
Modeling and Querying Data Warehouses
on the Semantic Web Using QB4OLAP

Lorena Etcheverry1, Alejandro Vaisman2, and Esteban Zimányi3

1 Universidad de la República, Uruguay
lorenae@fing.edu.uy

2 Instituto Tecnológico de Buenos Aires, Argentina
avaisman@itba.edu.ar

3 Université Libre de Bruxelles, Belgium
ezimanyi@ulb.ac.be

Abstract. The web is changing the way in which data warehouses are designed
and exploited. Nowadays, for many data analysis tasks, data contained in a con-
ventional data warehouse may not suffice, and external data sources, like the
web, can provide useful multidimensional information. Also, large repositories
of semantically annotated data are becoming available on the web, opening new
opportunities for enhancing current decision-support systems. Representation of
multidimensional data via semantic web standards is crucial to achieve such goal.
In this paper we extend the QB4OLAP RDF vocabulary to represent balanced,
recursive, and ragged hierarchies. We also present a set of rules to obtain a
QB4OLAP representation of a conceptual multidimensional model, and a pro-
cedure to populate the result from a relational implementation of the multidimen-
sional model. We conclude the paper showing how complex real-world OLAP
queries expressed in SPARQL can be posed to the resulting QB4OLAP model.

1 Introduction

The web is changing the way in which data warehouses (DW) are designed, used, and
exploited [4]. For some data analysis tasks (like worldwide price evolution of some
product), the data contained in a conventional data warehouse may not suffice. The
web can provide useful multidimensional information, although usually too volatile
to be permanently stored [1]. Further, the advent of initiatives such as Open Data1 and
Open Government promotes publishing multidimensional data using standards and non-
proprietary formats2. Also, the Linked Data paradigm allows sharing and reusing data
on the web by means of semantic web (SW) standards [8]. Domain ontologies expressed
in RDF3, or in languages built on top of RDF like RDF-S or OWL, define a common
terminology for the concepts involved in a particular domain. In spite of the above,
although in the last decade several open-source BI platforms have emerged, they still
do not provide an open format to publish and share cubes among organizations [7], and
the most popular commercial Business Intelligence (BI) tools are still proprietary.

1 https://okfn.org/opendata/
2 http://opengovdata.org/
3 http://www.w3.org/TR/rdf-concepts/

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 45–56, 2014.
c© Springer International Publishing Switzerland 2014

https://okfn.org/opendata/
http://opengovdata.org/
http://www.w3.org/TR/rdf-concepts/

46 L. Etcheverry, A. Vaisman, and E. Zimányi

Usually, in a relational DW representation, a conceptual model is implemented at the
logical level as a collection of tables organized in specialized structures, basically star
and snowflake schemas, which relate a fact table to several dimension tables through
foreign keys. In a semantic web DW scenario, the logical model becomes the RDF data
model. The first proposal of an RDF vocabulary to cover many of the multidimensional
model components was the QB4OLAP vocabulary [5,6]. In this paper, after a brief
introduction to semantic web concepts (Section 2) and related work (Section 3), we
present an extension of QB4OLAP that supports the most used model characteristics,
like balanced, recursive, ragged, and many-to-many hierarchies (Section 4). We then
propose a mechanism to translate a conceptual multidimensional model into a logical
RDF model using the QB4OLAP vocabulary (Section 5), and show how we can trans-
form an existent relational implementation of a DW into QB4OLAP via an R2RML
mapping. Finally, we show how QB4OLAP cubes can be queried using SPARQL (Sec-
tion 6), and discuss open challenges and future work (Section 7) .

2 Preliminary Concepts

RDF and SPARQL. The Resource Description Framework (RDF) allows expressing
assertions over resources identified by an Internationalized Resource Identifier (IRI) as
triples of the form subject - predicate - object, where subject are always resources, and
predicate and object could be resources or strings. Blank nodes are used to represent
anonymous resources or resources without an IRI, typically with a structural function,
e.g., to group a set of statements. Data values in RDF are called literals and can only be
objects. A set of RDF triples can be seen as a directed graph where subject and object
are nodes, and predicates are arcs. Usually, triples representing schema and instance
data coexist in RDF datasets. A set of reserved words defined in RDF Schema (called
the RDF-S vocabulary) is used to define classes, properties, and hierarchical relation-
ships. Many formats for RDF serialization exist. In this paper we use Turtle 4.

SPARQL 1.15 is the current W3C standard query language for RDF. The query eval-
uation mechanism of SPARQL is based on subgraph matching: RDF triples are inter-
preted as nodes and edges of directed graphs, and the query graph is matched to the data
graph, instantiating the variables in the query graph definition. The selection criteria is
expressed as a graph pattern in the WHERE clause, composed by basic graph patterns
(BGP). The ‘.’ operator represents the conjunction of graph patterns. Relevant to our
study, SPARQL supports aggregate functions and the GROUP BY clause.

R2RML6 is a language for expressing mappings from relational databases to RDF
datasets, allowing representing relational data in RDF using a customized structure and
vocabulary. Both, R2RML mapping documents (written in Turtle syntax) and mapping
results, are RDF graphs. The main object of an R2RML mapping is the triples map, a
collection of triples composed of a logical table, a subject map, and one or more pred-
icate object maps. A logical table is either a base table or a view (using the predicate

4 http://www.w3.org/TeamSubmission/turtle/
5 http://www.w3.org/TR/sparql11-query/
6 http://www.w3.org/TR/r2rml/

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/r2rml/

Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP 47

rr:tableName), or an SQL query (using the predicate rr:sqlQuery). A predicate
object map is composed of a predicate map and an object map. Subject maps, predi-
cate maps, and object maps are either constants (rr:constant), column-based maps
(rr:column), or template-based maps (rr:template). Templates use column names
as placeholders. Foreign keys are handled referencing object maps, which use the sub-
jects of another triples map as the objects generated by a predicate-object map. A set of
R2RML mappings can either be used to generate a static set of triples that represent the
underlying relational data (data materialization) or to provide a non-materialized RDF
view of the relational data (on-demand mapping).

3 Related Work

At least two approaches are found concerning OLAP analysis of SW data. In a nutshell,
the first one consists on extracting multidimensional data from the SW and loading them
into traditional OLAP repositories. The second one consists in performing OLAP-like
analysis directly over SW data, e.g., over multidimensional data represented in RDF.

Along the first line of research are the works by Nebot et al. [14] and Kämpgen et
al. [9]. The former proposes a semi-automatic method for on-demand extracting seman-
tic data into a multidimensional database, where data will be exploited. Kämpgen et al.
follow a similar approach, although restricted to a particular kind of SW data. They ex-
plore the extraction of statistical data, published using the RDF Data Cube vocabulary
(QB)7, into a multidimensional database. Thus, these two approaches allow using the
existent knowledge in this area, and reusing available tools, at the expense of requiring
the existence of a local DW to store the semantic web data extracted. This constraint
clashes with the autonomous and high volatile nature of web data sources.

The second line of research tries to overcome this restriction, exploring data mod-
els and tools that allow publishing and analyzing multidimensional data directly over
the SW. The aim of this models is to support concepts like self-service BI, situational
BI [12], and on-demand BI, in order to take advantage of web data to enrich decision-
making processes. Abello et al. [1] envision a framework to support self-service BI,
based on the notion of fusion cubes, i.e., multidimensional cubes that can be dynami-
cally extended both in their schema and their instances. Beheshti et al. [2] propose to
extend SPARQL to express OLAP queries. However, we believe that not working with
standard languages and established data models limits the applicability of the approach.
With a different approach, Kämpgen et al. [10,11] proposed an OLAP data model on
top of QB and other related vocabularies, and a mechanism to implement OLAP op-
erators over these extended cubes, using SPARQL queries. This approach inherits the
drawbacks of QB, that is, multidimensional modeling possibilities are limited.

4 RDF Representation of Multidimensional Data

The QB4OLAP vocabulary8 extends the QB vocabulary mentioned in Section3, to en-
hance the support to the multidimensional model, overcoming several limitations of

7 http://www.w3.org/TR/vocab-data-cube/
8 http://purl.org/qb4olap/cubes

http://www.w3.org/TR/vocab-data-cube/
http://purl.org/qb4olap/cubes

48 L. Etcheverry, A. Vaisman, and E. Zimányi

Fig. 1. A new version of the QB4OLAP vocabulary

QB [6]. Unlike QB, QB4OLAP allows implementing the main OLAP operations, such
as rollup, slice, and dice, using standard SPARQL queries. Two different kinds of sets
of RDF triples are needed to represent a data cube in QB4OLAP: (i) the cube schema,
and (ii) the cube instances.The former defines the structure of the cube, in terms of
dimension levels and measures, but also defines the hierarchies within dimensions and
the parent-child relationships between levels. These metadata can then be used to auto-
matically produce SPARQL queries that implement OLAP operations [6], which is not
possible in QB. Cube instances are sets of triples that represent level members, facts and
measured values. Several cube instances may share the same cube schema. Figure 1 de-
picts the QB4OLAP vocabulary. We can see that QB4OLAP embeds QB, allowing data
cubes published using QB to be represented using QB4OLAP without affecting exist-
ing applications. Original QB terms are prefixed with qb:. Capitalized terms represent
RDF classes and noncapitalized terms represent RDF properties. Classes in external vo-
cabularies are depicted in light gray font. QB4OLAP classes and properties are prefixed
with qb4o.

The previous version of QB4OLAP had some limitations regarding the representa-
tion of dimension hierarchies. For example, it did not allow more than one hierarchy per
dimension, or to represent cardinalities in the relationships between level members. To
overcome these limitations we have introduced new classes and properties, depicted in
Fig. 1 in dark gray background and bold italics; existent QB4OLAP classes and prop-
erties are depicted in light gray background.

A data structure definition (DSD) specifies the schema of a data set of the class
qb:DataSet. The DSD can be shared among different data sets, and has proper-
ties for representing dimensions, dimension levels, measures, and attributes, called

Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP 49

LevelName

IdentAttributes
OtherAttributes

(a) Level

ChildLevel
Name

ParentLevel
Name

IdentAttributes
OtherAttributes

IdentAttributes
OtherAttributes

(b) Hierarchy

(0,1)
(1,1)
(0,n)
(1,n)

(c) Cardinalities

LevelName2
RoleName1

RoleName2

LevelName1

IdentAttributes
OtherAttributes

IdentAttributes
OtherAttributes Measure

Measure: AggFct

Fact Name

(d) Fact with measures and associated levels

HierName

(e) Hierarchy name

Fig. 2. Notation of the MultiDim model

qb:dimension, qb:measure, qb4o:level, and qb:attribute, respectively.
Observations (facts) represent points in a multidimensional space. An observa-
tion is linked to a value in each dimension level of the DSD using instances
of qb4o:LevelProperty. This class models dimension levels. Instances of the
class qb4o:LevelMember represent level members, and relations between them
are expressed using the skos:broader property. Dimension hierarchies are de-
fined via the class qb4o:HierarchyProperty. The relationship between di-
mensions and hierarchies is represented via the property qb4o:hasHierarchy

and its inverse qb4o:inDimension. A level may belong to different hierarchies,
and in each hierarchy it may have a different parent level. Also, the relation-
ships between level members may have different cardinalities (e.g. one-to-many,
many-to-many, etc.). The qb4o:LevelInHierarchy class represents pairs of hier-
archies and levels, and properties are provided to relate a pair with its components:
qb4o:hierarchyComponent and qb4o:levelComponent. A parent-child relation-
ship between two levels is represented using the class qb4o:HierarchyStep and the
properties qb4o:childLevel and qb4o:parentLevel. The cardinality of this re-
lationship is represented via the qb4o:cardinality property and members of the
qb4o:Cardinality class. This property can also be used to represent the cardinal-
ity of the relationship between a fact and a level. QB4OLAP also allows to define
level attributes via the qb4o:hasAttribute property and aggregate functions via the
qb4o:AggregateFunction class. The association between measures and aggregate
functions is represented using the property qb4o:aggregateFunction. This prop-
erty, together with the concept of component sets, allows a given measure to be associ-
ated with different aggregate functions in different cubes.

5 QB4OLAP Implementation of Multidimensional Data Cubes

We next show that we can translate both, data cube schema and instances, into an RDF
representation using QB4OLAP. To represent the cube schema we will use the Mul-
tiDim model [15,13], whose main components are depicted in Fig. 2. Of course, any
conceptual model could be used instead. A schema is composed of a set of dimensions
and a set of facts. A dimension is composed of either one level, or one or more hi-
erarchies. Instances of a level are called members. A level has a set of attributes that
describe the characteristics of their members (Fig. 2a), and one or more identifiers, each

50 L. Etcheverry, A. Vaisman, and E. Zimányi

identifier being composed of one or several attributes. A hierarchy is composed of a set
of levels (Fig. 2b). Given two related levels in a hierarchy, the lower level is called the
child and the higher one the parent; the relationships between them are called parent-
child relationships, whose cardinalities are shown in Fig. 2c. A dimension may contain
several hierarchies identified by a hierarchy name (Fig. 2e). The name of the leaf level
in a hierarchy defines the dimension name, except when the same level participates sev-
eral times in a fact, in which case the role name defines the dimension name. These are
called role-playing dimensions. A fact (Fig. 2d) relates several levels. Instances of a fact
are called fact members. A fact may contain attributes called measures. The aggregation
function associated to a measure can be specified next to the measure name (Fig. 2d),
the default being the SUM function.

5.1 QB4OLAP Implementation of a Cube Schema

We first present an algorithm to obtain a QB4OLAP representation of a cube schema,
from a conceptual schema. We assume that we have a conceptual schema that represents
a cube C, with a fact F composed of a set M of measures, and a set D of dimensions.
Each dimension d ∈ D is composed of a set L of levels, organized in hierarchies
h ∈ H . Each level l ∈ L is described by a set of attributes A. Figure 3 depicts a simpli-
fied version of the MultiDim representation of the well-known Northwind DW, which
we will use as our running example. The algorithm comprises seven steps described
next. We call CSRDF the RDF graph that represents the cube schema, which is built
incrementally.

Step 1 (Dimensions). For each dimension d ∈ D, CSRDF = CSRDF ∪ {t}, where
t is a triple stating that there exists a resource dRDF of type qb:DimensionProperty.
Triples indicating the name of each dimension can be added using propertyrdfs:label.

The triples below show how some dimensions in Fig. 3 are represented (@en indi-
cates that the names are in English, and nw: is a prefix for the cube schema graph).

nw:employeeDim a qb:DimensionProperty ; rdfs:label ”Employee Dimension”@en .
nw:orderDateDim a qb:DimensionProperty ; rdfs:label ”OrderDate Dimension”@en .

Step 2 (Hierarchies). For each hierarchy h ∈ H , CSRDF = CSRDF ∪ {t}, where
t is a triple stating that hRDF is a resource with type qb4o:HierarchyProperty.
Triples indicating the name of each hierarchy can be added using propertyrdfs:label.

Applying Step 2 to the hierarchies in the Employee dimension we obtain:

nw:supervision a qb4o:HierarchyProperty ; rdfs:label ”Employee Supervision Hierarchy”@en .
nw:territories a qb4o:HierarchyProperty ; rdfs:label ”Employee Territories Hierarchy”@en .

Step 3 (Levels and Attributes). For each level l ∈ L, CSRDF = CSRDF ∪ {t},
where t is a triple stating that lRDF is a resource with type qb4o:LevelProperty. For
each attribute a ∈ A, add to CSRDF a triple stating that there exists a resource aRDF

with type qb4o:AttributeProperty. Finally, add triples relating a level lRDF with
its corresponding attribute aRDF , using the property qb4o:hasAttribute. Triples
indicating the names of levels and attributes can be added using property rdfs:label.

Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP 51

Product

ProductID
ProductName
...

Supplier

SupplierID
CompanyName
...

Customer

CustomerID
CompanyName
...

Employee

EmployeeID
FirstName
LastName
...

City

CityName

Te
rr
ito
rie
s

Continent

ContinentName

G
eo
gr
ap
hy

Country

CountryName
CountryCode
...

State

StateName
EnglishStateName
...

Region

RegionName
RegionCode

S
upervisor Supervision

Subordinate

DueDate

OrderDate

G
eo
gr
ap
hy

Quantity
UnitPrice: Avg +!
SalesAmount

Sales

Time

Date
DayNbWeek
...

Calendar

Month

MonthNumber
MonthName

Year

Year

Fig. 3. A simplified version of the conceptual schema of the NorthwindDW

Applying Step 3 to level Employee in the Employee dimension we obtain:

nw:employee a qb4o:LevelProperty ; rdfs:label ”Employee Level”@en ;
qb4o:hasAttribute nw:firstName ; qb4o:hasAttribute nw:lastName .

nw:firstName a qb:AttributeProperty ; rdfs:label ”First Name”@en .
nw:lastName a qb:AttributeProperty ; rdfs:label ”Last Name”@en .

Step 4 (Dimension-Hierarchy Relationships). For each h ∈ H in d ∈ D, relate
dRDF in CSRDF to hRDF , and hRDF to dRDF . Then, CSRDF = CSRDF ∪ {dRDF

qb4o:hasHierarchy hRDF } ∪ {hRDF qb4o:inDimension dRDF }.
Applying Step 4 to the Employee dimension and its hierarchies we obtain:

nw:employeeDim qb4o:hasHierarchy nw:Supervision ; qb4o:hasHierarchy nw:territories .
nw:supervision qb4o:inDimension nw:employeeDim. nw:territories qb4o:inDimension nw:employeeDim.

Step 5 (Hierarchy Structure). For each hierarchy h ∈ H composed of a level l ∈
L, relate hRDF in CSRDF to lRDF as CSRDF =CSRDF ∪ {hRDF qb4o:hasLevel

lRDF }. Also, create a blank node lhRDF of type qb4o:LevelInHierarchy that rep-
resents the pair (lRDF , hRDF) and add triples as CSRDF = CSRDF ∪ {lhRDF

qb4o:hierarchyComponent hRDF } ∪ {lhRDF qb4o:levelComponent lRDF }.
Let (l, l′) be a pair of levels in the C, such that l, l′ ∈ h, and parentLevel(l, h) = l′

with cardinality car. Also, let lRDF , l′RDF , and hRDF be the representations of l, l′ and
h in CSRDF , and lhRDF , lh

′
RDF be the resources of type qb4o:LevelInHierarchy

that represent the pairs (lRDF , hRDF) and (l′RDF , hRDF) respectively. Then add to
CSRDF a blank node hsRDF of type qb4o:HierarchyStep, and the triples hsRDF

qb4o:childLevel lhRDF , hsRDF qb4o:parentLevel lh′
RDF . Finally, add a triple

hsRDF qb4o:cardinality carRDF , carRDF being the relationship’s cardinality.
A part of the Employee dimension structure obtained is shown below. Note the rela-

tionship :ih3; qb4o:parentLevel :ih6 supporting a ragged hierarchy.

nw:supervision qb4o:hasLevel nw:employee .
nw:territories qb4o:hasLevel nw:employee, nw:city, nw:state, nw:country, nw:continent .
nw:supervision levels
:ih1 a qb4o:LevelInHierarchy ; qb4o:levelComponent nw:employee ; qb4o:hierarchyComponent nw:supervision .

52 L. Etcheverry, A. Vaisman, and E. Zimányi

nw:territories levels
:ih2 a qb4o:LevelInHierarchy ; qb4o:levelComponent nw:employee ; qb4o:hierarchyComponent nw:territories .
:ih3 a qb4o:LevelInHierarchy ; qb4o:levelComponent nw:city ; qb4o:hierarchyComponent nw:territories .
:ih4 a qb4o:LevelInHierarchy ; qb4o:levelComponent nw:state ; qb4o:hierarchyComponent nw:territories .
:ih5 a qb4o:LevelInHierarchy ; qb4o:levelComponent nw:region ; qb4o:hierarchyComponent nw:territories .
:ih6 a qb4o:LevelInHierarchy ; qb4o:levelComponent nw:country ; qb4o:hierarchyComponent nw:territories .

nw:supervision hierarchy structure
:pl1 a qb4o:HierarchyStep ; qb4o:childLevel :ih1 ; qb4o:parentLevel :ih1 ; qb4o:cardinality qb4o:OneToMany .

nw:territories hierarchy structure
:pl2 a qb4o:HierarchyStep ; qb4o:childLevel :ih2 ; qb4o:parentLevel :ih3 ; qb4o:cardinality qb4o:ManyToMany .
:pl3 a qb4o:HierarchyStep ; qb4o:childLevel :ih3 ; qb4o:parentLevel :ih4 ; qb4o:cardinality qb4o:OneToMany .
:pl4 a qb4o:HierarchyStep ; qb4o:childLevel :ih3 ; qb4o:parentLevel :ih6 ; qb4o:cardinality qb4o:OneToMany .

Step 6 (Measures). For each measurem ∈ M , CSRDF = CSRDF ∪ {t}, such that
t is a triple that states that mRDF is a resource with type qb4o:MeasureProperty.
The range of each mRDF can be defined using the rdfs:range predicate.

The following triples are the result of the application of Step 6 to our example.

nw:quantity a qb:MeasureProperty ; rdfs:label ”Quantity”@en ; rdfs:range xsd:integer .
nw:unitPrice a qb:MeasureProperty ; rdfs:label ”UnitPrice”@en ; rdfs:range xsd:decimal .
nw:salesAmount a qb:MeasureProperty ; rdfs:label ”SalesAmount”@en ; rdfs:range xsd:decimal .

Step 7 (Cube). For each fact F , CSRDF = CSRDF ∪ {t}, such that t is a
triple stating that cRDF is a resource with type qb:DataStructureDefinition.
For each measure m ∈ M , CSRDF = CSRDF ∪ {cRDF qb:component

[qb:measure mRDF ; qb4o:aggregateFunction fRDF]}, where fRDF is an ag-
gregation function. Also, for each of the levels l ∈ L related to a fact F in the
conceptual schema, CSRDF = CSRDF ∪ {cRDF qb:component [qb:level
lRDF ; qb4o:cardinality carRDF]}, where carRDF represents the cardinality of
the relationship between facts and level members and is one of cardinality restric-
tions defined in QB4OLAP (qb4o:OneToOne, qb4o:OneToMany, qb4o:ManyToOne,
qb4o:ManyToMany).

The following triples are the result of the application of Step 7.

Cube definition (Data structure)
nw:Northwind a qb:DataStructureDefinition ;
Lowest level for each dimension in the cube
qb:component [qb4o:level nw:employee ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level nw:orderDate ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level nw:dueDate ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level nw:supplier ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level nw:customer ; qb4o:cardinality qb4o:ManyToOne] ;
Measures in the cube
qb:component [qb:measure nw:quantity ; qb4o:aggregateFunction qb4o:sum] ;
qb:component [qb:measure nw:unitPrice ; qb4o:aggregateFunction qb4o:avg] ;
qb:component [qb:measure nw:salesAmount ; qb4o:aggregateFunction qb4o:sum] .

5.2 QB4OLAP Implementation of Cube Instances

We now show a procedure to obtain a QB4OLAP implementation from a relational cube
instance, starting from: (a) The conceptual schema of a cube C; (b) CSRDF , the RDF
representation of the schema of C; (c) the relational implementation of the cube C,
which we denote CIROLAP . The procedure produces an R2RML mapping file CIRDF

that generates an RDF representation of the data stored in CIROLAP , using the schema
CSRDF . A collection of IRI-safe strings P are used to generate unique level members

Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP 53

IRIs with R2RML rr:template, such that each level li ∈ L has its corresponding pi ∈ P .
Analogously, f is used to generate unique IRIs for fact instances. The procedure com-
prises two parts: (1) Define mappings to generate level members; (2) Define mappings
to generate facts (observations). We define a procedure for each relational representa-
tion of a multidimensional model construct as follows. We assume the reader is familiar
with the usual kinds of dimension hierarchies.

Step 1 (Balanced hierarchies.) These hierarchies can be represented as snowflake
schemas or as star schemas. If h ∈ H is a balanced hierarchy composed of a set of levels
L, represented as a snowflake schema, there exists a set of tables Th ∈ CIROLAP ,
where each table ti ∈ Th represents a level in li ∈ L, and contains a key attribute
pki and one attribute ai for each level attribute ati ∈ li. For each pair li, li+1 ∈ h,
represented as ti, ti+1 ∈ T , such that parentLevel(li, h) = li+1, there exists a foreign
key attribute fki ∈ ti referencing pki+1 ∈ ti+1.

To generate the instances of a balanced hierarchy represented as a snowflake schema,
for each level li ∈ h, CIRDF = CIRDF ∪ {t}, where t is an R2RML rr:TripleMap

that generates the members of li. The components of t are: the rr:logicalTable

ti, a rr:subjectMap which is an IRI built using the rr:template pi{pki}, and one or
more rr:predicateObjectMap that express: (1) To which level liRDF ∈ CSRDF the
members generated by t belong; (2) The value of each attribute aRDF ∈ liRDF , which
is obtained from the attributes in ti, specified using rr:column; (3) The associated
members in other levels lj , using skos:broader and the rr:template pj{fkj}.

The R2RML mapping that generates the members in level Region in Fig. 3 is:

<#TriplesMapRegion > a rr:TriplesMap ;
rr:logicalTable [rr:tableName ”State”] ;
rr:subjectMap [rr:termType rr:IRI ;

rr:template ”http://www.fing.edu.uy/inco/cubes/instances/northwind/Region#{RegionCode}” ;] ;
rr:predicateObjectMap [rr:predicate qb4o:inLevel ; rr:object nw:region ;] ;
rr:predicateObjectMap [rr:predicate nw:regionCode ; rr:objectMap [rr:column ”RegionCode”] ;] ;
rr:predicateObjectMap [rr:predicate nw:regionName ; rr:objectMap [rr:column ”RegionName”] ;] ;
rr:predicateObjectMap [rr:predicate skos:broader;

rr:objectMap [rr:termType rr:IRI ;
rr:template ”http://www.fing.edu.uy/inco/cubes/instances/northwind/Country#{CountryKey}”] ;] .

If h ∈ H is a balanced hierarchy composed of a set of levels L, represented as a star
schema, there exists a table th ∈ CIROLAP representing all levels in li ∈ L. For each
li there exists an attribute pki ∈ th which identifies each level member and for each
level attribute ati ∈ li there exists an attribute ai ∈ th.

The mapping for a balanced hierarchy represented as a star schema is similar to
the one in Step 1, except that the rr:logicalTable is the same for all levels. The
R2RML mapping that produces the members in levels Month and Year is:
<#TriplesMapMonth> a rr:TriplesMap ;
rr:logicalTable [rr:tableName ”Time”] ;
rr:subjectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/Month#{MonthName}{Year}” ;] ;
rr:predicateObjectMap [rr:predicate qb4o:inLevel ; rr:object nw:month;] ;
rr:predicateObjectMap [rr:predicate nw:monthNumber ; rr:objectMap [rr:column ”MonthNumber”] ;] ;
rr:predicateObjectMap [rr:predicate nw:monthName ; rr:objectMap [rr:column ”MonthName”] ;] ;
rr:predicateObjectMap [rr:predicate skos:broader;

rr:objectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/Year#{Year}”] ;] .
<#TriplesMapYear> a rr:TriplesMap ;
rr:logicalTable [rr:tableName ”Time”] ;
rr:subjectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/Year#{Year}” ;] ;
rr:predicateObjectMap [rr:predicate qb4o:inLevel ; rr:object nw:year ;] ;
rr:predicateObjectMap [rr:predicate nw:yearNumber ; rr:objectMap [rr:column ”Year”] ;] .

54 L. Etcheverry, A. Vaisman, and E. Zimányi

Step 2 (Parent-child (Recursive) hierarchies.) These are represented as a table
containing all attributes in a level, and a foreign key to the same table, relating child
members to their parent. If h ∈ H is a parent-child hierarchy, composed of a pair
of levels li, li+1 ∈ h such that parentLevel(li, h) = li+1, there exists a table th ∈
CIROLAP which contains a key attribute pki that identifies the members of li and an
attribute fki ∈ th, that identifies the members of li+1 and is a foreign key referencing
pki ∈ th.

The mapping for level members in a parent-child hierarchy is similar to the one
presented for a star representation of a balanced hierarchy, since all hierarchy levels are
populated from the same rr:logicalTable. For the Supervision hierarchy we have:
<#TriplesMapEmployee> a rr:TriplesMap ;
rr:logicalTable [rr:tableName ”Employee”] ;
rr:subjectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/Employee#{EmployeeKey}” ;];
rr:predicateObjectMap [rr:predicate qb4o:inLevel ; rr:object nw:employee ;] ;
rr:predicateObjectMap [rr:predicate nw:firstName ; rr:objectMap [rr:column ”FirstName”] ;];
rr:predicateObjectMap [rr:predicate nw:lastName ; rr:objectMap [rr:column ”LastName”] ;] ;
rr:predicateObjectMap [rr:predicate skos:broader;

rr:objectMap [rr:termType rr:IRI ;
rr:template ”http://www.fing.edu.uy/instances/nw/Employee#{SupervisorKey}”] ;].

Step 3 (Nonstrict hierarchies). Here, each level is represented as a separate table
and a bridge table is used to represent the many-to-many relationship between level
members. If h ∈ H is a nonstrict hierarchy, composed of a set of levels L, there ex-
ists a set of tables Th ∈ CIROLAP , one table ti ∈ Th with a key attribute pki, for
each level li ∈ L. For each pair of levels li, li+1 ∈ h, represented as ti, ti+1 ∈ T ,
such that parentLevel(li, h) = li+1 and members of li have exactly one associated
member in li+1, the mapping is the same as for the snowflake representation of bal-
anced hierarchies. If members of li have more than one associated member in li+1,
there exists a bridge table bi ∈ T that contains two attributes fki, fki+1 referencing
pki ∈ ti and pki+1 ∈ ti+1 respectively. Thus, each pair of levels is populated by three
rr:TriplesMap: two of them generate level members, while the third uses the bridge
table as rr:logicalTable to generate parent-child relationships between level mem-
bers.

The R2RML mapping that generates the parent-child relationship between members
in the Employees and City levels, in the Territories hierarchy is:

<#TriplesMapTerritories>
rr:logicalTable [rr:tableName ”Territories”] ;

rr:subjectMap [rr:template ”http://www.fing.edu.uy/instances/nw/Employee#{EmployeeKey}” ;] ;
rr:predicateObjectMap [rr:predicate skos:broader ;

rr:objectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/City#{CityKey}”] ;] .

Step 4 (Facts.) For each fact F , CIRDF = CIRDF ∪ {t}; t is an R2RML
rr:TripleMap that generates fact instances (observations). The components of t are
as follows: one rr:logicalTable, one rr:subjectMap, which is an IRI built us-
ing the rr:template f{F KEY }, one rr:predicateObjectMap stating the dataset
the observation belongs to, one rr:predicateObjectMap for each level related to
the fact, and one rr:predicateObjectMap for each measure. F KEY provides a
unique value for each fact, and can be obtained from a fact table column, or concate-
nating the keys of all the level members that participate in the fact.

The R2RML mapping that generates the members in the Sales facts is as follows.
Note the representation of the role-playing dimensions, and the key in rr:template.

Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP 55

<#TriplesMapSales> a rr:TriplesMap ;
rr:logicalTable [rr:tableName ”Sales”] ;
rr:subjectMap [rr:termType rr:IRI ;

rr:template ”http://www.fing.edu.uy/instances/nw/Sale#{OrderNo} {OrderLineNo}”; rr:class qb:Observation ;] ;
rr:predicateObjectMap [rr:predicate qb:dataSet ; rr:object nwi:dataset1 ;] ;
rr:predicateObjectMap [rr:predicate nw:customer ;

rr:objectMap [rr:termType rr:IRI ;
rr:template ”http://www.fing.edu.uy/instances/nw/Customer#{CustomerKey}”] ;] ;

rr:predicateObjectMap [rr:predicate nw:employee ;
rr:objectMap [rr:termType rr:IRI ;

rr:template ”http://www.fing.edu.uy/instances/nw/Employee#{EmployeeKey}”] ;];
rr:predicateObjectMap [rr:predicate nw:orderDate ;

rr:objectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/Time#{OrderDateKey}”] ;];
rr:predicateObjectMap [rr:predicate nw:dueDate ;

rr:objectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/Time#{DueDateKey}”] ;];
rr:predicateObjectMap [rr:predicate nw:supplier ;

rr:objectMap [rr:termType rr:IRI ; rr:template ”http://www.fing.edu.uy/instances/nw/Supplier#{SupplierKey}”] ;] ;
rr:predicateObjectMap [rr:predicate nw:quantity ; rr:objectMap [rr:column ”Quantity”] ;] ;
rr:predicateObjectMap [rr:predicate nw:unitPrice ; rr:objectMap [rr:column ”UnitPrice”] ;] ;
rr:predicateObjectMap [rr:predicate nw:salesAmount ; rr:objectMap [rr:column ”SalesAmount”] ;] .

6 Querying a QB4OLAP Cube

The representation produced by the procedures described in Section 5 supports express-
ing in SPARQL commonly-used real-world OLAP queries. We next give the intuition
of this, showing two typical OLAP queries expressed in MDX, the de facto standard
language for OLAP, and its equivalent SPARQL query. We assume the reader is famil-
iar with MDX. We start with the query “Three best-selling employees”, which reads in
MDX:
SELECT Measures.[Sales Amount] ON COLUMNS,

TOPCOUNT(Employee.[Full Name].CHILDREN, 3,Measures.[Sales Amount]) ON ROWS
FROM Sales

The query above reads in SPARQL(LIMIT 3 keeps the first three results):
SELECT ?fName ?lName (SUM(?sales) AS ?totalSales)
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:employee ?emp ; nw:salesAmount ?sales .

?emp qb4o:inLevel nw:employee ; nw:firstName ?fName ;nw:lastName ?lName . }
GROUP BY ?fName ?lName
ORDER BY DESC (?totalSales) LIMIT 3

Consider now: “Total sales and average monthly sales by employee and year”
WITH MEMBER Measures.[Avg Monthly Sales] AS
AVG(DESCENDANTS([Order Date].Calendar.CURRENTMEMBER,

[Order Date].Calendar.Month),Measures.[Sales Amount]),FORMAT STRING = ’$###,##0.00’
SELECT {Measures.[Sales Amount], Measures.[Avg Monthly Sales] } ON COLUMNS,
Employee.[Full Name].CHILDREN * [Order Date].Calendar.Year.MEMBERS ON ROWS FROM Sales

Below we show the equivalent SPARQL query. The inner query computes the total
sales by employee and month; the outer query aggregates this result to the Year level,
and computes the total yearly sales and the average monthly sales.
SELECT ?fName ?lName ?yearNo (SUM(?monthlySales)) (AVG(?monthlySales))
WHERE { {

SELECT ?fName ?lName ?month (SUM(?sales) AS ?monthlySales)
Montly sales by employee
WHERE { ?o qb:dataSet nwi:dataset1 ; nw:employee ?emp ;

nw:orderDate ?odate ; nw:salesAmount ?sales .
?emp qb4o:inLevel nw:employee ; nw:firstName ?fName ; nw:lastName ?lName .
?odate qb4o:inLevel nw:orderDate ; skos:broader ?month . ?month qb4o:inLevel nw:month . }

GROUP BY ?fName ?lName ?month }
?month skos:broader ?year . ?year qb4o:inLevel nw:year ; nw:yearNumber ?yearNo . }

GROUP BY ?fName ?lName ?yearNo ORDER BY ?fName ?lName ?yearNo

56 L. Etcheverry, A. Vaisman, and E. Zimányi

7 Discussion and Open Challenges

In this paper we focused in studying modeling issues, and in showing that writing real-
world OLAP queries in SPARQL based on an appropriate model is a plausible ap-
proach. We presented a new version of QB4OLAP that allows representing most of the
concepts in the multidimensional model, and a procedure to obtain a QB4OLAP rep-
resentation of such model. We also proposed a set of steps that produce a QB4OLAP
representation of a relational implementation of a data cube. It would be possible to
automatically generate queries like the ones presented in Section 6, starting from a
high-level algebra like the one proposed in [3], and this is the approach we will follow
in future work. We will also study mechanisms for obtaining QB4OLAP data cubes
using other data sources, not necessarily multidimensional ones.

References

1. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann, F., Pedersen,
T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes: Towards Self-Service
Business Intelligence. IJDWM 9(2), 66–88 (2013)

2. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Allahbakhsh, M.: A Framework
and a Language for On-Line Analytical Processing on Graphs. In: Wang, X.S., Cruz, I., Delis,
A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 213–227. Springer, Heidelberg (2012)

3. Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., Zimányi, E.: Cube Algebra:
A Generic User-Centric Model and Query Language for OLAP Cubes. IJDWM 9(2), 39–65
(2013)

4. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: Mad skills: New Analysis
Practices for Big Data. PVLDB 2(2), 1481–1492 (2009)

5. Etcheverry, L., Vaisman, A.A.: Enhancing OLAP Analysis with Web Cubes. In: Simperl, E.,
Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp.
469–483. Springer, Heidelberg (2012)

6. Etcheverry, L., Vaisman, A.: QB4OLAP: A Vocabulary for OLAP Cubes on the Semantic
Web. In: Proc. of COLD 2012. CEUR-WS.org, Boston (November 2012)

7. Golfarelli, M.: Open source BI platforms: A functional and architectural comparison. In:
Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 287–
297. Springer, Heidelberg (2009)

8. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan &
Claypool Publishers (2011)

9. Kämpgen, B., Harth, A.: Transforming statistical linked data for use in OLAP systems. In:
Proceedings of the 7th International Conference on Semantic Systems, I-Semantics 2011, pp.
33–40. ACM, New York (2011)

10. Kämpgen, B., O’Riain, S., Harth, A.: Interacting with Statistical Linked Data via OLAP
Operations. In: ESWC Workshops, Heraklion, Crete, Greece (May 2012)

11. Kämpgen, B., Harth, A.: No size fits all – running the star schema benchmark with SPARQL
and RDF aggregate views. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S.
(eds.) ESWC 2013. LNCS, vol. 7882, pp. 290–304. Springer, Heidelberg (2013)

12. Löser, A., Hueske, F., Markl, V.: Situational Business Intelligence. In: Castellanos, M., Dayal,
U., Sellis, T. (eds.) BIRTE 2008. LNBIP, vol. 27, pp. 1–11. Springer, Heidelberg (2009)

13. Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conventional to Spa-
tial and Temporal Applications. Springer (2008)

14. Nebot, V., Llavori, R.B.: Building data warehouses with semantic web data. Decision Support
Systems 52(4), 853–868 (2011)

15. Vaisman, A., Zimányi, E.: Data Warehouse Systems: Design and Implementation. Springer
(2014)

	Modeling and Querying DataWarehouses
on the Semantic Web Using QB4OLAP
	1 Introduction
	2 Preliminary Concepts
	3 Related Work
	4 RDF Representation of Multidimensional Data
	5 QB4OLAP Implementation of Multidimensional Data Cubes
	5.1 QB4OLAP Implementation of a Cube Schema
	5.2 QB4OLAP Implementation of Cube Instances

	6 Querying a QB4OLAP Cube
	7 Discussion and Open Challenges
	References

