filmid
genre_name title G R
runtime PK | country_id
language >
producer initial_release_date country_capital
country country_currency
PK | producerid e FK3 | writer_writerid country_continent
FK6 | director_directorid
Producer_name FK7 | actor_actorid
FK1 | producerid -
FK2 | film_formatid writer
film_format FK4 | genreid P PK | writer writerid
: FK5 | editorid
PK | film_formatid i
Tilm_formatid FK8 | country_id writer_name
film_format_name

Fig. 1. Partial LinkedMDB logical schema

LinkedMDB publishes Linked Open Data for movies, including a large num-
ber of interlinks to several datasets on the LOD cloud and references to related
webpages. Data can be queried using a SPARQL endpoint?.

A typical movie record contains information about the movie, the actors who
played in the movie, the director of the movie, the genre, the initial release date,
the runtime, the country where it was produced, etc. An example record for the
movie “The Order”? stored in LinkedMDB is as follows (all the prefixes used in
the paper are listed in the appendix):

<http://data.linkedmdb.org/resource/film/1005> rdf:type movie:film ;
movie:actor <http://data.linkedmdb.org/resource/actor/32063> ;
movie:actor <http://data.linkedmdb.org/resource/actor/42288> ;
foaf:based_near <http://sws.geonames.org/2921044/> ;
movie:country <http://data.linkedmdb.org/resource/country/DE> ;
dc:date ‘€2003,2003-09-05°’
movie:director <http://data.linkedmdb.org/resource/director/9091> ;
movie:film_cut <http://data.linkedmdb.org/resource/film_cut/15031> ;
movie:filmid €€1005’’~"xsd:int ;
movie:genre <http://data.linkedmdb.org/resource/film_genre/28> ;
movie:initial_release_date ‘‘2003,2003-09-05"
rdfs:label ‘‘The Order’’
movie:language <http://www.lingvoj.org/lingvo/en> ;
foaf:page <http://www.imdb.com/title/tt0304711> ;
movie:runtime ‘€102°°
dc:title ‘‘The Order’’

2 http://data.linkedmdb.org/sparql.
3 http://data.linkedmdb.org/resource/film/1005.

http://data.linkedmdb.org/sparql
http://data.linkedmdb.org/resource/film/1005

OLAP Example Over LMDB

A partial logical schema of the LinkedMDB is given in Fig. 1. LinkedMDB also
contains links to other datasets using the property owl:sameAs. For example,
a country information is interlinked to GeoNames?. Based on the analysis of

GeoNames, the partial logical schema of GeoNames is illustrated in Fig. 2.

Suppose a user wants to analyze data about
movies. Examples of typical queries could be:

— Average runtime for movies by movie director
and country
— Number of movies by continent and year

N.B.: She may want to do it in the context of infor-
mation retrievable from GeoNames.

For this purpose, the user may want to con-
struct a virtual data cube. Data will be retrieved
from two sources: LinkedMDB and GeoNames. The
data cube is considered virtual because data are
not materialized in the local system. This data
cube accepts user queries, queries the data sources,

retrieves the information, processes it, and answers user queries. The mul-
tidimensional schema of such a data cube is given in Fig.3. The schema
describes the dimensions: Country (Population, Country Name), Release
Date (Year, Quarter, Month), Director, Actor, Script Writer and the

measure: Runtime.

Actor (movie:actor)

ActorlD (movie:actor_actorid)

GeoNames

PK

rdfs:isDefinedBy

geo:alternateName
geo:shortName
geo:officialName
geo:name
geo:wikipediaArticle
geo:population
wgs84_pos:lat
wgs84_pos:long
rdfs:seeAlso
geo:countryCode

Fig. 2. Partial GeoNames
logical schema

Director (movie:director)

DirectorlD

(movie:director_directorid)

PersonName (rdfs:label)

ReleaseDate PersonName (rdfs:label)
Date (movie:initial_release date) I
Calendar
Film (movie:film)
Month FilmID (movie-filmid)
MonthNumber FiImName (rdfs:.labe!)
MonthName Runtime (mowe‘.runtlme)
Language (movie:language)
Y Release
Quarter (movieinitial_release_date)
Actor (movie:actor)
Quarter Director (movie:director)
Semester Y
Semester Script Writer (movie:writer)
Y ScriptWriterlD
Year movie:writer_writerid
PersonName (rdfs:label)
Year

Country (movie:country)

CountryKey (movie:country_id
CountryName (geo:officialName)
CountryCode (geo:countryCode)

Population (geo:population)

Fig. 3. Conceptual schema of the data cube

* http://www.geonames.org)/.

http://www.geonames.org/

118 D. Ibragimov et al.

Knowing the structure of the cube, a user wants to find the average run-
time for movies by director and country. She issues an MDX query as shown in
Listing 1.1:

WITH MEMBER Measures.AvgRuntime AS Avg(Film.Director.CurrentMember, Measures.Runtime)

SELECT NON EMPTY {Film.Director.Members} ON COLUMNS,

NON EMPTY {Film.Country.Members} ON ROWS
FROM [MoviesDataWarehouse] WHERE (Measures.AvgRuntime);

Listing 1.1: MDX Query on the Data Cube

Data on the Web are mostly stored and retrieved as RDF and not as relational
data. Therefore, we propose to use a fully RDF-based approach for exploratory
OLAP over LOD sources and to analyze data without converting them to rela-
tional data and storing them in a local data warehouse. Additionally, loading
and storing highly volatile, real-time data in a local system may not be practical.

In our case study we use RDF vocabularies such as QB4OLAP [5] and
VoID [31] to describe the multidimensional schema. QB4OLAP is an RDF vocab-
ulary that allows the publication of multidimensional data. QB4OLAP can
represent dimension levels, level members, rollup relations between levels and
level members, etc. QB4OLAP can also associate aggregate functions to mea-
sures. VoID is an RDF Schema vocabulary for expressing metadata about RDF
datasets. The vocabulary may specify how RDF data can be accessed using
various protocols. For example, the SPARQL endpoint location can be speci-
fied by the property void:sparqlEndpoint. Based on the information from the
multidimensional schema, the system will be able to identify the sources and
query them. An excerpt of the multidimensional schema for our running exam-
ple, expressed in the QB4OLAP and VoID vocabularies, is given in Listing 1.2.

Data structure definition and dimensions ## Dimension Properties and Hierarchies
exqb:FilmCube a gb:DataStructureDefinition ; exqgb:year a gb4o:LevelProperty ;
void:sparqlEndpoint skos:closeMatch db:Year ;
<http://data.linkedmdb.org/sparql> ; rdfs:comment "Film release year'"Qen ;
Dimensions gb4o:inDimension exgb:ReleaseDate .
qb:component [gqb:dimension exqb:Actor]; exqgb:quarter a gb4o:LevelProperty ;
qb:component [gqb:dimension exqb:ReleaseDate]; rdfs:comment "Film release quarter'"Qen ;
qb:component [gb:dimension exgb:Director]; gb4o:inDimension exqb:ReleaseDate .
gb:component [gb:dimension exgb:Countryl]; exgb:ReleaseDate a gb:DimensionProperty .
Definition of measures exgb:Actor a gb:DimensionProperty ;
gb:component [gb:measure exqb:Runtime]; skos:mappingRelation movie:actor ;
Attributes rdfs:seeAlso owl:samels ;
gb:component [gb:attribute exgb:FilmName] . gb4o:hasAttribute exgb:PersonName .

Listing 1.2: Multidimensional Schema Expressed in QB4OLAP

To answer the MDX query, the system needs to send SPARQL queries to remote
data endpoints for data retrieval. To do this, it first finds appropriate informa-
tion for the measures and the dimensions specified in the MDX query from the
multidimensional schema. The system finds the sources of data for dimensions
/measures (void:sparqlEndpoint), all the attributes (gb4o:hasAttribute),
the mapping information to map these attributes to the source equivalents
(skos:mappingRelation), etc. For instance, for the MDX query given in

OLAP Example Over LMDB 119

Listing 1.1 the system needs to find the information about the Runtime mea-
sure and the Director and the Country dimensions. Then, the system sends
SPARQL queries to the LinkedMBD and the GeoNames SPARQL endpoints.
The query that is sent to LinkedMDB to retrieve the information regarding
dimensions, attributes, and measures is given in Listing 1.3.

Retrieving attributes, dimensions, and measures
CONSTRUCT {
?movieUrl exqgb:Runtime ?runtime . ?movieUrl exgb:FilmName ?movieName .
?movieUrl exqb:Country ?country . ?country owl:sameAs 7owlCountry .
?movieUrl exgb:Director ?directorID . ?directorID exqgb:PersonName ?directorName .
} WHERE {
?movieUrl rdf:type movie:film . 7movieUrl movie:country 7country .
?country owl:sameAs 7owlCountry . ?movieUrl rdfs:label ?movieName .
?movieUrl movie:runtime ?runtime . ?movieUrl movie:director ?directorID .
?directorID rdfs:label ?directorName .

Listing 1.3: SPARQL Query to LinkedMDB

This query uses the CONSTRUCT clause to automatically create triples. These
triples specify the dimension attributes and therefore can easily be copied to the
final QB4OLAP structure. An excerpt from the result returned to the system
for the query is as follows:

<rdf :Description rdf:about="http://data.linkedmdb.org/resource/film/930">
<exqgb:FilmName>Godfather</exqb:FilmName>
<exgb:Director rdf:resource="http://data.linkedmdb.org/resource/director/448"/>
<exqb:Country rdf:resource="http://data.linkedmdb.org/resource/country/IN"/>
<exqgb:Runtime>158</exqb:Runtime>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/film/2939">
<exgb:Director rdf:resource="http://data.linkedmdb.org/resource/director/10494"/>
<exqb:Runtime>120</exqgb:Runtime>
<exqb:FilmName>Raincoat</exgb:FilmName>
<exqgb:Country rdf:resource="http://data.linkedmdb.org/resource/country/IN"/>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/director/448">
<exqb:PersonName>K. S. Ravikumar (Director)</exgb:PersonName>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/director/10494">
<exgb:PersonName>Rituparno Ghosh (Director)</exgb:PersonName>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/country/IN">
<owl:sameAs rdf:resource="http://sws.geonames.org/1269750/"/>

</rdf :Description>

Then, the data from GeoNames may be downloaded. In our running example the
system uses the URI received from the “owlCountry” property and use it in the
VALUES statement of the SPARQL query. We use a VALUES statement to group
several arguments together in one query. Our goal is to send as few queries as
possible. Since GeoNames does not have an associated SPARQL endpoint, the
query is sent to the mirrored endpoint (http://lod2.openlinksw.com/sparql):

CONSTRUCT {
?s geo:countryCode 7ol . ?s geo:name 702 . ?s geo:population 703 .

} WHERE {

?s geo:countryCode 7ol . ?s geo:name 702 . ?s geo:population 703 .

VALUES (?s){ (<http://sws.geonames.org/1149361/>) ... (<http://sws.geonames.org/1269750/>) }
}

Listing 1.4: SPARQL Query to GeoNames

http://lod2.openlinksw.com/sparql

120 D. Ibragimov et al.

This query returns information about the country’s population, name, and code.
A sample answer may look as follows:

<http://sws.geonames.org/1149361/> geo:countryCode "AF" ;
geo:name "Islamic Republic of Afghanistan" ;
geo:population "29121286" .

The data obtained from the two sources are merged into a QB4OLAP structure:
all received facts may be stored as gb:0bservation instances (in OLAP termi-
nology this corresponds to facts indexed by dimensions), all dimension instances
are stored as triples. The aggregated values for measures are computed based on
the gb4o:AggregateFunction function type. A sample QB4OLAP structure is
given in Listing 1.5:
<http://data.linkedmdb.org/resource/film/810> a qb:0bservation;
gb:dataSet exgb:MoviesDataWarehouse ;
exgb:Director < http://data.linkedmdb.org/resource/director/8629> ;
exgb:Runtime 188;
exqb:Country < http://data.linkedmdb.org/resource/country/IN> .
http://data.linkedmdb.org/resource/film/930> a qb:0bservation;
gb:dataSet exgb:MoviesDataWarehouse ;
exgb:Director < http://data.linkedmdb.org/resource/director/448> ;
exgb:Runtime 158;
exqb:Country < http://data.linkedmdb.org/resource/country/IN> .
<http://data.linkedmdb.org/resource/country/IN>
exgb:CountryName "India"
exgb:CountryCode "IN" ;
exgb:Population "1173108018" .

<http://data.linkedmdb.org/resource/director/448>
exgb:PersonName "K. S. Ravikumar (Director)" .

Listing 1.5: Observations in QB4OLAP

In case the number of returned triples is large and cannot be handled by a
SPARQL endpoint or transferred over the Internet, the system can send aggre-
gate subqueries to the sources. The aggregation can be performed on the graph
patterns used for joining several federated SPARQL subqueries. This will help
to reduce the number of records for which the values from the endpoints will be
transferred. For example, the following subqueries return aggregate values (left)
and additional information (right) on the runtime of the movies by director and
country. The results can be connected via the values of the 7owlCountry.

SELECT AVG(7runtime) 7dirName ?owlCountry

WHERE { SELECT 7owlCountry ?code ?c_name ?pop
?movUrl exgb:Runtime ?runtime . WHERE {
?movUrl exgb:Country ?country . ?7owlCountry geo:countryCode 7code .
?cntr owl:sameAs 7owlCountry . ?owlCountry geo:name 7c_name .
?movUrl exgb:Director ?dirID . ?7owlCountry geo:population ?pop
?dirID exqb:PersonName ?dirName . }

} GROUP BY ?dirName ?owlCountry

Listing 1.6. Aggregate and Informational Subqueries
The intermediate results of the execution of the subqueries may be stored in an
in-memory table. Then, the results of the execution of the subqueries will be
merged into the QB4OLAP structure.

OLAP Example Over LMDB 121

Based on these data, the computed aggregated values are returned back to
a user of the system. A sample answer to the previous MDX query may look as
shown in Table 1:

Table 1. Aggregated Values

Great | India | United | Venezuela | Pakistan | Russia | Netherlands
Britain states

Sally Potter (Director) 86 96

Robert Aldrich (Director) 88

Romén Chalbaud (Director) 93

Roland Joffé (Director) 87

Gerald Thomas (Director) 78 83

3 Source Discovery and Schema Building
for Exploratory OLAP

In the case study introduced in Sect. 2 we assume that the data sources and the
multidimensional schema of the OLAP cube are known. However, in reality the
discovery of essential data sources is not a trivial task. Despite the fact that
the publication of Linked Data has gained momentum in recent years, there
is still no single approach on how these data should be published to be easily
discoverable. We identified three potentially interesting data source discovery
approaches for further investigation. In all three approaches described below we
show how we can derive a schema of the OLAP cube for the scenario discussed
in Sect. 2.

3.1 Querying Knowledge Bases

The first approach is querying large knowledge bases such as DBpedia®, Yago®,
or Freebase” to find relevant information. Data from such knowledge bases are
usually freely accessible over SPARQL endpoints. Querying these endpoints for
the term of interest may lead to the discovery of useful sources of data or the
necessary information itself. Since the number of answers that come from these
sources may be extremely large and not always relevant, there is a need for
filtering the answers. Also, since the user entry may be ambiguous due to the
ambiguity and complexity of natural languages, the end user needs to guide the
process of source discovery by selecting most appropriate alternatives for further
investigation.

To find some relevant information about the term “Film”, we can send the
following SPARQL query to the Freebase SPARQL endpoint:

® http://dbpedia.org/About.
5 http://www.mpi-inf.mpg.de/yago-naga/yago/ .
" http:/ /www.freebase.com/.

http://dbpedia.org/About
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://www.freebase.com/

122 D. Ibragimov et al.

Table 2. Freebase Query Partial Results

7s

71 ?count

http://rdf.freebase.com/ns/m.02nsj19

Film character 2001832

http://rdf.freebase.com/ns/film.film/character | Film character 1384754

http://rdf.freebase.com/ns/film.actor Film actor 874840
http://rdf.basekb.com/ns/m.0jsg30 Film performance | 673398
http://rdf.freebase.com/ns/film.film Film 557505
http://rdf.freebase.com/ns/m.0jsg4] Film actor 492249

http://rdf.freebase.com/ns/film.film_crew_gig

Film crew gig 456500

http://rdf.basekb.com/ns/m.02nsjl9

Film character 410669

http://rdf.basekb.com/ns/m.0jsg4]

Film actor 215777

http://rdf.freebase.com/ns/m.02_6zn1

Film crewmember | 205938

Table 3. Freebase Movie Instances

7s p

70

http://rdf.freebase.com/ns/m.0pj5t | rdfs:label

Falling Down

http://rdf.freebase.com/ns/m.Oswhj | rdfs:label

A Charlie Brown Christmas

http://rdf.freebase.com/ns/m.0m2kd | rdfs:label | Stand by Me
http://rdf.freebase.com/ns/m.07cz2 | rdfs:label | The Matrix
http://rdf.freebase.com/ns/m.0c296 | rdfs:label | Amélie
http://rdf.freebase.com/ns/m.0prk8 | rdfs:label | Hamlet

http://rdf.freebase.com/ns/m.0j90s | rdfs:label

Guess Who'’s Coming to Dinner

http://rdf.freebase.com/ns/m.02yxx | rdfs:label

Fearless

http://rdf.freebase.com/ns/m.0p9rz | rdfs:label

Romeo and Juliet

http://rdf.freebase.com/ns/m.Osymg | rdfs:label

Dead Man

SELECT ?s 71 COUNT(?s) as ?count
WHERE { ?someobj ?p ?s . 7s rdfs:label 71 .
FILTER(CONTAINS(?1,"Film") && (lang(?71l) = ’en’) &&
} ORDER BY DESC(?count) LIMIT 20

(!isLiteral(?someobj))) .

This query is optimized to allow sorting by relevance using the COUNT function
so that the user sees the most relevant answers first. The partial result of the

query is given in Table 2.

By examining the returned answer, the user may find some interesting triples
and may want to explore these triples further. The system at this stage helps
the user to do so. For example, several triples should be retrieved for further
exploration. In our case, one of the triples has a subject equal to <http://
rdf.freebase.com/ns/film.film>. The following query returns several instances

related to the triple pattern of interest:

http://rdf.freebase.com/ns/m.02nsjl9
http://rdf.freebase.com/ns/film.film/character
http://rdf.freebase.com/ns/film.actor
http://rdf.basekb.com/ns/m.0jsg30
http://rdf.freebase.com/ns/film.film
http://rdf.freebase.com/ns/m.0jsg4j
http://rdf.freebase.com/ns/film.film_crew_gig
http://rdf.basekb.com/ns/m.02nsjl9
http://rdf.basekb.com/ns/m.0jsg4j
http://rdf.freebase.com/ns/m.02_6zn1
http://rdf.freebase.com/ns/m.0pj5t
http://rdf.freebase.com/ns/m.0swhj
http://rdf.freebase.com/ns/m.0m2kd
http://rdf.freebase.com/ns/m.07cz2
http://rdf.freebase.com/ns/m.0c296
http://rdf.freebase.com/ns/m.0prk8
http://rdf.freebase.com/ns/m.0j90s
http://rdf.freebase.com/ns/m.02yxx
http://rdf.freebase.com/ns/m.0p9rz
http://rdf.freebase.com/ns/m.0symg
http://rdf.freebase.com/ns/film.film
http://rdf.freebase.com/ns/film.film

OLAP Example Over LMDB 123

SELECT ?s ?p 7o

WHERE {

?s 7p 70 . ?7s ns:type.object.type ns:film.film . FILTER (lang(?0) = ’en’).
} LIMIT 10

The result of the execution of the query is given in Table 3.

If the user decides that the selected samples satisfy the needs, the user is aided
in building a multidimensional model of the OLAP cube. Our proposition for
building a graph representation of the source is based on characteristic sets (CS)
(Neumann and Moerkotte [19]), which contain the properties of RDF data triples
for triple subjects. The system should also offer possible candidates for mea-
sures, dimensions, and dimensional attributes, identifying all triples related to
the instances, their data types, etc. Then the user chooses the schema that most
closely reflects the needs or directs the system for further search. In our example,
the user may encounter properties of interest such as runtime, director, actors,
and country by exploring the instance properties of the class ns:film.film:

ns:m.0c296 ns:film.film.country ns:m.0345h;
ns:film.film.directed_by ns:m.0k181;

ns:film.film.edited_by ns:m.07nwly6;

ns:film.film.genre ns:m.05p553;
ns:film.film.initial_release_date "2001-04-25"""xsd:datetime;
ns:film.film.runtime..film.film_cut.runtime ns:122.0;
ns:film.film.starring..film.performance.actor ns:m.01y9t4;
ns:film.film.starring..film.performance.actor ns:m.0jtcpc;

The whole process of discovering the sources and building the multidimensional
schema needs to be guided by a user.

3.2 Querying Data Management Platforms

The second approach for source discovery is querying so-called data manage-
ment platforms. One such platform is the Datahub®-the platform based on the
CKAN? registry system. CKAN is an open source registry system that allows
storing, distributing, and searching of the contents for spreadsheets and datasets.
Search and faceting features allow users to browse and find the data they need.
CKAN provides an API that can be used for searching the data by applica-
tions. For instance, CKAN’s Action API provides functions for searching for
packages or resources matching a user query. Using the Action API, we can
list all the datasets (packages) residing in the system (http://datahub.io/api/
3/action/package_list), view the dataset descriptions (http://datahub.io/api/3/
action/package_show?id=linkedmdb), or search for datasets matching the search
query (http://datahub.io/api/3/action/package_search?q=Film). The answer is
returned in JSON format.

Querying the Datahub for a “Film” string returns 99 results, where 5 results
have SPARQL endpoints: Prelinger Archives (http://api.kasabi.com/dataset/
prelinger-archives/apis/sparql), Linked Movie Database (http://data.linkedmdb.

8 http://datahub.io.
9 http://ckan.org/.

http://datahub.io/api/3/action/package_list
http://datahub.io/api/3/action/package_list
http://datahub.io/api/3/action/package_show?id=linkedmdb
http://datahub.io/api/3/action/package_show?id=linkedmdb
http://datahub.io/api/3/action/package_search?q=Film
http://api.kasabi.com/dataset/prelinger-archives/apis/sparql
http://api.kasabi.com/dataset/prelinger-archives/apis/sparql
http://datahub.io
http://datahub.io
http://ckan.org/

124 D. Ibragimov et al.

org/sparql), DBpedia-Live (http://live.dbpedia.org/sparql), Europeana Linked
Open Data (http://europeana.ontotext.com/sparql), and DBpedia (http://
dbpedia.org/sparql). By retrieving several instances of triple patterns and identi-
fying corresponding properties (the same process as proposed for querying knowl-
edge bases), we may define the multidimensional schema needed for the OLAP
cube.

3.3 Querying Semantic Web Search Engines

The third approach for sources discovery is querying semantic web search engines.
An example of such search engines is Sindice!?, which also provides a Search API
(http://sindice.com/developers/searchapiv3) using a query language (http://
sindice.com/developers/queryLanguage). The Search API provides programmatic
access to search capabilities of the search engine and returns the result in one of
three formats: JSON, RDF, or ATOM. This API supports a keyword search to
facilitate the discovery of relevant documents that contain either a keyword or a
URI. The query language supports filtering the search results by URL, domain,
class, predicate, ontology, etc. and grouping the search results by datasets.

Querying Sindice for the “Film” string returns many results (582,883), mostly
individual triples, but grouping the results by datasets allows identifying the
datasets for further exploration. The following query to Sindice reveals the
Linked Movie Database dataset (http://data.linkedmdb.org) for further explo-
ration among others:http://api.sindice.com/v3/search?q=Film&format=json&
fq=format%3ARDF &page=6&facet.field=domain.

After discovering a proper source of information, we should apply the process
of building the multidimensional schema of the OLAP cube.

4 Conceptual Framework

The main functionality of an exploratory OLAP system is illustrated in Fig. 4.
Here we assume that there may (optionally) exist some internal data depicted as
a cube with dotted lines. These data may serve as a foundation for further explo-
ration. A user may want to enrich/supplement these data by external data from
the Web. Ideally, the system should be able to retrieve data stored in any for-
mat (HTML, XML, CSV, RDF, etc.). In Fig. 4 these data are depicted as small
colored cubes which extend the internal cube. This requirement imposes addi-
tional complexity over the system, so the part of the system that is responsible for
exploratory OLAP can be further subdivided into several subparts, each handling
another data format. In this paper we concentrate on Linked Open Data and we
describe our vision on how to achieve exploratory OLAP over Linked Open Data.

The envisioned architecture for the exploratory OLAP over Linked Open
Data system is sketched in Fig.6. The system consists of four main modules.
The Global Conceptual Schema module contains information about the schema

9 http://sindice.com/.

http://data.linkedmdb.org/sparql
http://live.dbpedia.org/sparql
http://europeana.ontotext.com/sparql
http://dbpedia.org/sparql
http://dbpedia.org/sparql
http://sindice.com/developers/searchapiv3
http://sindice.com/developers/queryLanguage
http://sindice.com/developers/queryLanguage
http://data.linkedmdb.org
http://api.sindice.com/v3/search?q=Film&format=json&fq=format%3ARDF&page=6&facet.field=domain
http://api.sindice.com/v3/search?q=Film&format=json&fq=format%3ARDF&page=6&facet.field=domain
http://sindice.com/

OLAP Example Over LMDB 125

)

Bl
o

Fig. 4. Functional View Fig. 5. Data Integration
DX SPARQL RDF
======) Semantic Query > Distributed Query |[—————=>
E———— Processor —_— Processor RDF
MD RDF

MDX Answer

SPARQL RDF
SPARQL

Global Conceptual Source Discovery/
Schema Schema Builder

Fig. 6. System Architecture

of the specified data cube. In particular, it contains information about the mea-
sures, the dimensions and hierarchies in the dimensions, the potential aggrega-
tion functions over the measures, and pointers to data sources where the data
are located. To represent this information, we propose to use the combination of
QB40OLAP and VolID vocabularies. QB4OLAP allows defining dimensions, mea-
sures, and aggregations. The access and linkset metadata sections of the VoID
vocabulary allow to describe data sources. An example of the multidimensional
schema expressed in QB4OLAP that is part of the Global Conceptual Schema
module can be found in Listing 1.2.

This combination of vocabularies is robust w.r.t. the schema complexity, the
number of data sources, and the data volume. The schema complexity is handled
by the QB4OLAP vocabulary as demonstrated in [30]. Recent changes to the
QB40OLAP vocabulary [4] aid in defining complex multidimensional schemas
with different hierarchies of levels in dimensions (balanced, recursive, ragged,
many-to-many), different cardinalities between level members (one-to-many,
many-to-many, etc.), levels belonging to different hierarchies, etc. A number
of data sources can be referenced in a multidimensional schema of a data cube
with the help of the VoID vocabulary. Regarding the data volume, recent exper-
iments show that triple stores per se are not worse for analytical queries than
RDBMS [15], so we expect our approach to be sufficiently scalable.

The Semantic Query Processor is a module of the system that accepts an
MDX query as input and produces a multidimensional SPARQL query using

126 D. Ibragimov et al.

the QB4OLAP vocabulary for further processing. For this purpose, it queries the
Global Conceptual Schema to find appropriate information — the measures and
the dimensions specified in the MDX query. After having received the requested
information, the Semantic Query Processor will formulate SPARQL queries to
all data endpoints and send these queries to the Distributed Query Processing
module for data retrieval. Examples of such SPARQL queries can be found in
Listings 1.3 and 1.4. The Distributed Query Processor in turn queries all data
endpoints, collects and merges all data, and returns the result back to the Seman-
tic Query Processor (Listing 1.5). The returned answer is then either displayed
to the user or passed to the calling module for the integration with data from
the internal data warehouse.

The integration of external dimensional data with an internal data warehouse
has been studied before. For instance, Pedersen et al. [21] present an approach
to the logical federation of OLAP and XML data sources. Following the same
pattern, we envision that the system will have the mediator/wrappers to split
and translate initial MDX query to other query languages. This is a common
approach in distributed database systems [27]. The results received from the
wrappers will then be merged by the mediator and shown to the user. The data
integration architecture is depicted in Fig. 5.

The Source Discovery/Schema Builder module is responsible for deriving a
schema of the OLAP cube based on the user requirements. This module inter-
acts with the user during the schema construction phase. The user specifies
the domain/key concept of interest; the module searches for appropriate data
sources and proposes the most relevant of them to the user. The module uses the
approaches described in Sect. 3 to find interesting data sources. We propose to
use all three approaches because none of these approaches alone guarantees full
reliability. After identifying data sources, the system proposes a list of potential
facts, dimensions, and measures, constructs possible multidimensional schemas,
and presents them to the user for confirmation. This multidimensional schema
is then used in the Global Conceptual Schema module.

5 Related Work

In the following, we review previous research in semantic web warehousing,
source discovery, and distributed SPARQL query processing.

5.1 Semantic Web Data Warehousing

Related work for semantic web data warehousing can be divided into two cate-
gories. In the first category of approaches, the data is loaded into a local data
warehouse that is built over a relational database management system. The
schema of the data warehouse is generally determined by an administrator of the
system and the data from the Linked Data sources are loaded into the defined
tables. Then, the OLAP queries are run against the data stored in a star or

OLAP Example Over LMDB 127

snowflake schema. In the second category of approaches the OLAP operations
are executed directly over RDF stores via SPARQL.

Determining schema information for a discovered data source helps in build-
ing a multidimensional model of a data cube. In an RDF dataset, the sub-
jects that share the same properties can be grouped together. The result is a
list of property sets with associated subjects. These property sets are called
Characteristic Sets. Neumann et al. [19] used the knowledge about these sets
for the estimation of the result cardinality for join operations in triple stores.
In comparison, we instead employ characteristic sets as a basis for building a
multidimensional data cube schema.

Romero et al. [25] defined a semi-automatic general-purpose method of build-
ing a multidimensional schema for a data warehouse from a domain ontology.
The method aims to propose meaningful multidimensional schema candidates.
The method defines main steps that lead to identifying facts, dimensions, and
dimension hierarchies. The system is semi-automatic in the sense that it expects
a user confirmation for suggested concepts proposed as potential facts. Once
the user selects a concept as a fact concept, it will give rise to a multidimen-
sional schema. The disadvantage of this approach is the requirement to have a
corresponding domain ontology. This may not be the case for all data sources.

Similarly, a semi-automatic method for the identification and extraction of
data expressed in OWL is defined in [18]. OWL/DL is used to transfer valid data
into fact tables and to build dimensions. According to the proposed method, an
analyst defines a multidimensional star schema based on the known ontology of
the source of data. Then, the data from the sources are loaded into the data
warehouse. Overall, this method does not allow populating a multidimensional
schema with semantic web data from the newly discovered sources with previ-
ously unknown structures.

A framework to streamline the ETL process from Linked Open Data to a
multidimensional data model is proposed in [13]. In contrast to [18], this work
does not require previous knowledge and an ontology to collect the data. The
data that are retrieved from Linked Open Data sources are first stored in an
intermediate storage, where these data are partitioned based on the type. Then,
the analyst investigates the tables and chooses measures and dimensions for the
multidimensional data model. Afterwards, the system generates the schema for
the fact table, selects dimensions, and dumps data into relational tables for per-
forming OLAP analysis. The disadvantage of this method is the requirement to
have a high-level analyst for intermediate result investigation and multidimen-
sional schema construction.

The approach proposed in [14] uses an ETL pipeline to convert statistical
Linked Open Data into a format suitable for loading into an open-source OLAP
system. The data are presented using the RDF Data Cube (QB) vocabulary [33]
suitable for statistical data. The data that are stored in a QB file are loaded,
via an ETL process, into the data warehouse. Then, the OLAP queries can be
executed over the data. The advantage of the data stored as QB is that the
measures and dimensions are already partly defined, so the transformation of

128 D. Ibragimov et al.

data into the multidimensional model is easier. However, the method is not
suitable for data expressed in other RDF vocabularies.

The execution of OLAP queries directly over an RDF store is explained in [16].
Statistical data defined with the help of on RDF Data Cube (QB) vocabulary
are used. These data are loaded to a triple store. OLAP queries are translated
to SPARQL queries and are run over the triple store. However, the proposed app-
roach is applicable only to the data presented in QB. Moreover, the observations
in the data should not include any aggregated values, otherwise the computation
is incorrect.

In the majority of the current approaches [13,14,18] Linked Open Data are
loaded into the relational tables of a data warehouse for further analysis. Our
approach does not require a relational database for the OLAP analysis of web
data. Additionally, our approach handles all types of RDF data unlike the pro-
posal of [16], where only data stored as RDF Data Cubes (QB) are processed.
Furthermore, our approach retrieves data from multiple sources whereas other
approaches work with a single source of information at a time.

5.2 RDF Source Discovery

Heim et al. [10] propose an approach that automatically reveals relationships
between two known objects in a large knowledge base such as DBpedia and
displays them as a graph. They use properties in semantically annotated data
to automatically find relationships between any pair of user-defined objects and
visualize them. Although this approach is not relevant to source discovery the
idea of searching through knowledge bases may be applicable to it.

Exploring Linked Data principles for finding data sources is proposed in [9].
One of these principles includes the usage of HT'TP-based URIs as identifiers,
which may be understood as a data link that enables the retrieval of data by
looking up the URI on the Web. Hence, by exploring data during the query exe-
cution process one can obtain potentially relevant data for the system. However,
this technique is less suitable for bulk retrieval of RDF data, which is needed for
OLAP processing.

The publication of Linked Data as services is investigated in [22,23]. The
use of Web Services and Service Oriented Architecture (SOA) is explored in this
work. SOA facilitates easier data exchange between parties. A key component
of SOA is the service repository, which serves the purpose of publishing and
discovering services for future use. Research on service repositories for Web Ser-
vices were extensive but the approach did not receive widespread adoption and
was discontinued later. The main problem was the lack of support for expressive
queries to identify and automate the discovery and consumption of services [23].
To address this problem, researchers propose to semantically annotate service
descriptions to aid automatic discovery. Unfortunately, this technology did not
receive widespread adoption either. If such a universal registry for services that
publish Linked Data is created, a discovery and consumption of Linked Data
from previously unknown sources will become easier.

An architecture of creating an up-to-date database of RDF documents by
involving user participation in discovery of semantic web documents is described

OLAP Example Over LMDB 129

in [3]. This database can be used by search engines and semantic web applica-
tions to provide search and user-friendly services over the discovered documents.
However, the service does not support discovery of SPARQL endpoints — this
part of the process is left for future work. Scalability issues are not considered
and are left for future as well.

Search engines for the semantic web [11,20] index the semantic web by crawl-
ing RDF documents and offer a search API over these documents. Different
search engines use different index types: some index triples/quads, some index
RDF documents. These search engines create an infrastructure to support appli-
cation developers in discovering relevant data by performing lookup using, for
example, full-text search over the literals. In this paper we propose to use seman-
tic web search engines to support the discovery of SPARQL endpoints.

In this paper we further enhance existing approaches. We elaborate on ideas
from [13,19,25] to build a multidimensional schema from previously unknown
RDF data sources. Moreover, we extend principles from [10,20] for SPARQL
endpoint discovery by grouping related results by datasets. For increased relia-
bility in source discovery, we propose to employ a combination of approaches.
Additionally, we target our approach to non-professional data analysts.

5.3 Indexing and Distributed Query Processing

As Linked Data are scattered over the Web, efficient techniques for distributed
query processing become an important part of the system. Regarding distrib-
uted query processing over multiple SPARQL endpoints, several approaches and
frameworks were proposed in the past years. In contrast to the systems for source
discovery mentioned above, most systems for distributed query processing over
SPARQL endpoints rely on the presence of pre-computed indexes or statistics
to identify the relevance of sources [6-8,24,28] and only a few frameworks can
avoid the need of pre-computed information [26]. Whereas most systems special-
ize in one type of data access, exploratory data access or SPARQL endpoints,
hybrid systems propose handling different types of native access [17], often in
combination with local caching [29].

In addition to determining the relevance of sources for a given SPARQL query
based on the binary decision whether a source provides data that is relevant to
answer any part of a query, sources can be selected based on their benefit [12].
In doing so, additional aspects are considered such as the overlap of the data
provided by available sources. As a result, the minimum number of sources that
still produce the complete answer to the query can be selected.

6 Conclusions and Future Work

In this paper, we presented a framework for exploratory OLAP over LOD sources.
We introduced a system that uses a multidimensional schema of the data cube
expressed in QB4OLAP and VoID. Based on this multidimensional schema, the
system is able to query data sources, extract and aggregate data, and build an

130 D. Ibragimov et al.

OLAP cube. We proposed to store multidimensional information retrieved from
external sources in a QB4OLAP structure. We also introduced a computer-aided
process for discovering previously unknown data sources necessary for the given
data cube and building a multidimensional schema. We presented a use case
to demonstrate the applicability of the proposed framework. In the future, we
plan to finish the prototype of the proposed framework and test the solution on
large-scale case studies.

Acknowledgment. This research is partially funded by the Erasmus Mundus Joint
Doctorate in “Information Technologies for Business Intelligence — Doctoral College
(IT4BI-DC)”.

Appendix

A Prefixes Used in the Paper

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX exqb: <http://example.org/exqb#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX movie: <http://data.linkedmdb.org/resource/movie/>
PREFIX Imdbres: <http://data.linkedmdb.org/resource/>
PREFIX geo: <http://www.geonames.org/ontology#>

PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX qb: <http://purl.org/linked-data/cube#> .

PREFIX qb4o: <http://purl.org/olap#> .

PREFIX xml: <http://www.w3.org/XML/1998/namespace> .
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> .

PREFIX skos: <http://www.w3.org/2004/02/skos/core#> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

PREFIX db: <http://dbpedia.org/resource/> .

PREFIX ns: <http://rdf.freebase.com/ns/> .

References

1. Abellé, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazén, J., Naumann, F.,
Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes:
towards self-service business intelligence. IIDWM 9(2), 66-88 (2013)

2. Abells, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Aramburu, M.J.,
Simitsis, A.: Using semantic web technologies for exploratory OLAP: a survey.
TKDE 99 (2014)

3. Bojars, U., Passant, A., Giasson, F., Breslin, J.G.: An architecture to discover and
query decentralized RDF data. In: SESW (2007)

4. Etcheverry, L., Vaisman, A., Zimanyi, E.: Modeling and querying data warehouses
on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2014. LNCS, vol. 8646, pp. 45-56. Springer, Heidelberg (2014)

5. Etcheverry, L., Vaisman, A.A.: QB4OLAP: a vocabulary for OLAP cubes on the
semantic web. In: COLD (2012)

6. Gorlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: COLD (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

OLAP Example Over LMDB 131

Hagedorn, S., Hose, K., Sattler, K., Umbrich, J.: Resource planning for SPARQL
query execution on data sharing platforms. In: COLD (2014)

Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: WWW, pp. 411-420 (2010)
Hartig, O.: Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In: Antoniou, G., Grobelnik, M., Simperl, E.,
Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part L.
LNCS, vol. 6643, pp. 154-169. Springer, Heidelberg (2011)

Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:
revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris,
Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS,
vol. 5887, pp. 182-187. Springer, Heidelberg (2009)

Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching
and browsing linked data with SWSE: the semantic web search engine. J. Web
Semant. 9(4), 365-401 (2011)

Hose, K., Schenkel, R.: Towards benefit-based RDF source selection for SPARQL
queries. In: SWIM, pp. 2:1-2:86 (2012)

Inoue, H., Amagasa, T., Kitagawa, H.: An ETL framework for online analytical
processing of linked open data. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou,
J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 111-117. Springer, Heidelberg (2013)
Kampgen, B., Harth, A.: Transforming statistical linked data for use in OLAP
systems. In: I.SEMANTICS, pp. 33-40 (2011)

Kémpgen, B., Harth, A.: No size fits all - running the star schema benchmark with
SPARQL and RDF aggregate views. In: ESWC, pp. 290-304 (2013)

Kéampgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked data via
OLAP operations. In: ILD, pp. 336-353 (2012)

Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, 1., Glimm, B.
(eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453-469. Springer, Heidelberg
(2010)

Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decis.
Support Syst. 52(4), 853-868 (2012)

Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation
for RDF queries with multiple joins. In: ICDE, pp. 984-994 (2011)

Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: a document-oriented lookup index for open linked data. IJMSO 3(1),
37-52 (2008)

Pedersen, D., Riis, K., Pedersen, T.B.: XML-extended OLAP querying. In:
SSDBM, pp. 195-206 (2002)

Pedrinaci, C., Domingue, J.: Toward the next wave of services: linked services for
the web of data. J.UCS 16, 1694-1719 (2010)

Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.:
iServe: a linked services publishing platform. In: ORES (2010)

Prasser, F., Kemper, A., Kuhn, K.: Efficient distributed query processing for
autonomous RDF databases. In: EDBT, pp. 372-383 (2012)

Romero, O., Abell6, A.: Automating multidimensional design from ontologies. In:
DOLAP, pp. 1-8. ACM (2007)

Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601-616. Springer, Heidelberg (2011)

132

27.

28.

29.

30.

31.

32.
33.

34.
35.

D. Ibragimov et al.

Sheth, A., Larson, J.: Federated database systems for managing distributed, hetero-
geneous, and autonomous databases. ACM Comput. Surv. 22(3), 183-236 (1990)
Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data
summaries for processing live queries over linked data. WWWJ 14(5-6), 495-544
(2011)

Umbrich, J., Karnstedt, M., Hogan, A., Parreira, J.X.: Hybrid SPARQL queries:
fresh vs. fast results. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS,
vol. 7649, pp. 608-624. Springer, Heidelberg (2012)

Vaisman, A., Zimanyi, E.: Data Warehouse Systems: Design and Implementation.
Springer, New York (2014)

W3C. Describing linked datasets with the VoID vocabulary (2010). http://www.
w3.org/TR/void/

W3C. Data W3C (2013). http://www.w3.org/standards/semanticweb/data
W3C. The RDF data cube vocabulary (2013). http://www.w3.org/TR/2013/
CR-~vocab-data-cube-20130625/

W3C. W3C semantic web activity homepage (2013). http://www.w3.org/2001/sw
Semantic Web. SPARQL endpoint (2013). http://semanticweb.org/wiki/SPARQL_
endpoint

http://www.w3.org/TR/void/
http://www.w3.org/TR/void/
http://www.w3.org/standards/semanticweb/data
http://www.w3.org/TR/2013/CR-vocab-data-cube-20130625/
http://www.w3.org/TR/2013/CR-vocab-data-cube-20130625/
http://www.w3.org/2001/sw
http://semanticweb.org/wiki/SPARQL_endpoint
http://semanticweb.org/wiki/SPARQL_endpoint

	Towards Exploratory OLAP Over Linked Open Data -- A Case Study
	1 Introduction
	2 A Movie Case Study
	3 Source Discovery and Schema Building for Exploratory OLAP
	3.1 Querying Knowledge Bases
	3.2 Querying Data Management Platforms
	3.3 Querying Semantic Web Search Engines

	4 Conceptual Framework
	5 Related Work
	5.1 Semantic Web Data Warehousing
	5.2 RDF Source Discovery
	5.3 Indexing and Distributed Query Processing

	6 Conclusions and Future Work
	A Prefixes Used in the Paper
	References

