
Spatio-Temporal Data Warehouses and Mobility Data:
Current Status and Research Issues

Esteban Zimányi
Department of Computer and Decision Engineering (CoDE)

Université Libre de Bruxelles, Belgium
ezimanyi@ulb.ac.be

Abstract—Applications using mobility data are blooming
in almost every application domain. Many research efforts
have been devoted to developing concepts, models, theories,
and tools to properly apprehend mobility data and make it
manageable for the benefit of these applications. One particular
aspect in this respect concerns mobility data management, i.e.,
storing mobility data in a data warehouse for their subsuquent
analysis. This paper introduces the notion of spatio-temporal
data warehouses and shows how such a data warehouse can
be defined using an extensible set of data types.

Keywords-spatio-temporal data warehouses; mobility data;
OLAP

I. INTRODUCTION

Nowadays, the usage of location-aware devices (e.g.,
mobile phones, GPS) allows collecting large volumes of
trajectory datasets. Effective analysis of such trajectory data
imposes new challenges for their management, while raising
opportunities for discovering behavioral patterns that can
be exploited in applications like location-based services or
traffic control management.

Data Warehouses (DW) and Online Analytical Process-
ing (OLAP) have been successfully used for transforming
detailed data into valuable knowledge for decision-making
purposes. Extending DWs for coping with trajectory data
allows us to extract essential knowledge from these trajec-
tories. For example, such a DW can be used for analyzing the
variable number of cars, or their average speed, in different
urban areas.

Trajectory data in a warehouse must be typically analyzed
in conjunction with other data, e.g., to analyze air pollution
in a city, or to find out the correlation between areas with
heavy traffic and areas with heavy pollution loads. In this
case, the data warehouse needs not only to store trajectory
data but also air quality data. In light of these needs, in this
paper we provide an overall view that integrates trajectory
data in a more general data warehousing framework, which
we call spatio-temporal data warehousing [1].

II. SPATIO-TEMPORAL DATA WAREHOUSES

Data warehouses (DW) are large data repositories that
collect data from several sources, and are used to support
the decision-making process. Data warehouses are typically

accessed using Online Analytical Processing (OLAP), which
enables analysts and executives to gain insight into data
through interactive exploration of a wide variety of views. At
a conceptual level, data are perceived as a multidimensional
cube, where cells contain values (or measures), which can
be analyzed through several axes (or dimensions).

We introduce these notions by an example of a DW
for analyzing the air quality in the Italian city of Milano.
Stations measure air quality in different points of the city at
regular time intervals. Non-spatial data in the DW include
the measures taken at the stations, and data about the
pollutants that affect air quality. Spatial data feeding the DW
are car trajectories as well as maps containing the layout of
the road network, the locations of the measuring stations,
and the political division of the city into zones and districts.

Figure 1 shows the conceptual schema depicting the above
scenario using the MultiDim model [2]. There is a fact
relationship, AirQuality, with measures load and riskLevel.
AirQuality is related to six dimensions, e.g., Time, Sta-
tion, and Road. Dimensions are composed of levels and
hierarchies. For example, the Station dimension has only
one level, while the District dimension is composed of two
levels, District and Zone, with a one-to-many parent-child
relationship defined between them.

There are two alternative ways of representing spatial
data. In the discrete view, the space contains objects (e.g.,
roads and districts) with a defined location and shape.
The continuous view sees space as a continuum, holding
properties that depend on the location in space. Typical
examples are land use and temperature. Furthermore, spatial
relationships provide a way of representing how spatial
objects are related to each other. There are several classes of
spatial relationships, for example, topological (e.g., adjacent,
inside, disjoint), direction (e.g., above, below), and metric
relationships (e.g., distance).

Let us consider first the discrete view of space. In order
to provide support for spatial data, a data warehouse must
provide spatial data types (such as point, points, line, and
region) as part of its data model and its associated query
language. Each of these data types comes with a predefined
set of operations. For example, a predicate inside can be
used to test whether a point is inside a region of whether a

District

name

population
...

load

riskLevel

AirQuality

Pollutant

name

type

loadLimit
...

Time

date

season
...

Category

name
description
...

C
a
te
g
o
ri
e
s

Zone

name

majorActivity
...

Station

name
...

Calendar

Month

month
...

Year

year
...

L
o
c
a
ti
o
n

Road

name

flow
...

tempvalue

granularity

...

Temper-
ature f(,)

 LandUse

type

characteristics
...

f()

LU Classif.

groupName
...

 LandUse
 Group

f()

 Car
 Trajectory

number

vehicleType
...

m()

Figure 1. An example of a spatio-temporal data warehouse

region is included into another. Thus, SOLAP (standing for
Spatial OLAP), aims at exploring spatial data by drilling on
maps, as it is performed in OLAP with tables and charts.

In our example in Figure 1, the pictograms in dimensions
Station, Road, and District indicate that these dimensions
are spatial, and their geometry correspond to a point, a line,
and a region, respectively. In our example, the topological
relationship in dimension District indicates that a district
is covered by its parent Zone. Similarly, the topological
relationship in AirQuality indicates that whenever a station, a
road, a district, and a car trajectory are related in an instance
of the relationship, they must overlap.

Many real-world applications need to cope with moving
objects, i.e., objects whose geometry evolves over time. For
example, a moving point captures the evolution of objects
for which only its position in space is relevant. Examples of
moving points are people or cars. A moving region captures
moving as well as growing or shrinking regions. Examples
of moving regions are hurricanes or forest fires. Notice that
moving object data amount to spatio-temporal data.

In order to support moving objects, data warehouses need
to be extended with moving (or temporal) types. These are
obtained by applying a constructor moving(·) to any base or
spatial data types. For example, a value of type moving real
is a continuous function f : instant→ real, and a value of
type moving(point) is a continuous function f : instant→
point.

Let us consider now the continuous view of space. Con-
tinuous fields are used for representing phenomena that
change continuously in space and/or time. At a conceptual
level continuous fields can be represented as a function that
assigns to each point of space (and possibly in time) a value
of a particular domain (e.g., integer for altitude). Continuous
fields are implemented using field types which are obtained
by applying a constructor field(·). For example, a value of

type field(real) (e.g., representing altitude) is a continuous
function f : point→ real. Moving types also apply to field
types. For example, a value of type moving(field(real))
defines a continuous function f : instant→ (point→ real)
that can be used to represent temperature, which varies on
time and space.

Figure 1 shows a field dimension LandUse, which at each
point in the space of interest has a value for the use given to
land in Milano (e.g., industrial, residential). This is useful
for analyzing correlations between emissions and air quality
in the city and its surroundings, according to the use of the
land. LandUse is further classified into groups, represented
by the dimension level LandUseGroup. This level is aimed
at providing an aggregate view of the land use. Similarly,
Temperature is a temporal field, which means that each
point in the space of interest has a value of temperature,
and this value changes at each time instant. Field levels
have a geometry attribute, which keeps track of the value
of the field at each point in space (and time, for temporal
fields). Note that field dimensions are not connected to a
fact relationship, as it is the case for other dimensions. In
addition, traditional numerical measures can be calculated
from field data. An example is measure riskLevel, which
is an indicator (a real value) associated to each instance
of the fact relationship, and which is computed from the
dimensions Temperature, LandUse, and Time.

III. QUERYING SPATIO-TEMPORAL DATA WAREHOUSES

We next discuss how to query a spatio-temporal DW. For
this we use a functional first-oder query language, based on
the well-known relational calculus with aggregate functions
proposed by Klug, which extends the classic relational
calculus with aggregate functions. We denote this language
Q. Let us show how a Q query looks like, using our running
example.

Query 1. “Total population by zone provided that it is
greater than 10,000”.

{z.name, totalPop | Zone(z) ∧
totalPop = sum({d.population | District(d) ∧
d.Zone = z}) ∧ totalPop > 10000}

This query corresponds to an SQL query with the
GROUP BY and HAVING clauses. For each zone, the inner
query computes the population of all of its districts, and the
sum is stored in the variable totalPop.

We show now that an OLAP query is just a relational
calculus query with aggregation. Consider a set of base
types, namely int, real, bool, and string. These types have
the usual interpretation, except that their value may be
undefined. There are also time types which are instant and
periods, the latter being a set of time intervals. We denote β
the set of base types, and τ the set of time types. These types
have an associated set of operators. These include the usual
aggregation operators count, sum, avg, etc. It is easy to
show that Q has the same expressive power of the relational
calculus extended with aggregate functions.

Definition 1 (OLAP queries). The class of OLAP queries
is composed of all the queries that can be expressed by the
language Q defined over the sets of base and time types β
and τ .

Consider now a set of spatial data types, namely point,
points, line, and region. These types have the usual in-
terpretation, they define a point or a point set over R2.
We denote ξ the set of spatial types. These types have
an associated set of operations. These include topological
predicates (e.g., touches, overlaps), spatial operations (e.g.,
area, perimeter, distance, direction, center), etc.

As an example of the above, consider the following query,
which includes the spatial dimensions Station and Road.

Query 2. “For air stations located on Via del Mare, give
the average values of lead registered in the last quarter of
2010.”

{s.name,avgLead | Station(s) ∧ ∃r, p (
Road(r) ∧ Pollutant(p) ∧
r.name = ‘Via del Mare’ ∧ p.name = ‘Lead’ ∧
intersects(r.geometry, s.geometry) ∧ avgLead =

avg({a.load | AirQuality(a) ∧ ∃t (Time(t) ∧
a.Station = s ∧ a.Pollutant = p ∧ a.Time = t ∧
t.date >= 1/10/2010 ∧ t.date <= 31/12/2010)}))}

The inner query (an OLAP query) joins the fact rela-
tionship AirQuality with the dimensions Station, Pollutant,
and Time, for each combination of members of these three
dimension levels. Then, for values in the last quarter of
2010, the load is retrieved and the average computed in
the variable avgLead. Note that the outer query includes
the intersects predicate, which determines if a pair of
geometries representing stations and roads intersect.

We define next the class of Spatial OLAP (SOLAP)
queries.

Definition 2 (SOLAP queries). Let us call Qξ the language
Q extended with spatial types in ξ. The class of SOLAP
queries is the class composed of all the queries that can be
expressed by Qξ.

A spatial data warehouse is a data warehouse that sup-
ports SOLAP queries.

Consider now the moving types. These define a function
from the time type instant to a base or spatial type. Note
that moving types are partial functions, i.e., they may be
undefined for certain periods of time. We denote µ the set of
moving types, obtained by applying the moving constructor
to elements of β and ξ (the sets of base and spatial types,
respectively).

Moving types have an associated set of operations [4].
For example, the projection of a moving point into the
plane consists of the points and lines returned by the
operations locations and trajectory, respectively. Similarly,
the projection of a moving region into the plane consists
in a region, which is returned by the operation traversed.
Such an operator can be used, e.g., to compute the union
of all the regions covered by a moving cloud in a given
time interval. Other operations are defined for moving types,
e.g., to compute the rate of change for points (e.g., speed,
turn, velocity, etc.). Further, moving types have associated
operations that generalize those of the non-temporal types.
This is called lifting. For example, a distance function with
signature moving(point)×moving(point)→ moving(real)
calculates the distance between two moving points and gives
as result a moving real, i.e., a real-valued function of time.
Intuitively, the semantics of such lifted operations is that the
result is computed at each time instant using the non-lifted
operation.

As an example of the above, consider the following query,
which includes the moving point dimension CarTrajectory.

Query 3. “Total number of trajectories of length larger than
2 km on the Via del Mare, such that at least one station over
such road exceeded the limit for Carbon Monoxide”.

count({ct | CarTrajectory(ct) ∧ ∃r, p, a (Road(r) ∧
Pollutant(p) ∧ AirQuality(a) ∧ a.CarTrajectory = ct ∧
a.Road = r ∧ a.Pollutant = p ∧
r.name = ‘Via del Mare’ ∧
p.name = ‘Carbon Monoxide’∧a.load > p.loadLimit∧
length(intersection(trajectory(ct), r.geometry)) > 2})
In this query we apply the trajectory operation to project

the moving car into the plane, and intersect the result with
the geometry of the road. After this, we compute the length
of this intersection.

We define next the class of Spatio-Temporal OLAP (ST-
OLAP) queries.

Definition 3 (ST-OLAP queries). Let us call Qξµ the
language Q extended with spatial types in ξ and moving
types in µ. The class of Spatio-Temporal OLAP queries (ST-
OLAP) is composed of all the queries that can be expressed
by Qξµ.

A spatio-temporal (or trajectory) data warehouse is a
warehouse that supports ST-OLAP queries.

Consider now the field types. These define a function from
the spatial type point to a base type. As it is the case for
moving types, field types define partial functions, they may
be undefined for some extents in space. We denote by φ the
set of field types obtained by applying the field constructor
to the set of base types.

Field types have an associated set of operations [3]. For
example, operation at restricts the function to a point or to
a point set in the range of the function. Similarly, operations
atpoint, atpoints, atline, and atregion restrict the function
to a given subset of the space defined by a spatial value.
Operators atmin and atmax restrict the function to the
points in space when its value is minimal or maximal,
respectively. Predicate defspace returns the region over
which the the spatial function is defined. Rate of change
operations compute how a field changes across space. As for
moving types, field types have associated lifted operations
that generalize those of the base types. The semantics of
such lifted operations is that the result is computed at each
point in space using the non-lifted operation. Aggregation
operators are also uplifted. For instance, an uplifted avg
operator combines several fields, yielding a new field where
the average is computed at each point in space.

As an example of the above, consider the following query,
which includes the spatial field LandUse.

Query 4. “For Milano zones with at least 20% of industrial
land use, give the average load for Carbon Monoxide on
February 1st, 2010”.

{z.number,avgLoad | Zone(z) ∧ ∃l (LandUse(l) ∧
area(defspace(atregion(at(l.geometry, ‘Industrial’),
z.geometry)))/area(z.geometry) >= 0.2 ∧

avgLoad = avg({a.load | AirQuality(a) ∧ ∃d, t, p (
District(d) ∧ Time(t) ∧ Pollutant(p) ∧
a.District = d ∧ d.Zone = z ∧ a.Time = t ∧
t.date = 1/2/2010 ∧ a.Pollutant = p ∧
p.name = ‘Carbon Monoxide’)}))}

Here, the LandUse field is restricted to the value
‘Industrial’ by means of the function at, and then further
restricted to the geometry of the zone using the function
atregion. The operator defspace then obtains the geometry
of the restricted field, the area of this geometry is computed,
and finally divided by the total area of the zone. For the
zones that satisfy the condition, the average load is then
computed into the avgLoad variable.

We define next the class of Spatio-Temporal and Contin-

uous Field OLAP (STCF-OLAP) queries.

Definition 4 (STCF-OLAP queries). Let us call Qξφµ the
language Q extended with spatial types ξ, field types φ, and
moving types µ (the latter includes moving fields). The class
of STCF-OLAP queries contains all the queries expressed
by Qξφµ.

A spatio-temporal and continuous field data warehouse
is a data warehouse that supports STCF-OLAP queries.

IV. CONCLUSION

Current technological advances made possible the col-
lection of mobility data. As a consequence, there is a
huge demand for methods for modeling, managing, and
understanding mobility data. In this paper we focused on
the management aspect of mobility data, i.e., how to store
and query these data into spatio-temporal data warehouses.
We have seen that an efficient way to deal with this problem
is to extend data warehouses with appropriate data types that
cope with the spatial and temporal features.

Many related issues have been omitted, they are discussed
in particular in [5]. A first issue concerns mobility data
modeling, i.e., the process that transforms the raw data
obtained from data collection devices (e.g., GPS, Bluetooth,
RFID) into the application-dependent concept of trajectory.
Another important aspect concerns mobility data mining, i.e.,
extracting useful knowledge out of mobility data. Mobility
data visualization concerns interactive visualization tech-
niques suitable for analysis of mobility data. A final aspect
that we want to mention concerns mobility data and privacy.
Tracing the movement of people poses big privacy issues,
from the viewpoint of both the management of sensitive data
and the publishing of personal information.

ACKNOWLEDGMENT

I would like to thank Alejandro Vaisman, with whom
many concepts presented in this paper were developed.

REFERENCES

[1] A. Vaisman and E. Zimányi, “What is spatio-temporal data
warehousing?” in Proceedings of DaWaK 2009, ser. LNCS.
Springer, 2009, no. 5691, pp. 9–23.

[2] E. Malinowski and E. Zimányi, Advanced data warehouse de-
sign: From conventional to spatial and temporal applications.
Springer-Verlag, 2008.

[3] A. Vaisman and E. Zimányi, “A multidimensional model
representing continuous fields in spatial data warehouses,” in
Proceedings of ACM GIS 2009. ACM Press, 2009, pp. 168–
177.

[4] R. Güting and M. Schneider, Moving Objects Databases.
Elsevier, 2005.

[5] C. Renso, S. Spaccapietra, and E. Zimányi, Eds., Mobility
Data: Modeling, Management, and Understanding. Cam-
bridge Press, 2012, forthcoming.

