
An Analytics-Aware Conceptual Model For
Evolving Graphs

Amine Ghrab1,2, Sabri Skhiri1, Salim Jouili1, and Esteban Zimányi2

1 Eura Nova R&D, Mont-Saint-Guibert, Belgium
firstname.lastname@euranova.eu

2 Université Libre de Bruxelles, Belgium
ezimanyi@ulb.ac.be

Abstract. Graphs are ubiquitous data structures commonly used to
represent highly connected data. Many real-world applications, such as
social and biological networks, are modeled as graphs. To answer the
surge for graph data management, many graph database solutions were
developed. These databases are commonly classified as NoSQL graph
databases, and they provide better support for graph data management
than their relational counterparts. However, each of these databases im-
plement their own operational graph data model, which differ among
the products. Further, there is no commonly agreed conceptual model
for graph databases.
In this paper, we introduce a novel conceptual model for graph databases.
The aim of our model is to provide analysts with a set of simple, well-
defined, and adaptable conceptual components to perform rich analysis
tasks. These components take into account the evolving aspect of the
graph. Our model is analytics-oriented, flexible and incremental, enabling
analysis over evolving graph data. The proposed model provides a typing
mechanism for the underlying graph, and formally defines the minimal
set of data structures and operators needed to analyze the graph.

1 Introduction

The relational model was considered for several decades as the default choice
for data modeling and management applications. However, with the rise of Big
Data, relational databases fell short of complex applications expectations. Big
Data refers to data generated at unpredictable speed, scale, and size from hetero-
geneous sources, such as web logs and social networks. The distribution and va-
riety of data makes ensuring ACID properties, required by the relational model,
a very challenging task. This situation has lead to the development of new data
models and tools, known as the NoSQL movement. NoSQL models are based on
trading consistency for performance according to the CAP theorem, in contrast
to relational ACID properties.

NoSQL databases can be divided into four families, namely key/value stores,
column stores, document databases, and graph databases. Of particular rele-
vance to this paper is the analysis of graph databases. Graphs have the benefit

of revealing valuable insights from both the network structure and the data
embedded within the structure [1]. Complex real-world problems, such as in-
telligent transportation as well as social and biological network analysis, could
be abstracted and solved using graphs structures and algorithms. In this paper
we introduce a new graph modeling approach for effective analysis of evolving
graphs. By evolving we mean the variation of the values of an attribute across a
discrete domain. Evolution could be over time, quantity, region, etc. In the cor-
responding non-evolving graph, the information would be discarded when the
attributes or the topology changes.

The model introduces a typing system that entails explicit labeling of the
graph elements. This might introduce a redundancy in the graph, since part
of the facts could be discovered while traversing the data. However, we tolerate
this redundancy in favor of richer and smoother analysis. Trading redundancy for
the sake of better performance is a frequent choice when it comes to designing
analytics-oriented data stores such as data warehouses. Within the proposed
model, we define a set of operators to manipulate analytics-oriented evolving
graphs. The goal is to help analysts navigate and extract relevant portions of
the graph. Here, we provide the minimal set of operators. Nevertheless, richer
analysis scenarios could be achieved by combining these operators.

We consider as a running example of this paper the Epinion product rating
network [2], shown on Figure 1. The network is composed of a set of users
grouped by group, and products grouped by category. Each user has a profile, a
list of products ratings, and a linked by trust relationships with other users.

Fig. 1. Product rating network Fig. 2. Evolving product rating network

This network is sufficient to answer queries about the average rating of a
product, or detection of communities of users. However, information about the
evolution of the price by region or the history of rating of a given product by a
user is impossible to obtain. This data is discarded and not versioned for further
reuse. Hence, we enrich the original model with a typing system supporting
network evolution. The evolving network keeps track of information such as the
evolution of the price by region and the history of a product’s rating by a user.
Figure 2 depicts a part of the evolving network example. The evolving network
could be used to answer rich queries like : (1) correlations between sales decrease
and product rating evolution, (2) detection of popular and trendy products, and

(3) discovery of active and passive users. The previous queries could be then
reused in richer scenarios such as (4) recommendation of new products, and (5)
targeted advertising for influential people in the network.

The contributions of our work are summarized as follows:

– We define of a conceptual model for evolving graphs. The model is designed
to handle analytics over large graphs by means of a novel typing mechanism.

– We propose a comprehensive set of querying operators to perform interactive
graph querying through subgraph extraction functionalities.

– We describe a detailed use case of the model by reusing it as the ground for
multidimensional analysis of evolving graphs.

The remainder of the paper is organized as follows. In Section 2, we develop
a conceptual model to represent analytics-oriented evolving graphs. Section 3
defines the fundamental, general-purpose operators for querying the model. Sec-
tion 4 demonstrates the usefulness of the proposed model for complex analytics
by using it as the basis for multidimensional analysis. Section 5 discusses related
work and compares it to our proposed model. Finally, Section 6 sketches future
works and concludes the paper.

2 Evolving Graph Model

In this section, we present the evolving graph model serving as basis for the anal-
ysis framework. The input to our framework is a directed, attributed, hetero-
geneous multi-graph. Attributes are a map of key/value pairs attached to nodes
and edges of the graph. Nodes (resp., edges) may have different attributes, and
multiple edges may link the same pair of nodes.

We first define the typing mechanism that characterizes nodes and edges. We
propose three types of nodes, defined next.

Definition 1 An entity node is defined by a tuple 〈label,Ka, Oa〉 where (1)
label denotes the type of the entity node, such as user or product, (2) Ka is the
map of key attributes that univocally identify the entity node, and (3) Oa is the
map of optional attributes. The attributes of an entity node are immutable. The
set of entity nodes is denoted as Ven. ut

Definition 2 An evolving node keeps track of the discrete evolution of the
attributes of entity nodes. Attributes of entity nodes that are subject to change
are typed as evolving nodes. An evolving node contains only a label denoting its
name and reflecting the original attribute it represents. Changes are treated as
punctual events and reflect the discrete evolution of the attributes. The set of
evolving nodes is denoted as Vev. ut

Definition 3 A value node has a unique attribute representing the value of
its corresponding evolving node in a given context. The set of value nodes is
denoted as Vv. ut

We adopt the UML notation for relationships to represent the edges of the
graph. With regards to the nodes they link, we classify the edges as follows.
Edges linking entity nodes are of two types:

Definition 4 An entity edge (denoted by) describes the association
between two entity nodes. The set of entity edges is denoted as Een (Een ⊆
Ven × Ven). ut

Definition 5 A hierarchical edge (denoted by) depicts an aggrega-
tion (i.e., part-of) relationship between two entity nodes. The set of hierarchical
edges is denoted as Eh (Eh ⊆ Ven × Ven). ut

Both of the above edge types have attributes and labels. If an edge between two
entity nodes evolves, it is replicated, and the new one is filled with the new value.
We denote an entity (resp. hierarchical) edge as a tuple 〈label, Atts〉, where label
is the type of the relationship and Atts is the set of its attributes.

Definition 6 An evolving edge (denoted by) represents a compo-
sition relationship, i.e. a life-cycle dependency between nodes. It keeps track of
the changing attributes extracted as new nodes. The set of evolving edges is
denoted as Eev (Eev ⊆ Ven × Vev). ut

Definition 7 A versioning edge (denoted by) denotes a directed
association between an evolving node and a value node. Evolving edges are
attributed, where each attribute is a key/value pair describing the context for
the value node. The set of versioning edges is denoted as Ev (Ev ⊆ Vev × Vv). ut

We introduce now two new data entities oriented for analytics queries.

Definition 8 An analytics hypernode is an induced subgraph3,4 grouping
an entity node, all its evolving and value nodes, and all edges between them.
An analytics hypernode whose entity node is v is denoted as Γv = (V,E), where
V ⊆ (Ven ∪ Vev ∪ Vv) and E ⊆ (Eev ∪ Ev). Each node (resp., edge) is part of
only one hypernode: ∀u ∈ V (resp., e ∈ E), ∃!Γv | u ∈ Γv (resp., e ∈ Γv). ut

Definition 9 A class is a label-based grouping. A class denotes a set of ana-
lytics hypernodes whose underlying entity nodes share the same label. ut

With the input graph clearly defined, we introduce the graph model as follows.

Definition 10 An analytics-oriented evolving graph is a single graph
G = (V, E , α, β, Λ, λ), where:

– V = {Ven, Vev, Vv} is the set of nodes.
– E = {Een, Eh, Eev, Ev} is the set of edges.
– α : (Ven ∪ Vev) −→ LV is the function that returns the label for each entity

or evolving node, where LV is the set of labels of entity and evolving nodes.

3 G2 = (V2, E2) is a subgraph of G1 = (V1, E1) if V2 ⊆ V1 and E2 ⊆ E1
4 G2 is an induced subgraph of G1 if all edges between V2 present in E1 are in E2

– β : (Een ∪ Eh) −→ LE is the function that returns the label for each entity
or hierarchical edge. LE is the set of labels of entity and hierarchical edges.

– Λkey : (Ven ∪ Vv) −→ Dom(value) is the function that returns the value
of an attribute given its key. Λ is applied only to entity and value nodes.
Dom(value) denotes the domain of value.

– λkey : (Een ∪ Eh) −→ Dom(value) is the function that returns the value of
an attribute given its key. λ is applied only to entity and hierarchical edges.
Dom(value) denotes the domain of value. ut

With regard to the Epinion network shown in Figure 2, Product and User
are entity nodes, while Price is an evolving node attached to the products. Users
are linked to each other by entity edges labeled Trusts and by hierarchical edges
to their Group. The price keeps track of the evolution of the product price by
region. Multiple ratings of the same product by the same user are recorded. The
metamodel of an analytics-oriented evolving graph is shown on Figure 3.

Fig. 3. Analytics-oriented evolving graph metamodel

3 Querying the Graph Model

Selection and projection are two fundamental operators in relational algebra,
used to extract a subset of data according to predefined conditions on the data
tuples. As their names imply, selection selects the set of tuples of a relation
according to a condition on the values of their elements. Projection alters the
structure of the relation by removing a subset of the elements of the tuples,
and could be used to add elements by combining existing elements and constant
values. In this paper, we redefine these two operators for evolving graph analysis.
Then, we go a step further by introducing the traversal operation that is essential
for graph analysis and provides a finer control of data extraction. However, we do
not cover binary operations such as union and intersection of subgraphs, which
we consider out of the scope of the model definition.

All the proposed operators perform subgraph extraction operations. Given
an input graph G = (V, E , α1, β1, Λ1, λ1), we denote the produced subgraph as
G′ = (V ′, E ′, α2, β2, Λ2, λ2) where:

– V ′ ⊆ V, and E ′ ⊆ E
– α2(u) = α1(u),∀u ∈ V ′
– β2(e) = β1(e),∀e ∈ E ′
– Λ2(u) = Λ1(u), ∀u ∈ V ′en ∪ V ′v
– λ2(u) = λ1(u), ∀e ∈ E′en ∪ E′h
– Γv ⊆ G′, iff v ∈ V ′en.

These conditions are valid for the three following operators. For the remainder
of the paper, asterisk (∗) denotes an optional parameter that could be supplied
many times and |S| denotes the cardinality of a set S. We start by examining
the selection.

Definition 11 A selection σ([NLabel,AttVals]*; [ELabel,AttVals]*)(G) is a partial5

subgraph extraction operation. It is applied on analytics hypernodes and the
edges linking their entity nodes. It takes as input a list of the labels (NLabel)
of the entity nodes Ven, underlying the targeted analytics hypernodes, (resp., a
list of labels (ELabel) of their edges Een and Eh) and the corresponding values
of their targeted attributes AttV als. A selection returns a partial subgraph G′
of G where :

– α2(u) ∈ NLabel,∀u ∈ V ′en
– β2(e) ∈ ELabel, ∀e ∈ (E′en ∪ E′h)
– u ∈ V ′en iff α1(u) ∈ NLabel and ∃(ki, vi) ∈ AttV als|Λ1key

(u) = Vi, ∀key = ki
– e ∈ E′en ∪ E′h iff β1(e) ∈ ELabel and ∃(ki, vi) ∈ AttV als | λ1key

(e) = vi,
∀key = ki

– u ∈ V ′, iff ∃Γv ⊆ G′ | u ∈ Γv. ut

In the example of Figure 2, σ(User; Trusts)(Gepinion) detects the communi-
ties of users trusting each other. This is accomplished by selecting all analyt-
ics hypernodes whose entity nodes are labeled as User and linked by the en-
tity edges labeled Trusts. The operation presented above is useful for models
presenting intra-class relationships, i.e. relationships between analytics hypern-
odes with the same label. A further step is to perform inter-class selections. In
this case, selection applies on an heterogeneous set of entity nodes and edges.
σ(Product; User; Rates)(Gepinion) is an inter-class selection. It selects the network
comprised of Rates relationships, Product and User analytics hypernodes.

Definition 12 A projectionπ(EvLabel, {ValSet}){G, NLabel} is an induced sub-
graph extraction operation. It is applied on a single class of analytics hypernodes,
selected through NLabel. Other analytics hypernodes remain untouched by this
operation. Evolving nodes whose label is not in EvLabel are removed from the
targeted analytics hypernodes. It further narrows the range of values in the re-
sulting subgraph by specifying for each versioning edge a key/value map of the
requested values, {V alSet}. A projection returns an induced subgraph G′ where:

5 G2 is a partial subgraph of G1 if a subset of the edges between V2 from E1 is in E2

– E ′ = E ∩ (V ′ × V ′)
– u ∈ V ′en iff α1(v) ∈ NLabel
– u ∈ V ′ev iff :α1(u) ∈ EvLabel and ∃Γv ⊆ G′ | u ∈ Γv

– u ∈ V ′v iff: ∃Γv ⊆ G′ | u ∈ Γv and ∃ e = (u, ue), e ∈ E′v | ue ∈ Γv and
∃(ki, vi) ∈ V alSet|λ1key

(e) = vi, ∀key = ki. ut

For the network of Figure 2, π(Price, (Store,{EU,ME}))(Gepinion, P roduct) acts
only on Product hypernodes. It extracts the subgraph containing as evolving
nodes only the Price. And for the Price Value nodes, only those representing EU
and ME stores are kept, i.e, the US store is dropped from the resulting graph in
all Product analytics hypernodes.

Definition 13 A traversal τ(Start,Pattern) is a subgraph extraction operation.
A traversal starts from an entity node and follows a guided navigation on the
graph according to given rules. Traversal only navigates between entity nodes.
However, the navigation rules could be applied at any node or edge to decide
whether to include the current entity node, i.e., rules are applied to entity nodes
attributes as well as any of their analytics hypernode internal edges and nodes.
We refer to these navigation rules as patterns, and hence the subgraph extrac-
tion becomes a pattern matching operation. A pattern is a finite sequence of
conditions dictating the navigation steps. At each node (u ∈ Ven) and edge
(e ∈ Een ∪ Eh), the next step is defined by an expression applied on the labels
or the attributes of the current element. For a step i, a pattern dictates the next
elements to visit, and could be a combination of the following statements:

– u ∈ Ven|α(u) = labeli, dictates the next nodes based on the supplied label
– e ∈ (Een ∪ Eh)|β(e) = labeli, dictates the next edges based on the label
– u ∈ Ven|Λkey(u) = vali, dictates the next nodes based on the supplied

attribute value
– e ∈ (Een ∪Eh)|λkey(e) = vali, dictates the next edges based on the supplied

attribute value

τ is applied as follows: τ(Start,Pattern)(G) and returns a partial subgraph of the
input graph. Steps are separated by dashes (−). ut

A typical traversal scenario is the following query, applied on the example
shown in Figure 2: for a user A, return all products she didn’t rate, and whose
trusted contacts have already rated above four. Such a query is useful in a rec-
ommendation engine. This operation is expressed as follows:
τ(UserA,Pattern)(Gepinion), where Pattern = [e ∈ Een | β(e) = Trust]− [∗]− [e ∈
Een | β(e) = Rates & λRating(e) ≥ 4]− [u ∈ Ven | (u, UserA) /∈ E].

In relational databases, the join operation introduces a heavy workload espe-
cially for highly connected tables [3]. In graphs, data is embedded within nodes
connected through edges. The cost of running traversals within graphs is much
lower than the equivalent joins in relational tables [4]. This makes graphs more
suitable for highly connected data compared to relational tables. Moreover, as
explained in Section 5, many of current graph databases provide partial or full
support ACID properties.

The data structure and operations defined above yield the ground for defining
an algebra for evolving graph data. However, this should be further investigated
and enriched for the sake of completeness.

4 Multidimensional Graph Analysis

Data warehousing provides a particularly interesting use case for the implemen-
tation of our model. The subject-oriented and integrated view of data, provided
by the data warehouse, makes it a suitable backbone for common analysis tech-
niques such as reporting, complex querying, and data mining algorithms. We
assume that the input graph is designed according to the metamodel defined
above. The identification, versioning and insertion of the incoming nodes and
edges in the studied graph is done through the ETL phase. The evolving aspect
of the graph brings new challenges to the design of the ETL process. Such issues
include, but are not limited to, the definition of new entity nodes and labels,
the detection of new evolving attributes and the attachment of new values to
evolving attributes. Due to space limitations, we have chosen to limit the ap-
plication of our model to OLAP analysis. In this section, we briefly describe
multidimensional concepts using the graph model proposed in the Section 2.

We limit the study to the structures and a subset of the operators defined
in the reference algebra described in [5]. However, further research is needed to
device new operators uniquely useful in evolving graphs. OLAP analysis enables
us to discover hidden facts and relationships between users and products, such
as user satisfaction, evolution of trendy categories, and influential groups.

Figure 4 illustrates the proposed multidimensional modeling stack. The phys-
ical level switches the focus from elementary nodes and edges to class and inter-
class relationships. The logical level encapsulates classes into dimensions and
aggregates their relationships. The logical level is similar to ROLAP star schema
in that it organizes the studied domain into dimensions and prepares the cube
construction. The conceptual level abstracts the graph data using cubes, and
proposes user-friendly operations. Physical level has been described in detail in
Section 2, and serves as the ground for various analysis techniques. We focus
now on the logical and conceptual level, relevant to multidimensional analysis.

4.1 Data Structures

Dimensions Within our model, a dimension is a tree of classes. A dimension
D is defined by a tuple 〈name, Tree〉, where name denotes the name of the
dimension and Tree is the tree of classes. The root of the tree is the highest
class in the dimension hierarchy. A class could be involved in only one dimension.
Each level is identified by the class label.

In our product rating network example, the Item dimension DItem is denoted
as 〈Item, ILevels〉, where ILevels = [Product→ Category] and → denotes the
hierarchical relationship between classes. The shift from class to dimension is
depicted on Figure 4, where the classes Product and Category are grouped in
the same dimension, Item.

Fig. 4. Multidimensional analysis of an evolving network

Measures We distinguish two types of measures, (1) informational measures,
calculated from the internal attributes of the edges and nodes such as the average
rating of a product, and (2) structural measures, result of algorithms performed
on the structural properties of the graph, such as centrality metrics. For struc-
tural measures, a measure could be a subgraph such as the shortest path, or a
numerical value such as the length of the path. Using the evolving nature of the
graph, we can retrieve further insights such as the evolution of a product rating,
or the evolution of shortest path between users and products. Measures are the
metrics used to study a subject. A set of measures showing the data at the same
granularity is called a fact. Informational measures are similar to the relational
measures. Here we focus on the structural measures, specific for graphs.

Cube A cube is a set of cells containing measures, and placed in the multidimen-
sional space with regard to a base. A base is the minimal set of dimensions levels
that univocally identify a cell within a multidimensional space. A cube C is de-
fined by a tuple 〈D,M〉, where D = {D1, D2, . . . , Dm} is the set of dimensions,
and M = {M1,M2, . . . ,Mn} is the set of measures.

Figure 4 shows at the left a cube of informational measures (average rating
of items by customers), and at the right a cube of structural measures (shortest
path between customers and items).

4.2 Operations

The following representative, but non exhaustive, set of operations provides a
high-level abstraction and are applied at the conceptual level to study OLAP
cubes.

Slice Removes a dimension from a cube. Slice[D,V alue](C) operates on the cube
C, and returns the subset of cells for which the value of dimension D is set to
V alue. In the cube of shortest path evolution of Figure 4, Slice[Item,id=10](C) lim-
its the set of studied items to one item whose id=10. This cube is computed after
extracting the subgraph of the specific item from the graph of all items, through
the selection operator of Section 3, σ([Product, (id,10)]; User; Rates)(Gepinion)

Dice Selects a subset of measures from the cube using a set of conditions
on multiple dimensions. This operation is similar to slice, but operates on a
range of values of a dimension, and on multiple dimensions at the same time.
Dice[User,id=10..30;Item,id=1..15](C), returns a subcube for which users and items
identifiers are limited to the specified ranges.

Roll-Up Aggregates classes sharing a common hierarchy using the hierarchical
edges. This produces a summary graph with new nodes and edges that are not
necessarily present in the original graph. Aggregations could be asynchronous.
We could for example study relationships between Category and User rather
than Category and Group. The roll-up operators performs structural changes to
the graph. If the attributes of the elements involved in the aggregation are addi-
tive, an overlay is performed and the attributes values are simply incremented.
Otherwise, graph summarization techniques such as those discussed on [6–8]
could be used to implement the roll-up operation.

5 Related Work

Graph analytics are gaining a lot of momentum in the data management commu-
nity in recent years. A survey of graph database models according to their data
model, data manipulation operators, and integrity constraints is given in [1]. Cur-
rent graph databases implement different general purpose data models, without
a commonly agreed conceptual modeling approach. Neo4j6 is a centralized graph
database implementing the property graph7 model and guaranteeing ACID con-
straints. Titan8 is a distributed graph database implementing property graphs
and supporting ACID and partial consistency. Graph querying is made either
using traversal-oriented languages such as Gremlin9, SQL-like languages such as
Cypher, or through the database core API. Our model could be implemented
using any graph database that supports the input graph described on Section 2.
RDF is a widespread data model in the Web community, and could be an imple-
mentation candidate for our conceptual model. Pregel [9], and its open source
implementation Giraph10, are BSP graph processing frameworks designed to ex-
ecute efficiently graph algorithms. Ren et al. [10] proposed an approach to com-
pute graph-specific measures such as shortest path and centrality within a graph

6 http://neo4j.org/
7 https://github.com/tinkerpop/blueprints/wikiproperty-graph-model
8 http://thinkaurelius.github.com/titan/
9 https://github.com/tinkerpop/gremlin/wiki

10 http://giraph.apache.org/

with gradually changing edge sets. In [11], the authors present a distributed
graph database system for storing and retrieving the state of the graph at spe-
cific time points. Both of these two papers are based on the redundancy offered
by historical graphs trace. The analysis tasks are limited to graphs specific mea-
sures and indices with no querying or multidimensional view of data. Moreover,
we consider the historical variation as a specific case of graph evolution scenarios.
Related research on versioning was done by the database community. In [12], the
authors suggested a conceptual model for evolving object-oriented databases by
studying the evolution of objects values, schema and relationships between the
objects. Although some concepts are similar, modeling the versioning depends
on the data structures specific for each data model. Multidimensional analysis of
graphs data has been first proposed in [8]. The authors introduce informational
and topological dimensions. Informational aggregations consist of edge-centric
snapshot overlaying and topological aggregations consist of merging nodes and
edges by navigating through the nodes hierarchy. However, the analysis is lim-
ited to homogeneous graphs. GraphCube [7] is applied in single large centralized
weighted graph and do not address different edges attributes. Yin et al. [13]
introduced a data warehousing model for heterogeneous graphs. They enriched
the informational and topological dimensions with the Entity dimension and the
Rotate and Stretch operations along with the notion of metapath to extract sub-
graphs based on edges traversals. However, HMGraph did not provide semantics
of OLAP operations on the proposed graph data model. Distributed processing
frameworks such as Hive [14] propose data warehousing on top of large volume
of data. However, they are considering only the relational model.

6 Conclusions and Future Work

In this paper, we designed a conceptual model for evolving graphs. A plethora of
graph database tools is currently developed with multiple management features.
However, they do not address the management of evolving networks. Moreover,
no common conceptual model for efficient analysis of large evolving networks
is agreed. We have proposed our contribution to evolving graph analysis by in-
troducing a well defined conceptual model. We illustrated the model with an
application on the multidimensional analysis. However, large networks analysis
requires more work to build a complete stack of analysis framework. As future
work we plan to proceed in warehousing the evolving graphs. Further funda-
mental operations such as graph aggregations should be investigated for the
evolving graphs. A framework for graph data warehousing should integrate an
ETL module, which takes care of matching and merging tasks and provides a
graph compliant to the proposed model. An exhaustive study of new OLAP op-
erators in evolving graphs is needed. Current graph querying languages such as
Cypher should be extended to support multidimensional queries in an MDX-like
fashion. Moreover, distributed processing frameworks should be integrated for
large graphs processing.

Acknowledgment

This work has been partially funded by the Wallonia Region in Belgium (Grant
FIRST-ENTERPRISES N◦ 6850).

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1) (2008) 1:1–1:39

2. Tang, J., Liu, H., Gao, H., Das Sarmas, A.: eTrust: understanding trust evolu-
tion in an online world. In: Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM (2012) 253–261

3. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: a data provenance perspective.
In: Proceedings of the 48th Annual Southeast Regional Conference, ACM (2010)
42:1–42:6

4. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional (2012)

5. Romero, O., Abelló, A.: On the need of a reference algebra for OLAP. In: Pro-
ceedings of the 9th International Conference on Data Warehousing and Knowledge
Discovery, Springer (2007) 99–110

6. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summa-
rization. In: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, ACM (2008) 567–580

7. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP mul-
tidimensional networks. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, ACM (2011) 853–864

8. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: a multi-dimensional
framework for graph data analysis. Knowl. Inf. Syst. 21(1) (2009) 41–63

9. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data, ACM
(2010) 135–146

10. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving
graph sequences. Proceedings of the VLDB Endowment 4(11) (2011) 726–737

11. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph
data. arXiv preprint arXiv:1207.5777 (2012)

12. Andonoff, E., Hubert, G., Parc, A., Zurfluh, G.: Modelling inheritance, composi-
tion and relationship links between objects, object versions and class versions. In
Iivari, J., Lyytinen, K., Rossi, M., eds.: Advanced Information Systems Engineer-
ing. Volume 932 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(1995) 96–111

13. Yin, M., Wu, B., Zeng, Z.: HMGraph OLAP: a novel framework for multi-
dimensional heterogeneous network analysis. In: Proceedings of the 15th inter-
national workshop on Data warehousing and OLAP, ACM (2012) 137–144

14. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment 2(2) (2009) 1626–1629

