
Université Libre de Bruxelles

INFO-H-415 - Advanced databases

Project report: RethinkDB

Akira BAES, Antoine VANDEVENNE

Contents

1 Introduction 1

2 RethinkDB 2
2.1 Web Administration Console . 2
2.2 Introduction to ReQL . 2
2.3 Document store . 3
2.4 Real-time database . 5
2.5 Indexing . 5
2.6 Data storage . 6
2.7 Sharding . 6
2.8 Query execution . 7
2.9 ChangeFeeds implementation . 8
2.10 Advanced use of ReQL . 8

2.10.1 Joins . 8
2.10.2 Transformations . 9
2.10.3 Aggregations . 9

2.11 Other features . 10

3 Our application 11
3.1 Use case . 11
3.2 Practical details . 12
3.3 Implementation choices . 13

4 Performances 14
4.1 Benchmarks . 14
4.2 Our application under stress . 14

5 Comparison with other databases 16
5.1 MongoDB with Meteor.js . 16
5.2 PostgreSQL with listen/notify triggers 16
5.3 Baquend . 16
5.4 Firebase . 16

6 Conclusion 17

1 Introduction

The emergence of real-time databases allowed data to be shared between several
applications in an instantaneous manner. Such applications include collabora-
tive real-time document edition, multi-player games, and real-time analytics
boards. It is possible to implement this feature in several ways, among which
the usage of a database with real-time capabilities.
In order to explore and experiment with this particular solution, we focused
our work on RethinkDB, a real-time oriented document store. RethinkDB is
a database management system (DBMS) using JSON files as documents and
offering a particular data access model, the so-called ”changefeeds” which al-
low applications to receive continuously updated results from the database for
specified a query.
In this document, we begin with a deep analysis of RethinkDB in section 2.
Section 3 overviews our implementation of a collaborative drawing game. In
sections 4 and 5, we respectively analyze the performances and convenience of
RethinkDB by respectively reviewing benchmarks and comparing it with similar
other databases. Finally, a conclusion is provided in section 6.

1

2 RethinkDB

RethinkDB is a noSQL, document-store database with real-time capabilities.
As such, it is non-relational: the database is document-oriented and the data
are stored in JSON documents with no fixed table structure. Its real-time ca-
pabilities lies in the feature of changefeeds which aims to compete with classical
real-time databases by providing a more flexible concept where mostly any query
can be monitored for changes.

2.1 Web Administration Console

RethinkDB comes with a Web Administration Console. The console features a
visual overview or the server’s activity or database’s performances, and permits
several manipulations such as the management of sharding and replication on a
per-table basis, a data explorer allowing to execute ReQL queries in JavaScript.
It even offers a very basic query profiler, though it is difficult to interpret.

2.2 Introduction to ReQL

In order to properly introduce the different concepts of RethinkDB and con-
cretize them with a few examples, a shallow overview of ReQL is provided in
this section.
RethinkDB features its own query language, ReQL. It comes with several API
to embed itself in multiple officially supported programming languages. To this
day, ReQL is available for JavaScript, Python, Ruby and Java but there exist
many other community-supported drivers, among which C++ and Go, for in-
stance.
ReQL is focused on the manipulation of JSON documents and the creation of
chainable queries. To create a query using ReQL, one must start from the Re-
thinkDB’s driver object and append the desired operator to the former in the
same fashion as a call to an object’s function in most high level programming
language. The query can then be refined by successive appending of new oper-
ators to the end of the chain.

To get a better grasp on this concept, a simple example is provided in
Listing1. The RethinkDB driver is represented by the variable r to which are
successively appended two operators. The first one specifies the database to
work on (here ”Example”) and the second one requests that a new table named
”Fruits” must be created on this database. This operation returns an object
representing the query that is yet to be executed. This is done by establishing
a connection with the server and appending the run operator to which the con-
nection should be passed. The execution will then entirely take place on the
server. As we are not interested about how a query execution is handled as of
yet, we will omit the details concerning the connection et the execution in the
following examples.

2

query = r . db(”Example”) . tab l eCreate (” Fru i t s ”)
query . run (connect ion)

Listing 1: Creation of a table

r . t a b l e (’ F ru i t s ’) . i n s e r t ([
{ ’name ’ : ’ Apple ’ , ’ amount ’ : 178 } ,
{ ’name ’ : ’ Orange ’ , ’ amount ’ : 75 , ’ u n i t p r i c e ’ : 1 . 5 }

])

Listing 2: Insertion of documents (Python)

Listing 2 exhibits the operator insert used to load new documents in the database.
The selection of the table in which those documents should be loaded is done
by the mean of the table operator. Several observations on this Listing will be
made in the following section but, as of now, its only purpose is to display the
content of the documents currently present in the database.

Given the two documents previously inserted, it is now possible to retrieve
documents based on arbitrary filters. Where in SQL one would have made
use of the ”SELECT”, ”FROM” and ”WHERE” keywords to construct a basic
query, in ReQL they are replaced by a combination of the ”table” and ”filter”
operators to which can be adjoined one or several conditional operators. Such
a query and its result are respectively depicted in Listings 3 and 4. In this case,
the gt operator is used to retrieve all fruits whose specified amount is strictly
greater than 100. As only one entry matches this query, the result consists of a
single document containing all field of the matched entry.

2.3 Document store

A document store or document-oriented database is a database that stores all
information about a given object in a single document which is semi-structured
data. There exists no scheme or inherent structure to the tables. This is in
contrast to table-based relational databases in which the information describing
an object would be split across several tables. As such, document stores are a
main category of the NoSQL databases family, and are a subclass of key-value
stores. [27]
In document-oriented databases, the content of data is not opaque to the system.

r . t a b l e (’ F ru i t s ’) . f i l t e r (r . row (’ amount ’) . gt (100))

Listing 3: Retrieval of documents (Python)

3

{
” id ” : eda155d3−567a−4773−8179−741 fd81104fd ” ,
”amount ” : 178 ,
”name ” : ”Apple”

}

Listing 4: Query result of Listing 3

{
” id ” : ”8644 aaf2−9928−4231−aa68−4e65e31bf217 ”
”CourseName ” : ”Advanced Databases ” ,
”Mnemonic ” : ”INFO−H−415” ,
”AcademicYear ” : ”2017−2018”

}

Listing 5: Example of JSON document

Instead, the internal structure of the documents can be exploited to generate
metadata used for optimization. [22]

RethinkDB uses JSON as its document structure. In programming lan-
guages that support it, JSON-like object structures can be represented at the
application level using data types of the language itself. For example, in Python
a JSON RethinkDB document will be parsed into a dictionary, a built-in data
type of Python where a non-mutable key maps to an entry. It makes manag-
ing data very easy, as dictionaries can be explored in Python without further
parsing and internal structure can be further extended by nested Python lists
or dictionaries. As such, Python dictionaries and RethinkDB document are in-
terchangeable concepts (insertion, query manipulation, ...).

As an example, the JSON file depicted in Listing 5 could be used to repre-
sent the course of Advanced Databases and be stored in a document-oriented
database. As RethinkDB belong to the class of key-value stores, a primary key
is required to identify each document within a table. In this example, and by
default, this key is represented by the field id. As can be observed in Listing 4,
this field is present in the query result although no identifier was provided when
inserting the entry in Listing 2. Indeed, if no specific value for the primary
key is provided, a new and unique one will be automatically generated upon
insertion of the entry. In addition, RethinkDB allows to specify the field or the
combination of fields to be used as the primary key when creating a new table.

4

2.4 Real-time database

Real-time databases are databases that are supposed to work for reactive ap-
plications where changes in the database are immediately visible on the user’s
end. The traditional request-response pull-based query structure does not pro-
vide easy tools to do that without implementing them by yourself. Real-time
oriented databases offer push-oriented queries natively to facilitate the writing
of applications that try to reflect the real-time current state of the database by
having the database itself react to modifications and send to the application the
changes immediately as they occur. [11] [9]

In a classical database, this can be done by polling the database at regular
intervals for changes.
In most real-time oriented databases, you can request the server to send you
real-time updates on a file, or keep you synchronized on the state of a document.
RethinkDB simply generalizes the concept of real-time updates to any query to
make it easier to write, including queries that transform or select the data. [15]

This changefeed approach was unique to RethinkDB [11], but other databases
such as Meteor provide similar push-based queries. Even more recently, a new
database named Baqend boast to take inspiration from RethinkDB’s approach
but refine it with self-maintaining queries. One last kind of real-time databases
that is currently popular are the cloud-based real-time database like Firebase
whose approach are better described as cross-device state synchronization, as
you can share one document between several applications. That implementation
is thus a lot more limited, dealing with the synchronization of a single document
entry rather than arbitrary queries. [9]

2.5 Indexing

As they are not SQL-based, document store databases are not ”indexed” in the
same way SQL databases records are. It is however possible to create artificial
indexes on the data, which can help increasing performances.

In RethinkDB, an index is automatically created on the primary key field
which has many speed advantages, as the data is internally stored in a B-Tree,
a sorted data structure that allows quick retrieval of stored data. [13]
Secondary indexes on arbitrary entries are available to speed up research at
the cost of memory usage. [22] Creating a secondary index also allows for more
advanced ordering and data manipulation. [15] Secondary indexes can be based
on any field, a combination of fields or even arbitrary expressions.
Upon any write operation, an update operation for all indexes is started. [22]

As an example, Listing 6 shows the process of creating a simple secondary
index on the field ”amount”, in our previous database example. This is done
by a simple call to the operator index create followed by a call to the operator

5

r . t a b l e (” Fru i t s ”) . i n d e x c r e a t e (”amount”)
r . t a b l e (” Fru i t s ”) . index wa i t (”amount”)

Listing 6: Creation of a simple index (Python)

r . t a b l e (” Fru i t s ”) . i n d e x c r e a t e (
” i n f o s ” , [r . row [”amount”] , r . row [” u n i t p r i c e ”]]

)
r . t a b l e (” Fru i t s ”) . index wa i t (” i n f o s ”)

Listing 7: Creation of a compound index (Python)

index wait, this ensures that the index will be ready before one submit a new
query.

Listing 7 depicts the creation of a compound index. This type of index is
similar to simple indexes but differs in that it applies on multiple fields and
returns an array of values rather than a single result.

Listing 8 shows the creation of a multi-index, in which a document can have
multiple keys in the same index. This type of index is used to create tags, as
one document can show up in different keys (or tag) searches.

Finally, a fourth type of secondary index is made available in RethinkDB:
indexes on arbitrary ReQL expressions. By the mean of a anonymous function,
it is possible to construct an index on the total value of fruits by multiplying
the amount and unit price fields, as can be seen in Listing 9.

2.6 Data storage

As was already mentioned earlier, the storage of RethinkDB’s data takes place in
B-Trees. [13] The storage engine features a log-structure, multi-core operations,
data recovery after power failure, full consistency of data [16], but no check for
material data corruption. The data is cached into a B-Tree aware structure that
uses around 1% of the data size in RAM. [18] For instance, the structure for 1
TB of data would occupy about 10 GB of RAM. [13]
The database allows to dump/restore the database for backup purposes, but it
does not have advanced backup capabilities. [14]

2.7 Sharding

RethinkDB allows for easy sharding via the web interface. RethinkDB shards
the database based on the primary key. [13] RethinkDB will determine how to

6

{
”name” : ”Apple” ,
”amount” : 178 ,
” producers ” : [” belgium ” , ”canada” , ” f r ance ”]

}

Create the mult i−index on the t a g s l i s t
r . t a b l e (” Fru i t s ”) . i n d e x c r e a t e (” producers ” , mult i=True)

Get a l l r e s u l t s o f g i ven tag
r . t a b l e (” Fru i t s ”) . g e t a l l (” belgium ” , index=” producers ”)

Listing 8: Creation of a multi index (Python)

r . t a b l e (” u s e r s ”) . i n d e x c r e a t e (
” t o t a l v a l u e ” , lambda f r u i t :
f r u i t [”amount”] ∗ f r u i t [” u n i t p r i c e ”])

Listing 9: Creation of an index on an arbitrary ReQL expression (Python)

split the table to evenly distribute them between the number of shards you en-
tered, either via the web console or via the API. [20] All the queries are then
handled and sent automatically to the relevant shard. Sharding is pretty scal-
able on RethinkDB for up to 64 shards on the same table. [18]

Database replication is handled the same way, as you enter a number of
replicas and RethinkDB takes care of what happens under the hood. While you
can change those number anytime and request a re-balance, RethinkDB will not
adapt those numbers on the fly. [20]

2.8 Query execution

Queries in RethinkDB are basically ”transformed into an execution plan that
consists of a stack of internal logical operations”. [13] RethinkDB separates op-
eration nodes that deal with lower-level access like table scan, index ranges and
document lookup, which can determine to which server the query is sent (par-
allelisation), and nodes that deal with higher-level operations like data trans-
formations, mapping, grouping, by stacking them in that order. This explains
why some combinations are allowed for changefeeds and some are not. [15]
A lazy evaluation is done by evaluating the top of the stack first. The top nodes
then ask the node below it for some data recursively, until it has enough to send
a response to the client. [13] The lower nodes are thus rarely executed in their
entirety. This permits fairly complex queries to be executed efficiently.

7

However, some query structures cannot be evaluated lazily or parallelised easily.
While planned, there is currently no tool in RethinkDB to analyse the query
complexity. The documentation advises to reach out and ask for help to the
RethinkDB developers in case of problem. [13]

Write atomicity is assured for any combination of deterministic operations on
a single document. By default, RethinkDB will not allow non-atomic operations
on replace or update. [13]

2.9 ChangeFeeds implementation

It is possible to create a changefeed on nearly every valid query. The database
will send any update on the query in real-time to the application. Changefeed
push notifications are unidirectional and can not guarantee delivery. [15]
The database servers are responsible to handle the changefeeds send the requests
to all corresponding shards, after what they are executed lazily like any normal
query. [13]
All shards share together all updates before sending them back. This creates
a lot of intra-cluster messages in proportion to the number of involved servers.
To reduce this, RethinkDB allows to create what is called a ”proxy node”,
which will centralize all the changefeed-related messages routing and filter the
duplicates. [20]
Some query types will not allow for the creation of changefeeds. For example,
min/max/order by.limit must be called on an existing sorting index (primary
or secondary) to be able to use changefeeds on them. Transformations that do
not allow data to end, such as an order by without a result size limit, cannot
be transformed into a changefeed. Similarly, transformations that consume the
whole feed as .count and .order by cannot come after .change. [15]

2.10 Advanced use of ReQL

2.10.1 Joins

Like many databases, RethinkDB supports table JOIN commands. Like the
rest of the commands, the cluster/shard complexity is hidden by the implemen-
tation. RethinkDB has several versions and ways of doing JOIN. The fastest,
eq join, can be used on indexed fields only, and returns a table of documents
with two fields (left, right) which contain the joined documents. Those two
fields can be fused together with a call to a zip command, but for more control
about which how fields are treated, the map command can be used.
For joining tables on something else than indexed fields, inner join and outer join
can take arbitrary lambda functions to join tables without having to create sec-
ondary indexes. They are however a lot slower in consequence and are generally
not recommended to use.
One-to-many join on indexed fields can also be done by querying for one ”par-
ent” document and merging it with the merge command to a get all query

8

(which is similar to a filter command for indexed fields).
Many-to-many joins on indexed fields can be done by chaining several eq join
together, if the field on which we join first is reused for the second join (as it is
only fast because data will be ordered on that field).
Other operations can be done on the joined sequences via transformation meth-
ods such as map, etc.

2.10.2 Transformations

RethinkDB features a lot of the classical data manipulation functions and allows
to use them in queries to manipulate data.

map can be used on one or more sequences to apply a lambda function to
manually merge or transform the documents in the sequence(s).

order by can be used on one sequence to sort the resulting stream either based
on an index (primary or secondary), or on a ”deterministic” lambda function (no
random or user input), which will be slower and is currently limited to sorting
100.000 documents, as it requires to keep them in memory. It is often used with
a limit statement that ends the sequence after a given number of elements.

union merges two sequences in one longer sequence and can interleave them
based on order if an ordering method is passed. As the manipulated elements
are documents, there is no constraint on the schemes having to match.

There are other manipulation queries such as sample, slice, with fields (to filter
based on fields), etc.

2.10.3 Aggregations

RethinkDB features all the classic aggregation queries. Most will take lambda
functions to aggregate on non-indexed values.

group takes a stream and partitions its documents into multiple groups based
on a field or a function. The result will be a document where each field is a group
value and contains a list of the grouped documents. With the right parameters,
it even allows a document to appear in multiple groups if the grouping value is
an array or values.

ungroup can be used to turn a grouping back into an array of elements. It
is useful when you apply reductions on the groups and want the result in a list
rather than in the fields of one document.

9

reduce transforms a stream into a single value by applying repeatedly the
given function on pair of elements. It can be used along with group and map to
explicitly perform the (group-)map-reduce pattern to aggregate large amount
of data. [19]

fold can apply a function in order on a sequence and maintains a state in an
accumulator. It can either act like a reduce but is guaranteed to work with the
elements in their original order, or it can produce a new sequence by consuming
all the elements and emiting new ones based on the accumulator’s value.

Other classical aggregation queries like count, sum, avg, min, max, distinct
(on a given field) are directly available and function as usual.

2.11 Other features

RethinkDB does feature some basic spatial database functions. It does not
support multiple reference systems, and is limited to sperical longitude/latitude.
[17]
RethinkDB does not feature triggers per-se, but the changefeeds can be used to
do the same work trough the server application.

10

3 Our application

In order to explore the different possibilities offered by RethinkDB, is devised a
simple yet interesting application relying heavily on changefeeds.

3.1 Use case

The application consists of a collaborative drawing game taking place on a grid
of pixels stored in a persistent database. At the beginning of the game, the
database is initially loaded with blank pixels representing the entire game map.
As a pixel corresponds to every possible pair of valid coordinates, an instance
of a 10.000 x 10.000 game map would require the insertion of 100.000.000 blank
pixels in the database before the beginning of the game.

When a user wishes to play, i.e. collaborate in the drawing, he is first asked
to enter the coordinates of the top left corner of his game window. After sub-
mission of valid coordinates, he is assigned a random color and shown a window
containing a grid of 50 x 50 tiles representing the same amount of pixels in the
database. He can then click on any tile present in the game window to fill it with
the color that was assigned to him, thus changed to color or the corresponding
pixel in the database.
As a user is coloring pixels in a section of the game map, any other user whose
game window contains those pixels will see their color change in real-time. No
particular protections of colored pixels having been set up, any user can draw
on any section of the game map without restriction.

Furthermore, it is possible to specify for a client to run in bot mode instead
of user mode. Once valid coordinates are inserted, the client will automatically
follow a random linear path within the game window and bounce on the edges
of the latter. Any pixel on this path will be colored in a random color. This
mode allows for better visualization of the game mechanics and provide a more
interactive testing bed to regular users.
As the focus of the use case was on the immediacy of color updates, no partic-
ular effort was made to easily move the game window (although it can be done
by restarting the client and entering new coordinates) nor provide a complete
account management system.

Figure 1 depicts two regular user’s windows focused on slightly offset coordi-
nates. Two automatic bots had previously filled square areas corresponding to
smaller coordinates than that of the users’ windows. Thus, one of those square
appears only in the top left part of the second user’s window while the second
appears in both users’ windows.

11

Figure 1: View of two game client focused on slightly offset coordinates

Figure 2: Initialization script loading blank pixels in the database

3.2 Practical details

The application is written in Python 3 and makes use of the following non-
default packages: tkinter, rethinkdb. Thus, each of those is required to execute
the different modules, in addition to the server executable.

Along with this report, four modules are provided: main.py, init.py, drop.py
and config.py. The first module contains the entire client application, the second
and third modules serve to manage the database and the required tables, and
the last module allows to configure database parameters and game settings.
Upon execution of the module init.py, the insertion in the database of all pixels
fitting in the configured game map dimensions starts. As this process may take
some time, a progress percentage is provided as shown in Figure 2.

12

3.3 Implementation choices

Once established, a connection is kept open and used for a given type of com-
munication as long as the client is running. Thus, for a regular user’s client, two
connections are established: one for the update queries related to the drawing
of the game map and another to handle the changefeed.
Because opening of a connection takes a significant amount of time, it was not
possible to open and close a connection for every query as it would have induced
non-negligible latency in the rendering of the game map.

Different levels of durability and safety were available for sending queries
to the server. We choose to use soft durability with replies, meaning that we
receive write ACKs before writes are committed to the disk, but we wait for the
server’s ACK before sending the next query. Our experimentations proved this
solution to be the most efficient as a noreply write loop can lead to loss of data
in our case.

As was mentioned earlier, the initialization script provided with the module
init.py proceeds to fill the database with blank pixels when executed. As the
query corresponding to each insertion of one pixel can be precomputed (the di-
mension of the game map are known), individual queries are packed in batches
by groups of 200 and sent together to the server for optimality. [21]

In the database, the documents corresponding to a pixel of the game map
are structured in two fields: coords and value. The coords field being a com-
pound of the X-coordinate and the Y-coordinate of a pixel, we choose it to be
the primary key of the document, thus automatically creating a primary index
on all the data concerned by our queries (there is no query involving the color
of pixels).
Thanks to this design choice, we are able to exploit the primary key by using
the operator between instead of a custom filter for the retrieval of pixels within
a given area of the game map, and a single get operator to update one pixel
based on both coordinates.

Since a single query can take some time to be executed, as for the application
not to lag behind when the user clicks very fast, the pixel color change queries
are bundled into batches when new queries are created while the last one is
still waiting. We used a Python Queue object which is thread-safe to store the
waiting queries as they are created in case of congestion.

13

4 Performances

4.1 Benchmarks

Benchmarks run on our own machines, other people’s benchmarks for which we
could reproduce the results on our machines.

RethinkDB has a report about scaling and performance [10] using for Ya-
hoo Cloud Serving Benchmark (YCSB) [28] [23] which could serve as base to
compare with other databases [7]. However most of the technical report work
on this seems outdated so we didn’t research much further.
Brute write benchmark compared to MongoDB (as both are NoSQL databases
with similar query expressiveness) often put MongoDB on top [8], but this is of-
ten because MongoDB does not send ack by default on writes, while RethinkDB
has four different options and by default uses the slowest (send ack only after
finishing writing, do not ignore server reply). However, in the same comparison,
RethinkDB was shown to require a lot more disk space to hold the same amount
of data.

4.2 Our application under stress

When using queries that filter a specific pixel of the game, a single update
queries would take up to two seconds with the drawing robot when the table
contained a lot of pixels. However, by retooling the filter into a ”get” and fixing
the coordinate pair as the primary key, the robot went back to being able to
insert pixels immediately. This showed us that working with indexes was very
important.

Similarly, asking for a region by doing a filter with four conditions could take
considerable time if the region was a lot smaller than the database (because the
query had to parse each entry). This is not a problem if the database is sparse
in points, but to test the limits of the program we decided that the database
would start filled with white pixels. We fixed this by retooling the four filter
conditions into a ”between” query which works on indexes to isolate the x, then
two additional filter conditions for the y. We went back to having immediate
results. Unfortunately we cannot use two ”between” with different indexes, as it
would not make sense (the data being sorted by one or the other), so increasing
the database’s density in Y would probably make this filter sluggish again.

Creating new connexions is also very time-consuming, sometimes taking five
seconds on average. Hence, we re-wrote all our queries to use a few shared
connections. Different threads would create queries, but one main thread would
maintain the connection and send the queries. To avoid race conditions and
batch queries when necessary, we used a thread-safe python queue to solve the
producer-consumer problem.

In conclusion a lot of RethinkDB’s problems can be traced back to its con-
cistency guarantees which slow down a lot of the writes and the effort it takes to
use indexed values, since the primary indexes are by default on a hash key that

14

is rarely useable by itself, and secondary indexes have to be manually created
and take time to be available (for a small 100 x 100 pixels database, it took
several minutes to create a secondary index on the y value on a slow computer).

15

5 Comparison with other databases

5.1 MongoDB with Meteor.js

Meteor is a JavaScript framework built on top of the NoSQL MongoDB which
features query update streams. The implementation is called ”oplog tailing”,
and is implemented on top of MongoDB’s data replication system, by receiving
all write updates destined to the replicates. [5] This technique is similar to
RethinkDB’s internal broadcast, and scales badly in case of heavy load. [9] [6]
When Meteor cannot follow the oplog anymore, it can automatically switch to
a polling of the diff of the database at an increased interval instead of following
the real-time changes.

5.2 PostgreSQL with listen/notify triggers

It is possible to receive notifications on the changes of a table with listen/notify
triggers in PostgreSQL. [25] Of course, this is much lower level and require more
work to get advanced results both application and server-side, doesn’t take in
account sharding etc. So it has nothing in common with RethinkDB’s ease of
use, but if you can write similar queries, this approach can be several orders of
magnitude more efficient.

5.3 Baquend

Baquend is a NoSQL database-as-service currently still in beta which has real-
time queries whose structure is inspired by RethinkDB. Baquend separates those
queries into resultStream which updates the whole query and eventStream which
sends an event for every database write that changes your result. [1] This al-
lows them to extend the type of queries that can be listened compared to Re-
thinkDB’s changefeed. [9]

5.4 Firebase

Some commentators said that cloud-based real-time databases were the biggest
reason for RethinkDB’s downfall. [24] Database services like Firebase [2] allows
to synchronize documents between applications, thus allowing database modifi-
cations (on a single document) to be pushed in real-time to other users [3], and
are built with scaling of large throughput in mind. [4] In Firebase, while you
cannot listen to the changes on any advanced query, you can listen to changes
on any node of its tree structure. [9] There exist many other databases based
on the same concept.

16

6 Conclusion

In one hand, RethinkDB has several arguments in its favor: it is easy to deploy,
manage and use; it boosts a powerful yet simple and secure query language;
offers a convenient tool for continuous update of query results; provides an easy
interface to shard the database; and most of its complexity is hidden under the
hood.
In the other hand, it has some drawbacks among which the apparition of bot-
tlenecks at proxy nodes for big applications, and higher than average memory
and RAM consumption. In addition, it does not feature an internal automatic
optimization engine and every operation not involving indexes becomes really
slow, thus requiring users to be careful when writing their queries. There is no
integrated way to manage data backups either.
In conclusion, RethinkDB works best when used in quick mid-sized real-time
projects but can get costly on bigger projects due to the extra spending on
proxy nodes required to keep things working. [25]

As for the future, in 2016, RethinkDB’s company filed bankruptcy and all
its code was released. Today, it is an open-source project managed by the
Linux Foundation. [12] About the failure of RethinkDB as a product, its de-
veloper stated that they focused on the wrong metrics: strict data correctness
guarantees, simplicity of interface hiding the complexity of the application, and
consistency in the documentation, query language and drivers, while being late
to the market and not having high performances or a feature. [26] While Re-
thinkDB is a competent database overall, there exist more popular databases
that can efficiently solve the particular problems it addresses.

17

References

[1] Baqend guide: Real-time queries.
https://www.baqend.com/guide-next/topics/realtime/. Accessed:
2017-12-20.

[2] Firebase documentation.
https://firebase.google.com/docs/database/. Accessed: 2017-12-16.

[3] Firebase documentation: Read and write data on the web.
https://firebase.google.com/docs/database/web/read-and-write.
Accessed: 2017-12-20.

[4] Firebase documentation: Realtime database limits.
https://firebase.google.com/docs/database/usage/limits.
Accessed: 2017-12-20.

[5] Meteor documentation: Oplog observer driver.
https://github.com/meteor/docs/blob/version-NEXT/long-form/
oplog-observe-driver.md. Accessed: 2017-12-20.

[6] Meteor github issue: Large number of operations hangs server.
https://github.com/meteor/meteor/issues/2668. Accessed:
2017-12-20.

[7] Mongodb files for yahoo! cloud system benchmark (ycsb).
https://github.com/mongodb-labs/YCSB/tree/master/ycsb-mongodb.
Accessed: 2017-12-16.

[8] Mongodb vs rethinkdb: Benchmarks.
https://www.amon.cx/blog/rethinkdb-reviewed-by-a-mongo-fan/.
Accessed: 2017-12-16.

[9] Real time databases explained: why metero rethinkdb parse and firebase
don’t scale.
https://medium.baqend.com/real-time-databases-explained-why-
meteor-rethinkdb-parse-and-firebase-dont-scale-822ff87d2f87.
Accessed: 2017-12-16.

[10] RethinkDB Blog: rethinkdb 2.1.5 performance & scaling report.
https://rethinkdb.com/docs/2-1-5-performance-report/. Accessed:
2017-12-16.

[11] Rethinkdb blog: Advancing the realtime web.
https://www.rethinkdb.com/blog/realtime-web/. Accessed:
2017-12-20.

[12] Rethinkdb blog: Rethinkdb joins the linux foundation. https:
//www.rethinkdb.com/blog/rethinkdb-joins-linux-foundation/.
Accessed: 2017-12-21.

18

[13] Rethinkdb documentation: Architecture faq.
https://www.rethinkdb.com/docs/architecture/. Accessed:
2017-12-20.

[14] Rethinkdb documentation: Backing up your data.
https://rethinkdb.com/docs/backup/. Accessed: 2017-12-20.

[15] RethinkDB Documentation changefeeds in python.
https://www.rethinkdb.com/docs/changefeeds/python/. Accessed:
2017-12-16.

[16] Rethinkdb documentation: Consistency guarantees.
https://rethinkdb.com/docs/consistency/. Accessed: 2017-12-20.

[17] Rethinkdb documentation: Geospatial queries.
https://www.rethinkdb.com/docs/geo-support/python/. Accessed:
2017-12-20.

[18] Rethinkdb documentation: Limitations in rethinkdb.
https://rethinkdb.com/limitations/. Accessed: 2017-12-20.

[19] Rethinkdb documentation: Map-reduce in rethinkdb.
https://rethinkdb.com/docs/map-reduce/. Accessed: 2017-12-20.

[20] Rethinkdb documentation: Scaling, sharding and replication.
https://www.rethinkdb.com/docs/sharding-and-replication/.
Accessed: 2017-12-20.

[21] Rethinkdb documentation: Troubleshooting common rethinkdb problems.
https://rethinkdb.com/docs/troubleshooting/. Accessed:
2017-12-21.

[22] Rethinkdb documentation: Using secondary indexes in rethinkdb.
https://www.rethinkdb.com/docs/secondary-indexes/python/.
Accessed: 2017-12-20.

[23] Rethinkdb files for yahoo! cloud serving benchmark.
https://github.com/rethinkdb/ycsb. Accessed: 2017-12-16.

[24] Rethinkdb is dead, but not because mongodb. instead, the cloud is to
blame. https://www.techrepublic.com/article/rethinkdb-is-dead-
and-mongodb-isnt-what-killed-it/. Accessed: 2017-12-20.

[25] Rethinkdb versus postgresql: my personal experience. https:
//blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html.
Accessed: 2017-12-16.

[26] Rethinkdb: why we failed (post-mortem).
http://www.defmacro.org/2017/01/18/why-rethinkdb-failed.html.
Accessed: 2017-12-20.

19

[27] What is a document store database?
http://database.guide/what-is-a-document-store-database/7.
Accessed: 2017-12-16.

[28] Yahoo cloud service benchmark.
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark.
Accessed: 2017-12-16.

20

