
Temporal Data Warehouses: Logical Models
and Querying

Waqas Ahmed∗, Esteban Zimányi∗, Robert Wrembel∗∗

∗Department of Computer and Decision Engineering (CoDE),
Université Libre de Bruxelles, Belgium
{waqas.ahmed, ezimanyi}@ulb.ac.be

∗∗Institute of Computing Science,
Poznan University of Technology, Poland

robert.wrembel@cs.put.poznan.pl

Abstract. Data warehouses (DWs) integrate data from multiple and heteroge-
neous data sources. Most of the DW design methods assume that the contents
of the dimensions in a DW will not change, but this is not the case in reality.
Therefore, DWs must reflect these changes in the real-world in order to enable
users to ask various types of temporal queries. Since temporal queries are com-
plex and costly, it is necessary to know which modeling approach is better for
such queries. In this paper, we discuss two possible approaches to implement a
DW capable of maintaining the history of the changes in dimension members.
We also present a classification of temporal queries that can be used to evaluate
the two approaches.

1 Introduction
A data darehouse (DW) integrates data from multiple, heterogeneous, and often distributed

external data sources (EDSs). Integrated data are then analyzed by means of multiple types
of analytical applications. Data stored in a DW are modeled as multidimensional cubes that
consist of facts and dimensions. A fact is a data item being analyzed. It includes numerical
features called measures that quantify the fact. Some examples of facts include sales, cash
withdrawals, and telephone calls. Facts are analyzed in the context of dimensions that typically
have a hierarchical structure. Some examples of dimensions include Customer, Time, and
Geography, the last one having a hierarchical structure City→State→Country. The instances
of a dimension are called members. An example of a member of the Geography dimension is
Brussels→Brussels-Capital Region→Belgium.

An inherent feature of EDSs is that they change their content and structures over time.
Content changes result from daily business operations. Structural changes are a consequence
of the need to support new business requirements, using new technologies, and changes in the
legislation, to name a few. Both content and structural changes must be reflected in a DW. The
maintenance of the history of changes allows users to inquire about the state of the business
world at a given time. Moreover, for audit and accountability purposes, keeping an accurate
historical context is often a business requirement.

Temporal Data Warehouses: Logical Models and Querying

Most DW design methods assume that the schema of a DW and the attribute values of
dimension instances remain unchanged during the life cycle of a DW. However, this assumption
turns out to be wrong in practice. Three alternative approaches have been proposed to handle
the evolution of a DW. Slowly changing dimensions (SCDs) (Kimball and Ross, 2013) and
temporal data warehouses (TDWs) (Golfarelli and Rizzi, 2009) (based on the research done in
the field of temporal databases (Snodgrass and Ahn, 1986)) handle the changes in the content
of DWs, whereas multiversion data wsarehouses (MVDWs) (Ahmed et al., 2014; Wrembel
and Bębel, 2007) handle both the content and structural changes. SCDs focus on maintaining
the history of changes in dimension members. TDWs provide built-in support for storing and
querying time-varying facts and dimension members. MVDWs maintain the history of changes
in the content and structure by means of DW versions.

SCDs, being an intuitive and easy-to-implement approach, is becoming recognized by in-
dustry (e.g., SQL Server support for SCDs 1). On the other hand, temporal support has been
incorporated into the SQL standard (Kulkarni and Michels, 2012) and is implemented in some
DBMSs, e.g., IBM DB2 2, Teradata (Al-Kateb et al., 2013), and PostgreSQL 3.

When a DW keeps historical information, a user may ask various types of queries about
the evolution of the business world. Answering such queries is not trivial as identifying and
manipulating the records valid during the period of interest can be very complex and resource
demanding. Therefore, while designing a DW that maintains the history of its evolving states,
it would be helpful for a designer to know which of the aforementioned modeling approaches
is the most suitable for a given application scenario. For this reason, in this paper we focus on
comparing type 2 SCDs with temporal data warehouses presented in Malinowski and Zimányi
(2008), with respect to complexity of queries.

In particular, the contributions of this paper are the following:
– we discuss two approaches to implement a DW capable of tracking history,
– we present a classification of temporal queries and describe the operators for implement-

ing them, and
– we briefly compare the query performance in the two approaches.
The rest of this paper is organized as follows. Section 2 reviews the related work. In Sect. 3,

we introduce a running example and its conceptual schema using the MultiDim model. In
Sect. 4, we present two possible approaches for implementing the running example. In Sect. 5
we present a classification of business queries and discuss the temporal operators needed to
implement such queries. In Sect. 6 we discuss with the help of an example query the perfor-
mance of the two possible implementation approaches. Finally, Sect. 7 concludes the paper
and provides considerations for future research.

2 Related Work

In this section, we present the work related to temporal database benchmarking, query
classification for DWs, and performance evaluation of modeling techniques for evolving DWs.

1. http://msdn.microsoft.com/en-us/library/ms141715.aspx
2. http://www.ibm.com/developerworks/data/library/techarticle/

dm-1204db2temporaldata/
3. http://pgxn.org/dist/temporal_tables/

W. Ahmed et al.

Dunham et al. (1995) presented a benchmark model for bitemporal databases. The au-
thors identified various components of the benchmark as user requirements, temporal dataset,
and queries to be run. They also provided an extensive list of queries with different variants
to test various performance aspects. OLTP-Bench (Difallah et al., 2013) is a benchmark for
bitemporal relational databases which allows users to choose a workload from the synthetic
DB benchmarks and real-world web applications. Han and Lu (2014) highlighted the potential
research issues in big data benchmarking.

Kaufmann et al. (2013) classified the temporal queries into three classes: time travel, tem-
poral joins, and temporal aggregates. Furthermore, they presented an implementation of var-
ious temporal operators for an in-memory DBMS. Although many contributions have been
made for benchmarking temporal databases, a comprehensive benchmark for DWs with tem-
poral functionality is still awaited.

TSQL2 (Snodgrass, 1995) was proposed as a query language for bitemporal databases but
temporal features did not appear in the SQL standard until the release of SQL-2011 (Kulka-
rni and Michels, 2012). SQL-2011 provides support for a number of temporal features such
as period datatype, temporal primary keys, temporal referential integrity constraints, temporal
predicates, valid time and transaction time, temporal inserts, updates, and deletes. However,
the support for temporal operators like temporal coalescing, temporal joins, and temporal ag-
gregation (Snodgrass, 2000; Zimányi, 2006) has not been included in the standard. Faisal and
Sarwar (2014) presented a classification of queries based on the input and output attributes of
the query and studied the performance of type 2 and type 6 SCDs.

Kaufmann et al. (2014) extended the TPC-H for bitemporal databases and tested the per-
formance of the temporal features of various commercial database management systems. They
also provided a query taxonomy for the benchmark.

3 Preliminaries
In this section, we introduce a motivating example which we will use throughout the rest of

the paper. It consists of a sales DW in which the user needs to maintain the historical context
for some dimensions so that she could query the historical states of the business world. To
represent the DW conceptually, we use the temporal extension of the MultiDim model. A
complete description of the model and mapping rules to transform the model into various
logical schemas can be found in (Malinowski and Zimányi, 2008; Vaisman and Zimányi, 2014).
To make this paper self contained, we give below a brief description of the temporal MultiDim
model.

The model allows the user to model various temporal constructs such as temporal attributes,
temporal levels, and temporal relationships. A MultiDim schema consists of fact relationships
which contain numeric attributes called measures and a discrete group of alphanumeric at-
tributes called levels which form dimensions. Instances of a level are called members. In the
temporal MultiDim model, the history of changes is recorded by associating orthogonal time
dimensions with the changing constructs. A temporal attribute keeps track of the changes in
its value and the time when these changes occur. A temporal level is a level for which the ap-
plication requires to store a time frame associated with its members. A temporal relationship
between two levels keeps record of the time frame for which the members of the child levels
are linked to the members of their parent levels.

Temporal Data Warehouses: Logical Models and Querying

The temporal MultiDim model supports various temporality types including valid time,
transaction time, and lifespan. Valid time represents the time when a data record is considered
valid in a business world. Transaction time represents the time when a data record is contained
in the system. Lifespan temporality is associated with levels and is used to keep track of the
existence of the members as a whole. The lifespan of an object o can be seen as the valid time
of the related fact, ‘o exists’. A level with a lifespan can have any number of attributes with
non-temporal, valid time, and/or transaction time temporality. For the sake of simplicity, in this
paper, we only consider a schema with a lifespan and valid time temporality.

Motivating Example Figure 1 shows a sales DW which is modeled using the MultiDim
model. The schema consists of a central fact Sales which is linked to dimensions Customer,
Employee, Product, Geography, and Time. Sales is used to analyze measures UnitPrice,
Discount, SalesAmount, Freight, and NetAmount. The symbols ‘+!’and ‘/’represent non-
additive and derived measures, respectively. Notice that the Time dimension is linked to Sales,
twice and provides two different perspectives to analyze measures, namely, OrderDate and
DueDate. Such dimensions are called role-playing dimensions. In our example DW, the user

Customer

CustomerID

CompanyName

Address

PostalCode

Employee

EmployeeID

FirstName

LastName

BirthDate

HireDate

Address

City

State

PostalCode

Country

S
u

p
e

rv
is

o
r

Supervision

Subordinate

DueDate

OrderDate

G
e

o
g

ra
p

h
y

UnitPrice: Avg +!

Quantity

Discount: Avg +!

SalesAmount

/NetAmount

Sales

Product

ProductID

ProductName

QuantityPerUnit

UnitPrice

Category

CategoryID

CategoryName

Description

Categories

Time

Date

DayNbWeek

DayNameWeek

DayNbMonth

Calendar

Month

MonthNumber

MonthName

Quarter

Quarter

Year

Year

City

CityName

State

StateName

StateCapital

Country

CountryName

CountryCapital

Population

Territories

FIG. 1: MultiDim model of the sales data warehouse

has the following temporal requirements :

W. Ahmed et al.

R1: A product may be discontinued and become unavailable for selling. A discontinued prod-
uct may be reintroduced for selling at a later time. The period during which a product
was available for sales should be maintained;

R2: Product prices change very often due to promotions or discounts. A history of changes
in a product’s unit price should be maintained;

R3: From time to time, a product may be reassigned to a different category. The history of
changes in a product category should be maintained;

R4: The description of a category may also change. The history of the changes in a category’s
description should be maintained.

R5: Employees may leave the company and rejoin later. The time for which an employee has
been working for the company should be maintained.

R6: Employees may be reassigned to work under different supervisors. The history of changes
of an employee’s supervisor should be maintained.

R7: An employee is assigned to work in more than one city and more than one employee
work in a single city. The time for which an employee has been working in a city should
be maintained.

The above requirements are represented in Fig. 1 as follows. The lifespan of employees, prod-
ucts, and categories are represented by associating a lifespan temporality with their levels, as
shown by the symbols and , which represent, respectively, a discontinuous and a contin-
uous lifespan. The symbol next to the attributes UnitPrice and Description belonging to
levels Product and Category means that the history of changes in the value of these attributes
should be maintained. The symbols in the Product-Category, Employee-Supervisor, and
Employee-City relationships imply that the history of the assignment of a child members to
parent members should be maintained. The symbol in these relationships means that the
validity period of the assignment should be contained in the validity of the child and parent
members. For example, when assigning a category to a product, the validity of the assignment
should be included in the validity period of the product and the category.

4 Logical Implementations
In this section, we explain the two possible approaches to implement the conceptual schema

shown in Fig. 1, namely type 2 SCDs and temporal data warehouses (TDWs).

4.1 Type 2 Slowly Changing Dimensions
Kimball and Ross (Kimball and Ross, 2013) argued that dimension attributes are not static

and they slowly change in time. They referred to such dimensions as slowly changing dimen-
sions and provided seven techniques to track the changes in attribute values. Below, we briefly
describe the three basic types of SCDs.

– Type 1: Changes are handled by overwriting the existing data, thus, no history is main-
tained.

– Type 2: A new level member version is created for each change in an attribute value. A
flag value or an independent time dimension (two attributes representing the start time

Temporal Data Warehouses: Logical Models and Querying

and end time of the validity of the version) is used to represent the current level member
version. Using type 2 SCDs, an unlimited number of versions of a level member can be
created, but to uniquely identify each version, a surrogate key is required.

– Type 3: A separate attribute is added to capture the history for each changing attribute.
Whenever an attribute’s value changes, its existing value is recorded in the separate
attribute and the new value overwrites the existing value. Type 3 SCD provides limited
support for history, but is useful in what-if analysis scenarios.

SCD2 Version

Sales

CustomerKey

EmployeeKey

OrderDateKey

DueDateKey

ProductKey

UnitPrice

Quantity

Discount

SalesAmount

Customer

CustomerKey

CustomerID

CompanyName

Address

PostalCode

CityKey

Employee

EmployeeKey

EmployeeID

FirstName

LastName

BirthDate

HireDate

Address

City

State

PostalCode

Country

SupervisorKey

FromDate

ToDate

Territories

EmployeeKey

CityKey

FromDate

ToDate

Time

TimeKey

Date

DayNbWeek

DayNameWeek

DayNbMonth

DayNbYear

MonthNumber

MonthName

Quarter

Year

Product

ProductKey

ProductID

ProductName

QuantityPerUnit

UnitPrice

CategoryKey

FromDate

ToDate

Category

CategoryKey

CategoryID

CategoryName

Description

FromDate

ToDate

City

CityKey

CityName

StateKey

State

StateKey

StateName

StateCapital

CountryKey

Country

CountryKey

CountryName

CountryCapital

Population

FIG. 2: Type 2 SCD implementation of the sales data warehouse in Fig. 1

For our example schema, we can achieve the user requirements pertaining to maintaining
the history by implementing our conceptual schema with type 2 SCDs, as shown in Figure 2.
This implementation fulfills the user requirements mentioned above as follows. To meet re-
quirements R1, R2, and R3, two attributes FromDate and ToDate are added to level Product.
These attributes represent a closed-open interval during which a product record is considered
valid. The value of attribute ToDate of the currently valid record is set to a special value ’Now’.
Although level product has ProductID as business key, but to identify the various versions of
the same product, a surrogate key is required that is why, attribute ProductKey is also added
to the level and serves as its primary key. The same technique is applied to meet requirements
R4, R5, and R6. Since there is a many to many relationship between level Employee and City,
a new table Territories is created to record the cities assigned to an employee and employees
working in a city. To fulfill R7, an interval is also included in Territory table which depicts

W. Ahmed et al.

the duration for which an employee has been working in a particular city. As there is no need
to create the versions of records belonging to the table, a surrogate key is not introduced. At-
tributes EmployeeKey, CityKey, and FromDate combined together can serve as the primary
key of the table Territory.

(p1, 10, c1)

(p1, 15, c1)

(p1, 15, c2) (p1, 18, c2)

T1 T2 T3 T4 T6 Now

Lifespan Lifespan

T5

(a) Time line of the evolution of unit price and category of product p1

Product
ProductKey ProductID UnitPrice CategoryKey FromDate ToDate

1 p1 10 c1 T1 T2

2 p1 15 c1 T2 T3

3 p1 15 c2 T3 T4

4 p1 18 c2 T5 Now

(b) Type 2 SCD implementation

ProductLifespan
ProductKey FromDate ToDate

p1 T1 T4

p1 T6 Now

ProductUnitPrice
ProductKey UnitPrice FromDate ToDate

p1 10 T1 T2

p1 15 T2 T4

p1 18 T6 Now

ProductCategory
ProductKey CategoryKey FromDate ToDate

p1 c1 T1 T3

p1 c2 T3 T4

p1 c2 T6 Now

(c) Temporal data warehouse (TDW) implementation

FIG. 3: Keeping the evolution of product p1 in the data warehouse

To further understand type 2 SCDs, let us consider the scenario depicted in Fig. 3a, which
involves maintaining the lifespan of a level member, the history of changes in an attribute value,
and a temporal relationship. Suppose product p1, with a unit price of 10, was introduced at time
T1 and was assigned to category c1. At T 2, its unit price was changed from 10 to 15 and at T3

it was assigned to category c2. At T4 the product was discontinued and was no longer offered
for selling. At T6, the same product p1 was reintroduced and it is available for selling until
today. The type 2 SCD implementation of this scenario is shown in Fig. 3b. For brevity, in
these figures we only show the changing attributes.

4.2 Temporal Data Warehouses
Malinowski and Zimányi (2008) introduced a different approach to implement the Multi-

Dim model into the relational one. They proposed the following mapping rules to map temporal
levels, temporal attributes, and temporal relationships to ER constructs. We assume that each
temporality type represents a set of intervals, which is a typical case in a DW.

Temporal Data Warehouses: Logical Models and Querying

1. Each temporal level with a lifespan is represented by the member and a multivalued
composite attribute to represent the lifespan of the member of the level.

2. Each temporal attribute of a level is represented by the value of attribute and a multival-
ued composite attribute to represent the validity period of the value.

3. Each temporal relationship between two levels is represented by the related child-parent
members and a multivalued composite attribute representing the period for which the
relationship was valid.

Sales

CustomerKey

EmployeeKey

OrderDateKey

DueDateKey

ProductKey

UnitPrice

Quantity

Discount

SalesAmount

Time

TimeKey

Date

DayNbWeek

DayNameWeek

DayNbMonth

DayNbYear

MonthNumber

MonthName

Quarter

Year

Customer

CustomerKey

CustomerID

CompanyName

Address

PostalCode

CityKey

Employee

EmployeeKey

FirstName

LastName

BirthDate

HireDate

Address

City

State

PostalCode

Country

Territories

EmployeeKey

CityKey

FromDate

ToDate

City

CityKey

CityName

StateKey

State

StateKey

StateName

StateCapital

CountryKey

Country

CountryKey

CountryName

CountryCapital

Population

Category

CategoryKey

CategoryName

FromDate

ToDate

Category
Description

CategoryKey

Description

FromDate

ToDate

Employee
Lifespan

EmployeeKey

FromDate

ToDate

Employee
Supervision

EmployeeKey

SupervisorKey

FromDate

ToDate

Product

ProductKey

ProductName

QuantityPerUnit

Product
Category

ProductKey

CategoryKey

FromDate

ToDate

Product
Lifespan

ProductKey

FromDate

ToDate

Product
UnitPrice

ProductKey

UnitPrice

FromDate

ToDate

TDB Version

FIG. 4: Temporal data warehouse implementation of the sales data warehouse in Fig. 1

Figure 4 shows the TDW implementation of the schema given in Fig. 1. This implementa-
tion fulfills the user requirements as follows. For R1 and R5, respectively, tables ProductLifes-
pan and EmployeeLifespan are created which hold the identifier of the member whose lifes-
pan is to be maintained and a pair of attributes FromDate and ToDate. For requirements R2,
a table ProductUnitPrice is created with product identifier, its unit price, and two attributes
FromDate and ToDate. The same mapping rule is applied to track the changes in a category
description, i.e., R4. To keep the history of product-category assignments, i.e., R3, a table

W. Ahmed et al.

No. Class Example
Q1 Temporal roll-up Total quantity per category and month.
Q2 Temporal-roll-up (with

window)
Monthly year-to-date sales per category.

Q3 Temporal roll-up (recur-
sive)

Total sales amount made by an employee and her
subordinates during 1997.

Q4 Temporal selection For each employee, total sales amounts of prod-
ucts she sold with unit price greater than $30 at
the time of the sale.

Q5 Temporal projection Total sales amount for supervisors.
Q6 Temporal union Total sales amounts for products assigned to cate-

gories beverages or dairy products.
Q7 Temporal join Name, unit price, and total sales amount by month

for products.
Q8 Temporal difference Total sales amount for employees assigned to only

one city.
Q9 Temporal aggregation For each month, give the total quantity of products

sold per category.
Q10 Temporal aggregation

(for a many-to-many
relationship)

For each employee, total sales amount, number of
cities, and number of states to which she is as-
signed.

Q11 Temporal aggregation
(duration of interval)

For each pair of employee and supervisor, total
number of days when the supervision lasted.

Q12 Temporal universal
quantifier

Total sales for categories in which all products
have a price greater than $7

Q13 Time slice Average unit price by category as of January 1st,
1997.

TAB. 1: Classes of temporal business queries and example queries

ProductCategory is created with the product identifier, the category identifier, and the period
during which the assignment was valid. The mapping for employee-city assignments is the
same as for type 2 SCDs.

Figure 3c shows the TDW implementation of the scenario described above for tracking
the evolution of product p1. Notice that instead of storing all product versions in a single
table, every evolving attribute is stored in a separate table. Moreover, no surrogate keys are
introduced and the combination of the business key and FromDate serve as the primary key
of the table.

5 Temporal Business Questions

In this section, we describe the temporal operators needed to query historical data. For this,
we use the classification of temporal business queries shown in Tab. 1.

Temporal Data Warehouses: Logical Models and Querying

The temporal roll-up operator involves summarizing data from a lower level to an upper
level in a hierarchy. It differs from the traditional roll-up in the sense that it must take into
account the time interval during which a child-parent relationship is valid. Q1 is an example,
which requires to summarize quantities per category and month. Since the assignment of prod-
ucts to categories varies in time, we must ensure that every product is rolled-up to the category
that it was assigned to at the order date. This is illustrated in Fig. 5a, which shows, from top to
bottom, the aggregation of the Time dimension to the Month level, for products P1, P2, and
P3, their assignment to categories C1 and C2 as well as Quantity measures from their Sales,
and the result of the temporal roll-up. Q2 and Q3 are two variants of the temporal roll-up which
require year-to-date and recursive roll-up operators, respectively.

The temporal selection operator keeps tuples that satisfy some condition. It is similar to
the traditional selection, excepted that the selection predicate may include a condition on the
time interval during which a temporal attribute or a temporal link is valid. Q4 is an example,
where the selection predicate requires that only those products that had a unit price greater than
$30 at the time of sales are selected.

The temporal projection opearation returns a set of computed attributes with an associated
time interval from a relation. Often this time interval is derived from the time interval associ-
ated to each tuple in the temporal table. Q5 is an example of a temporal projection query. Since
the employee-supervisor assignment varies in time, we first need to determine the periods dur-
ing which an employee was supervisor of at least one employee. Then, we must coalesce these
periods to obtain the total period of an employee as supervisor, and finally, compute the total
sales for this period.

The temporal union operator is equivalent to the traditional relational set operator and
returns the set union of two relations. Q6 is an example, which asks for total sales amounts for
products assigned to categories beverages or dairy products. Since the assignment of the prod-
ucts to categories varies in time, first we need to compute the intervals during which a product
was assigned to one of the categories requested. Then, these intervals must be coalesced to ob-
tain the total interval for each product-category assignment. Finally, we can compute the total
sales for the products during the periods they were assigned to one of the categories requested.

The temporal join operator merges the tuples of two relations if a join condition is met and
the joined records overlap during a time period. Q7 is an example, which asks for the name,
unit price, and total sales amount by month for products. Even the query asks total sales by
month, since a product’s unit price changes in time, first we must split months according to the
variation of unit price. While joining the sales with the product, we must join it with the unit
price valid at that the order date.

The temporal difference operator is typically used to filter out information from a superset
of potential answers. Q8 is an example, which requires to compute the total sales amount for the
employees assigned to only one city. Once obtained the employees using temporal difference,
we can coalesce the each employee record and then may compute the sales whose order date
belongs to the period in which an employee is assigned to a single city. Then, we can group
the results by employee to compute the total sales amount.

The temporal aggregation operator involves partitioning the timeline, grouping the tuples
into these partitions, and then computing aggregates for these groups. Q9 is an example, which
for each month, computes the total quantity of products sold per category. To do so, firstly, we
need to compute the period associated with each month and then compute the periods during

W. Ahmed et al.

P3 25 20 12

P2 12 18

P1 10 16

C1 C2

C2 C2C1

C2 C1 C2

12 25 25 16 18 18

10 12 20 20

C2

C1

(a) Temporal roll-up

S1,E1

S1,E2

S2,E3

S2,E4 S2,E4

S1,E3

S1

S2

ì
ï
ï
ï
ï
í
ï
ï
ï
ï
î

E
m

p
lo

y
e

e

S
u

p
e

rv
is

io
n

(b) Temporal projection with coalescing

Case 4

P,15

01/14

P,15

01/14

P,15

01/14

Case 3

Case 2

Case 1

Result

P,15

01/14

(c) Temporal join

Case 4

E,C1

E,C2

E,C1

E,C1

Case 3

Case 2

Case 1

Result

E,C2

E,C1

E,C3E,C2

E

(d) Temporal difference

üüûüü üûûü

ü û ü û û ü ü

C2 C1 C2

C2 C2C1

C1 C2

Lifespan

Lifespan

C2

C1

P3 25 20 12

P2 12 18

P1 10 16

C2

C1

(e) Temporal universal quantification

FIG. 5: Temporal operators

which the number of products by category is constant. Secondly, we have to split the periods by
month. Thirdly, we need to compute the total quantity of the products by category for each of

Temporal Data Warehouses: Logical Models and Querying

the periods. Finally, the main query coalesces the computed periods to obtain the final results.
Q10 and Q11 are also temporal aggregation queries, which compute aggregates for temporal
many-to-many relationships and according to a duration of time, respectively.

The temporal universal quantifier operator is used for verifying that a condition is sat-
isfied for all tuples in a set. Q12 is an example, which asks total sales for categories in which
all products have a price greater than $7. To compute the result set, we need first to obtain, for
each category, the prices of its products with their associated interval and the days on which
there is a change in unit price or category assignment of one of its products. After converting
these days into periods, we can select the tuples where there is no product in the category with
unit price less than or equal to $7 in the interval. Finally, after coalescing these tuples we can
compute, for the each coalesced tuple, the total sales amount for the category that occurred
during the interval.

The timeslice operator returns the tuples of relation valid at a given time.Timeslice re-
constructs the state of a relation at a given point in time whereas, in temporal selection, the
condition may involve any time granularity i.e., a point in time, an interval, or a period etc.
Q13 is a query which requires to compute the average unit price by category as of January 1,
1997. To compute the average unit price, we need to extract the product and category tuples
which were valid at the given time.

6 Querying Temporal Data Warehouses
In this section, we compare the type 2 SCD and the TDW implementations given in Figs. 2

and 4, respectively, with respect to querying. Consider query Q7 above: Name, unit price, and
total sales amount by month for products. We suppose that the following view, which computes
the start and end date of months using a closed-open representation, has been created

CREATE VIEW Month(Year, MonthNumber, FromDate, ToDate) AS (
SELECT Year, MonthNumber, MIN(Date), DateAdd(month, 1, MIN(Date))
FROM Time
GROUP BY Year, MonthNumber)

The type 2 SCD version of the above query is as follows:

WITH ProdUnitPrice(ProductID, UnitPrice, FromDate, ToDate) AS (
SELECT ProductID, UnitPrice, FromDate, ToDate
FROM Product),

ProdUnitPriceCoalesced AS (
-- Coalescing the table ProdUnitPrice above ...),

SELECT P.ProductName, U.UnitPrice, SUM(SalesAmount) AS SalesAmount,
dbo.MaxDate(M.FromDate, U.FromDate) AS FromDate,
dbo.MinDate(M.ToDate, U.ToDate) AS ToDate

FROM Sales S, Time T, Product P, ProdUnitPriceCoalesced U, Month M
WHERE S.OrderDateKey = T.TimeKey AND S.ProductKey = P.ProductKey AND

P.ProductID = U.ProductID AND dbo.MaxDate(M.FromDate, U.FromDate) <
dbo.MinDate(M.ToDate, U.ToDate) AND
dbo.MaxDate(M.FromDate, U.FromDate) <= T.Date AND
T.Date < dbo.MinDate(M.ToDate, U.ToDate)

W. Ahmed et al.

GROUP BY P.ProductName, U.UnitPrice, M.FromDate, U.FromDate,
M.ToDate, U.ToDate

ORDER BY P.ProductName, dbo.MaxDate(M.FromDate, U.FromDate)

Even if the query asks total sales by month, the months must be split according to the variation
of unit price for products. This version of the query requires a temporal projection (with coa-
lescing) of the Product table in order to compute the ProductUnitPrice table that is available
in the TDW version. This is done in the two temporary tables ProdUnitPrice and ProdUnit-
PriceCoalesced. Then, the main query performs a temporal join of the latter table with the
Month view, and a traditional join with the remaining tables, prior to do the aggregation of
the SalesAmount measure. For this, the functions MinDate and MaxDate are used, which
compute, respectively, the minimum and maximum date of the two arguments.

On the other hand, the TDW version of this query is as follows:

SELECT P.ProductName, U.UnitPrice, SUM(SalesAmount) AS SalesAmount,
dbo.MaxDate(M.FromDate, U.FromDate) AS FromDate,
dbo.MinDate(M.ToDate, U.ToDate) AS ToDate

FROM Sales S, Time T, Product P, ProductUnitPrice U, Month M
WHERE S.OrderDateKey = T.TimeKey AND S.ProductKey = P.ProductKey AND

P.ProductKey = U.ProductKey AND dbo.MaxDate(M.FromDate, U.FromDate) <
dbo.MinDate(M.ToDate, U.ToDate) AND
dbo.MaxDate(M.FromDate, U.FromDate) <= T.Date AND
T.Date < dbo.MinDate(M.ToDate, U.ToDate)

GROUP BY P.ProductName, U.UnitPrice, M.FromDate, U.FromDate, M.ToDate, U.ToDate
ORDER BY P.ProductName, dbo.MaxDate(M.FromDate, U.FromDate)

This query performs a temporal join of the Month view and the ProductUnitPrice table and
a traditional join of the other tables prior to computing the total sales amount in the periods
obtained. As can be seen, the query for the type 2 SCD implementation is much more complex
than the one for the TDW version. As we have said, temporal projection with coalescing is a
costly operator.

Cconsider now query Q13 above: Average unit price by category as of January 1st, 1997.
For the type 2 SCD implementation, since the evolution of products is kept in a single table, the
corresponding query would need a join of two tables (i.e., Product and Category), whereas
in the corresponding query for the TDW implementation a join of four tables (i.e., Product,
ProductUnitPrice, ProductCategory, and Category) is needed.

7 Conclusion and Future Work
Data warehouse (DW) users may want to preserve historical data so that they could query

the various status of the business world. A user may ask several types of business queries per-
taining to historical data. In this paper, we described two approaches, type 2 slowly changing
dimensions and temporal data warehouses, to model a DW capable of keeping history. We
further provided a classification of the temporal business queries. As it is estimated that in a
data warehouse 80% of the resources are consumed by 20% of the queries, it is very important
to know which of these two modeling approaches is most suitable for time-related business
queries. In the future, we have plans to test both approaches at different data scales and deter-
mine which one is suitable for each class of queries.

Temporal Data Warehouses: Logical Models and Querying

Acknowledgements This research has been funded by the European Commission through
the Erasmus Mundus Joint Doctorate “Information Technologies for Business Intelligence
Doctoral College” (IT4BI-DC). Additionally, the work of Robert Wrembel has been supported
by the Polish National Science Center (NCN), grant No. 2011/01/B/ST6/05169.

References
Ahmed, W., E. Zimányi, and R. Wrembel (2014). A logical model for multiversion data ware-

houses. In Proc. of DaWaK 2014, Number 8646 in LNCS, pp. 23–34. Springer.
Al-Kateb, M., A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode, and S. P. Pakala (2013).

Temporal query processing in Teradata. In Proc. of EDBT 2013, pp. 573–578. ACM.
Difallah, D. E., A. Pavlo, C. Curino, and P. Cudre-Mauroux (2013). OLTP-Bench: An ex-

tensible testbed for benchmarking relational databases. Proceedings of the VLDB Endow-
ment 7(4), 277–288.

Dunham, M. H., R. Elmasri, M. A. Nascimento, and M. Sobol (1995). Benchmarking tempo-
ral databases: A research agenda. Technical report, Department of Computer Science and
Engineering, Southern Methodist University.

Faisal, S. and M. Sarwar (2014). Handling slowly changing dimensions in data warehouses.
Journal of Systems and Software 94, 151–160.

Golfarelli, M. and S. Rizzi (2009). A survey on temporal data warehousing. International
Journal of Data Warehousing and Mining 5(1), 1–17.

Han, R. and X. Lu (2014). On big data benchmarking. arXiv preprint arXiv:1402.5194.
Kaufmann, M., P. M. Fischer, N. May, and D. Kossmann (2014). Benchmarking bitemporal

database systems: Ready for the future or stuck in the past? In Proc. of EDBT 2014, pp.
738–749.

Kaufmann, M., P. Vagenas, P. M. Fischer, D. Kossmann, and F. Färber (2013). Comprehensive
and interactive temporal query processing with SAP HANA. Proceedings of the VLDB
Endowment 6(12), 1210–1213.

Kimball, R. and M. Ross (2013). The Data Warehouse Toolkit: The Definitive Guide to Di-
mensional Modeling. John Wiley & Sons.

Kulkarni, K. and J.-E. Michels (2012). Temporal features in SQL:2011. ACM SIGMOD
Record 41(3), 34–43.

Malinowski, E. and E. Zimányi (2008). A conceptual model for temporal data warehouses and
its transformation to the ER and the object-relational models. Data & Knowledge Engineer-
ing 64(1), 101–133.

Snodgrass, R. T. (Ed.) (1995). The TSQL2 Temporal Query Language. Kluwer.
Snodgrass, R. T. (2000). Developing Time-Oriented Database Applications in SQL. Morgan

Kaufmann.
Snodgrass, R. T. and I. Ahn (1986). Temporal databases. IEEE Computer 19(9), 35–42.
Vaisman, A. and E. Zimányi (2014). Data Warehouse Systems: Design and Implementation.

Springer.

W. Ahmed et al.

Wrembel, R. and B. Bębel (2007). Metadata management in a multiversion data warehouse.
In Journal of Data Semantics VIII, Number 3761 in LNCS, pp. 118–157. Springer.

Zimányi, E. (2006). Temporal aggregates and temporal universal quantification in standard
SQL. ACM SIGMOD Record 35(2), 16–21.

Résumé
Les entrepôts de données (EDs) intègrent les données provenant de multiples sources de

données hétérogènes. La plupart de méthodes de conception d’entrepôts de données supposent
que le contenu des dimensions dans un entrepôt n’est pas modifié, mais ceci n’est pas le cas
en réalité. Par conséquent, les EDs doivent refléter ces changements dans le monde réel pour
permettre aux utilisateurs de demander différents types de requêtes temporelles. Souvent, ces
requêtes sont complexes et coûteuses, et par conséquent, il est nécessaire de savoir quelle
approche de modélisation est meilleure pour ces requêtes. Dans cet article, nous discutons
deux approches possibles pour mettre en oeuvre un ED capable de maintenir l’histoire de
l’évolution des membres des dimensions. Nous présentons également une classification des
requêtes temporelles qui peut être utilisé pour évaluer ces deux approches.

