UNIVERSITE LIBRE DE BRUXELLES

B

INFO-H-415 Advanced Databases
Key-value stores and Redis

Fatemeh Shafiee 000454718
Raisa Uku 000456485

December 2017

Contents
1 Introduction

2 NoSQL Databases

2.1 Imtroduction to NoSQL Databases
2.2 Key-Value Databases e
3 Redis
3.1 Architecture e
3.2 Keys Commands e
3.3 Redis Data Structures
3.3.1 Stringso
3.3.2 Integers and Floats
3.3.3 Hashes e
3.3.4 Listso e
3.3.5 Sets . .. e
3.3.6 Sorted Sets
3.4 CompariSOI v v vt e e e e e e e e e
3.5 Popular Redis uses L
3.6 Advantages and Disadvantages of Redis
4 Practical Application
4.1 Development Environmento
4.2 DataSet e
4.3 Datastructurein Redis Lo
4.3 1 USEIS . . v v vt e
432 Tweets.o e e
4.3.3 Followers and Following oo
4.3.4 Timeline (Home) o
4.3.5 Tweet Words
4.4 Tablesin MySQL o
4.5 Experiment and Queries e
4.5.1 Query 1: Registrationo
4.5.2 Query 2: Posta Tweet
4.5.3 Query 3: Retrieve the Followers for auser
4.5.4 Query 4: Retrieve the Followings forauser
4.5.5 Query 5: Follow auser
4.5.6 Query 6: Unfollow auser i
4.5.7 Query 7: Retrieve all Users
4.5.8 Query 8: Retrieve all tweets forauser L.
4.5.9 Query 9: Search tweets L
4.5.10 Query 10: Search USers e
4.5.11 Query 11 L e
4.5.12 Query 12 . . . oL e
4.5.13 Query 13 . . . o

5 Redis-Benchmark Utility
6 Conclusion
7 Appendix: Redis Commands in Redis-cli and PHP-Redis

References

D Lt

—
(e BiNe NN REN =)

11
12
13
13
15
16
16

17
17
17
18
18
19
19
21
21
22
23
23
23
24
24
24
25
25
25
26
26
26
27
27

28

29

30

36

List of Figures

0O U i Wi =

Redis-server and Redis-cli 7
DBMS popularity broken down by database model 15
DBMS ranking according to their popularity in December 2017 15
DBMS ranking according to their popularity 0oL 16
A user HASH structure 18
User HASH in Redis Desktop Manager 18
A tweet HASH structure o . L o 19
Tweet HASH in Redis Desktop Manager, 19
Following and Follower SORTED SETs structure 19
Followers SORTED SET in Redis Desktop Manager 20
Followings SORTED SET in Redis Desktop Manager 20
Home SORTED SET structure ittt 21
Home SORTED SET in Redis Desktop Manager 21
Tweet Word SET structure 21
Tweet Word SET in Redis Desktop Manager 22
Tables in MySQL oo o 22
MySQL Database 23
Redis-Benchmark Utility results for 1000000 commands 29
SET and GET commands for String Data type in Redis-cli 30
SET and GET commands for String Data type in PHP-Redis 30
String Data type in Redis Desktop Manager 30
HMSET and HGETALL commands for Hash Data type in Redis-cli 31
HSET and HGET commands for Hash Data type in Redis-cli 31
HSET and HGET commands for Hash Data type in PHP-Redis 32
Hash Data type in Redis Desktop Manager 32
LPUSH and LRANGE commands for List Data type in PHP-Redis 32
List Data type in Redis Desktop Manager 33
LPUSH and LRANGE commands for List Data type in Redis-cli 33
SADD and SMEMBERS commands for Set Data type in Redis-cli 34
SADD and SMEMBERS commands for Set Data type in PHP-Redis 34
Set Data type in Redis Desktop Manager, 34
ZADD and ZRANGEBYSCORE commands for Sorted Set Data type in Redis-cli 35
ZADD and ZRANGEBYSCORE commands for Sorted Set Data type in PHP-Redis . . . 35
Sorted Set Data type in Redis Desktop Manager 35

List of Tables

0O U i Wi =

Types of NoSQL databases 6
RDB and AOF Persistence Options vt 8
Commands for Set Data Type e 9
Commands for String Data Type 10
Commands for Integer and Float Data Type 11
Commands for Hash Data Type 11
Commands for List Data Type 12
Commands for Set Data Type e 13
Commands for Sorted Set Data Type 14
Registration - Time Results (second) L oL 23
Post a Tweet - Time Results (second) 24
Retrieve Followers - Time Results (second) 24
Retrieve Followings - Time Results (second) 24
Follow a user - Time Results (second) 25
Unfollow a user - Time Results (second) 25
Retrieve all Users - Time Results (second) 25
Retrieve all tweets for a user - Time Results (second) 25
Retrieve all tweets containing a keyword - Time Results (second) 26
Retrieve all tweets containing a keyword - Time Results (second) 26
Query 11 - Time Results (second) o 26
Query 12 - Time Results (second) L 27
Query 13 - Time Results (second) L 27
Redis benchmark options L L 28

1 Introduction

Relational or SQL databases have been the main mechanism for storing, managing and retrieving data
for decades. For a relational database to be effective, the data has to be in transactional mode, consistent
and structured. be structured in a very organized way in order to be stored (Das, 2015, p. 4).Some exam-
ples of these databases are MySQL, Oracle, IMB DB2, MS SQL Server, PostgreSQL and Microsoft Azure.

On the other hand, if the amount of provided data is huge, unstructured and it has not a fixed schema
(such as articles, photos, social media data, videos, etc.), a relational database can not store, manage,
retrieve or analyze all of this data and the result will be a complicated data model to store simple data.
NoSQL databases, which offer ease of access and much greater flexibility than relational databases can
deal with massive amounts of unstructured data. Exponentially increase in the amount of data, which
leads to the era of big data is the real NoSQL motivator, as can do things that traditional relational
databases cannot.

The purpose of this report is to introduce Redis which is a key-value NoSQL database, its use cases,
data types, supported languages and compare its performance with a traditional relational database. A
Twitter-like social network application has been implemented in order to compare Redis as a key-value
store to a relational database, MySQL.

2 NoSQL Databases

2.1 Introduction to NoSQL Databases

NoSQL which stands for “NotOnlySQL”, is a term that defines an approach to design non-relational
databases and work with large sets of distributed data. These databases are more flexible as they do
not rely on predefined structures such as tables, columns or rows to organize and retrieve data. When
comparing relational databases and NoSQL databases, it can be concluded that NoSQL databases are
more scalable and provide flexible data modeling, higher availability and performance. Therefore, NoSQL
databases are getting popular in big data management and analysis since less organized data need to be
stored in an efficient way.

NoSQL databases are sometimes referred to as cloud databases, non-relational databases or Big Data
databases. These databases have provided a competitive advantage in many industries that are dealing
with huge amount of data and also in modern business applications.

There are four different varieties of NoSQL databases with their own specific attributes:

Key-value stores: Key-value databases implement a data model that pairs a unique key with an
associated value. Every value stored in the database has a key which can be used to search for values.
These values can be text, video, JSON, document, etc. Key-value databases are extremely scalable for
session management and caching in web applications such as social networking, gaming, media sharing
and Q&A portals. Some popular choices of these stores are Riak, Aerospike, Berkeley DB, MemchacheDB
and Redis (Das, 2015, p. 15-16).

Document stores: These databases are designed to store and retrieve document-oriented informa-
tion or data that do not have a fixed schema, also known as semi-structured data, typically in BSON|,
JSON or XML format. Document stores are also called “Document databases” and are used for content
management and mobile application data handling. These NoSQL databases are based on the idea of
key-value stores which means each document is assigned a unique key and contains complex data. This
assigned key is used to retrieve the document. Examples of document stores include MongoDB, Couch-
base Server, CouchDB , DocumentDB, MarkLogic, Terrastore, OrientDB and RavenDB.

Graph stores: Graph databases are based on graph theory. They store data as nodes (vertices) and
relations (edges or directed links). Both, nodes and relations can have properties associated with them.
The structure of these databases provides interesting patterns between the nodes. Graph databases are
mostly used in systems such as CRM or reservation systems where mapping the relationships is required.
Some of the popular graph stores are AllegroGraph, IBM Graph, Neo4j and Titan.

Wide-column stores: These databases store data in tables but they are designed with the philoso-
phy of storing data in columns rather than rows. Wide-column stores can organize and retrieve large
data volumes faster than conventional relational databases and in a very cost-effective way. This type of
NoSQL database is used for recommendation engines, catalogs, fraud detection and other types of data
processing. Google BigTable, Amazon DynamoDB, Cassandra, HBase, BigTable and HyperTable are
examples of wide-column stores (Das, 2015, p. 11-12).

Types Performance Scalability Flexibility Complexity
Key-Value Store high high high none
Column Store high high moderate low
Document high variable(hight) high low

Graph Database variable variable high hight

Table 1: Types of NoSQL databases
(Woudehouse, 2016)

2.2 Key-Value Databases

A Key-value store is designed for storing, retrieving, and managing data in form of key and value pairs.
Therefore, data is represented as a collection of key-value pairs. The key in a each pair must be unique to
allow a user to access the value associated with that key. The value can be anything, it might be a long
or short text, a number, an image, a programming or markup code, etc. For instance, for a search engine,
data is stored in a form to associate each keyword (key) to a list of documents (values) containing that
keyword. A key-value database can be used in various domains, such as (What is a Key-Value Database?,
2016):

Ecommerce: shopping cart contents, product categories, product details, product reviews.

General Web/Computers: user profiles, session information, article/blog comments, Emails, sta-
tus messages.

Networking/Data Maintenance: telecom directories, Internet Protocol (IP) forwarding tables, Data
deduplication.

3 Redis

Redis (REmote DIctionary Server, written by Salvatore Sanfilippo in 2006) is a NoSQL, advanced and
popular key-value data store. It support powerful data structures, such as Strings, Lists, Sets, Sorted
Sets and Hashes and it is sometimes called: the data structure server. Key must be a String, but
value can be any of the data types mentioned. Given that interesting set of data structures, Redis is
known as Swiss Army knife of data type storage (Silva & Tavares, 2015).

Furthermore, Redis is an in-memory database, meaning that all data by default are saved in the pri-
mary memory (RAM) in form of key-value pairs. This makes read and write operations for Redis very
fast compared to Relational Databases. On the other hand, the limitation in size of the Primary Mem-
ory, limits the Redis data-store size, forcing it to store only data that needs to be accessed, modified and
inserted very rapidly.

It is not very common to use Redis as as a standalone database but sometimes it can be considered
as the main primary database in some applications. In order to improve the performance, Redis is usu-
ally used along with a relational database (Carlson, 2013) or even with other non-relational database
such as MongoDB for caching (Cummings, Eftekhary, & House, 2015). It can be concluded that it is
not necessary to switch to Redis in order to take advantage of this key-value store, but rather use it in
existing environments to do things that were not possible before or to fix existing problems.

According to redis.io, there are multiple factors having direct consequences on Redis performance. Some
of these factors are included in the following (How fast is Redis?, 2017):

Network bandwidth and latency: It is a good practice to use the ping program to quickly check the
latency between the client and server hosts is normal. Regarding the bandwidth, it is generally useful to
estimate the throughput in Gbit/s and compare it to the theoretical bandwidth of the network.

CPU: Being single-threaded, Redis favors fast CPUs with large caches and not many cores. At this
game, Intel CPUs are currently the winners. When client and server run on the same box, the CPU is
the limiting factor with redis-benchmark.

Virtual Machine: Redis runs slower on a VM compared to running without virtualization using the
same hardware. If there is a chance to run Redis on a physical machine this is preferred. However this
does not mean that Redis is slow in virtualized environments.

Ethernet network : When an ethernet network is used to access Redis, aggregating commands us-
ing pipelining is especially efficient when the size of the data is kept under the ethernet packet size
(about 1500 bytes). Actually, processing 10 bytes, 100 bytes, or 1000 bytes queries almost result in the
same throughput.

Number of client connections : Every operation is sent to Redis within the context of a connection
from the client application. The maximum number of concurrent connections to Redis server is always
limited, whether by operating system, Redis’ configuration, or the service provider’s plan. Therefore, hav-
ing enough free resources will allow the connection of new application clients or an administrative session.

3.1 Architecture

The main components of Redis architecture are Redis Server and Client. Redis-server is the Redis data
store and it forms the most significant part of its architecture. It is responsible for storing data and
serving to the client. Redis-cli is a command-line interface that can perform any Redis command.
Figure 1 below illustrates how Redis-server is started in our Windows machine. By default, it wait for
connections from the client at port 6379.

51 C\Users\Raisa\Downloads\Redis-x64-2.2.100\redis-server.exe - o x

Po
PID: 11372

http://redis.io (c s reserved.

Figure 1: Redis-server and Redis-cli

A way for datastore persistence is needed as Redis stores everything in Primary Memory, which is
volatile. Redis provides two main persistence options: RDB persistence and AOF persistence (Redis
Documentation, 2017). It is possible to disable persistence at all, if we are not interested for data to exist
after the server stops running. Furthermore, Redis offers the opportunity to combine both this options
in the same instance. The RDB persistence performs point-in-time snapshots of the dataset at specified
intervals and save them on disk while AOF persistence logs every write operation received by the server,
and play it again at server startup, reconstructing the original dataset. The trade-off that exists between
RDB and AOF, is used to decide which option is appropriate in a specific situation. Table below lists

the advantages and disadvantages of each option:

Persistence Advantages Disadvantages
Option
RDB 1. Very compact single-file point-in- 1. RDB is NOT good, when it is comes
time representation of the Redis data. to minimizing the chance of data loss
Perfect for backups as it allows you to (in case Redis stops working without a
easily restore different versions of the correct shutdown). Data that are set
data set in case of disasters. after the last snapshot, can be lost.
2. Very good for disaster recovery (a 2. As RDB needs to fork() often, this
single compact file can be transferred process can be time consuming if the
to far data centers) dataset is big. This may cause Redis to
3. Compared to AOF it allows faster stop serving clients (for some millisec-
restarts with big datasets. ond to one second). AOF also needs to
fork() but in the case of AOF, it is pos-
sible to tune how often to rewrite the
logs.
AOF 1. Different fsync policies (no fsync 1. For the same dataset AOF files are

at all, fsync every second, fsync at ev-
ery query) offered by AOF makes Redis
more durable. Using the default policy
(second one) only one second of writes

usually bigger compared to RDB files,
as it writes the disk for every operation.
2. Depending on the fsync policy used,
AOF can be slower than RDB

will be lost.

2. There are no problems in case of
a power outage, as AOF is an append
only log. The redis-check-aof tool is
used to fix any problem of this kind.
Furthermore, when the AOF file gets
too big, Redis is able to automatically
rewrite it in background.

3. As AOF contains a log of all
the performed operations one after the
other, it is possible to export AOF file
and remove the latest command (ex.
FLUSHALL command).

Table 2: RDB and AOF Persistence Options

Using a model with unified AOF and RDB into a single persistence model is recommended and this
is where Redis foundation aims to end up in the future. (Redis Documentation, 2017)
As Redis does not provide any mechanism for datastore backup and recovery, the data will be lost in case
of any hard disk or other hardware failures. Therefore, by using Redis in a Replicated Environment
(with Master Server and Slave Servers) it is possible to handle this problem. All the Slave Servers will
contains the same data as the Master Server. The Redis installation will continue working if a slave fails.
Whenever a slave restart working, the master automatically updates the slave with the new data. In case
of a write operation, the master replicates all the new data to all the slaves, whereas when read or sort
operations occurs, master distributes them to the slaves. (Redis Documentation, 2017)
Furthermore, to take the advantage of storing more data and to be used for highly-available and scal-
able environments, Redis Cluster provides the opportunity to run a Redis installation where data is
automatically shared across multiple nodes. Each node is a Redis Server configured as a cluster node.
In addition, even with Redis Cluster, we can rely on replication to avoid losing the data due to disk
crashes. To implement this, each Redis node is converted to a Master Server and every master we keep
a slave(Redis Documentation, 2017) (Das, 2015, p. 251-260). Persistence is needed in all the above
mentioned situations.

3.2 Keys Commands

In Table 3, a list of some basic commands related to keys is illustrated (Redis Documentation, 2017).

Command Description

DEL key This command deletes the key, if it exists

DUMP key This command returns a serialized version of the
value stored at the specified key

EXISTS key This command checks whether the key exists or not

EXPIRE key (second)

EXPIREAT key times-
tamp

PEXPIRE key millisec-
onds

KEYS pattern
MOVE key db
PERSIST key

PTTL key

TTL key

RANDOMKEY
RENAME key newkey
RENAMENX key newkey

TYPE key

Sets the expiry of the key after the specified time

Sets the expiry of the key after the specified time.
Here time is in Unix timestamp format

Sets the expiry of the key in Unix timestamp speci-
fied as milliseconds

Finds all keys matching the specified pattern
Moves a key to another database
Removes the expiration from the key

Gets the remaining time in keys expiry in millisec-
onds

Gets the remaining time in keys expiry
Returns a random key from Redis

Changes the key name

Renames the key, if a new key doesn’t exist

Returns the data type of the value stored in the key

Table 3: Commands for Set Data Type

3.3 Redis Data Structures

Redis, as a Data Structure Server, supports a variety of in- build data structures, providing in this way
the users with diverse mechanisms to arrange their data. This makes Redis more than just key-value
store and differentiate it from other key-value NoSQL databases. Redis approach consist on providing
specific data structures for specific problems and the supported data structures are: Strings, Lists, Sets,
Sorted Sets and Hashes (Das, 2015, p. 37-68) (Silva & Tavares, 2015, p. 27-54).

3.3.1 Strings

The basic data type in Redis are Strings. In Redis strings are called Simple Dynamic String (SDS).
Despite the name, strings in Redis can be considered as a byte array (with maximum size 512 MB) that
can hold not only strings but also integers, bitmap, image files and serializable objects. An in-build
mechanism is used by Redis to detect the type of data stored in these byte arrays. Typical uses of Redis
strings are: to store the IDs of objects, e.g. session IDs or as atomic counters. Table.4 shows the main
commands used in Redis for Strings, categorized on three main groups:

Commands Command Name Description
Group
Setter and getter GET Gets the value for a key
commands used to
set or get values in
Redis
SET key Sets a value against a key
SETNX key Set a value against a key only if
a key does not exist. Otherwise
no overwrite is done
GETSET key Gets the old value and sets a new

Data clean com-
mands used for
managing the life
cycle of a wvalue.
(By default, the
values do not have
an expiry time)

Utility commands

MGET keyl key

MSET key

MSETNX

SET PX/EX

SETEX

APPEND

STRLEN

SETRANGE

GETRANGE

value

Gets all the corresponding values
of the keys

Sets all the corresponding values
of the keys

Sets all the corresponding values
of the keys, if all the keys don‘t
exist. If one exists, then no val-
ues are set

Removes the values and the key
gets expired after expiry time in
milliseconds.

Removes the values and the key
gets expired after expiry time in
seconds.

Appends to the existing value or
sets the value if it does not exist

Returns the length of the value
stored as string

Overwrites the string at the
given offset

SGets the substring value from
the given offsets

Table 4: Commands for String Data Type

3.3.2 Integers and Floats

For integers and floats the main commands of the category “Setters and getters” and “Data clean” are
the same with the above commands for Strings. Whereas, the Utility Commands used to manipulate
integers and floats are as follows in Table.5 :

10

Commands Command Name Description

Group
Utility commands APPEND Concatenates the existing inte-
ger with a new integer
DECR Decrement the value by one
DECRBY Decrement the value by a given
value
INCR Increment the value by one
INCRBY Increment the value by a given
value
INCRBYFLOAT Increment the value by a given
floating value
Table 5: Commands for Integer and Float Data Type
3.3.3 Hashes

Hashes data structure in Redis are used to store a collection of fields associated with their values and
map this against a key. Hashes can be used for storing data for user profiles.

Commands Command Name Description
Group
Setter and getter HGET/HMGETS Gets the value of a field /fields for
commands a key
HGETALL Gets all the values and the fields
for a key
HSET/HMSETS Sets the value of a field /fields for
a key
HVALS Gets all the values in the hash for
the Key
HSETSNX Sets the value of a field for a key,
if the field does not exist
HKEYS Gets all the fields in the Hash for
the Key
Data clean com- HDEL Deletes the fields foe a Key
mands
Utility commands HEXISTS Checks for the existence of a field
for a key
HINCRBY/ HINCR- Increments the
BYFLOAT value(integer/float) of a field for
a key

Table 6: Commands for Hash Data Type

11

3.3.4 Lists

Lists in Redis are implemented as a linked list, as they are designed to have a faster write performance
then read performance. Hence, an element can be added on the list form the head or tail, but the per-
formance for accessing an element can degrade if the number of elements in the list is high. One of the
cases they are used is for log messages. Table.7 shows the main commands used for lists. Commands
that start with L are interpreted to be executed from the Left or Head of the List. Otherwise, they are

interpreted to be executed from the Right or the tail of the list (when they start by R).

Commands
Group

Command Name

Description

Setter and getter
commands

Data clean com-
mands

Utility commands

LPUSH/ RPUSH

LPUSHX /RPUSH

LINSERT

LSET

LRANGE

LTRIM

RPOP

LREM

LPOP

LINDEX

LLEN

Add the values to a list (from the
left /right of the list)

Add the values to a list, if the
key exists

Inserts a value in the list after
the pivot position

Sets the value of an element in
a list based on the index men-
tioned

Gets the sub list of elements
based on he start index and the

end index

Deletes the elements outside the
range specified

Removes the last element

Removes the element at the in-
dex point specified

Removes the first element of the
list

Gets the element from the list
based on index

Gets the length of the list

Table 7: Commands for List Data Type

12

3.3.5 Sets

Sets in Redis represent an unordered collection of elements. Duplicate values are not allowed, meaning
that the values in sets are unique. Unlike Lists, they show constant timing for adding, deleting and
checking the existence of an element. Sets are used more for analytical purposes: for example how many
people browse a product in an e-commerce website and how many purchase that product. The main

commands used for Sets are:

Commands
Group

Command Name

Description

Setter and getter
commands

Data clean com-
mands

Utility commands

SADD

SPOP

SREM

SCARD

SDIFF

SDIFFSTORE

SINTER

SINTERSTORE

SISMEMBER

SMOVE

SRANDMEMBER

SUNION

SUNIONSTORE

ADD one or more element to the
Set

Removes and returns a random
element from the set

Removes and returns the speci-
fied element from the set

Gets the number of elements in
a Set

Gets the list of elements from the
first set after substracting its ele-
ments from the other mentioned
sets

Similar with SDIFF, but here the
result is stored in a mentioned set

Gets the common elements in all
the sets mentioned

Similar with SINTER, but here
the result is stored in a men-
tioned set

Finds if the value is a member of
the set

Moves members from one set to
another set

Gets one or multiple members
form the set

Adds multiple sets

Similar with SUNION, but here
the result is stored in a set

3.3.6 Sorted Sets

Unlike the Sets, Redis Sorted Sets have the values sorted on the basics of an integer of float value called
element score. Like Sets each element is unique and duplicate values are not allowed and they are used

Table 8: Commands for Set Data Type

more for analytics purposes. The main commands used for Sets are:

13

Commands
Group

Command Name

Description

Setter and getter
commands

Data
mands

clean com-

Utility commands

ZADD

ZRANGE

ZRANGEBYSCORE

ZREVRANGEBYSCORE

ZREVRANK

ZREVRANGE

ZREM

ZREMRANGEBYRANK

ZREMRENGEBYSCORE

ZCARD

ZCOUNT

SZINCRBY

ZINTERSCORE

ZRANK

ZSCORE

ZUNIONSCORE

Adds or updates one or more
members in a Sorted Set

Gets the specified range in a
Sorted Set

Gets elements from the Sorted
Sets within the range by score
that is given

Gets the elements from the
Sorted Sets within the score
given

Returns the rank of the members
in a Sorted Set

Returns the specified range of el-
ements in the Sorted Set

Removes the specified elements
in the Sorted Set

Removes the members in a
Sorted Set within the given in-
dexes

Removes the members in a
Sorted Set within the given
scores

Gets the number of members in
a Sorted Set

Gets the number of members in
a Sorted Set within the score
boundaries

Increases the score of an element
in the Sorted Set

Calculate the common elements
in the Sorted Sets given by the
specified keys, and store the re-
sults in a destination sorted set

Gets the index of the element in
a Sorted Set

Returns the score of the member
Computes the union of keys in a

given sorted sets and stores the
results in another sorted set

Table 9: Commands for Sorted Set Data Type

14

3.4 Comparison

In this section, Redis is compared to other database management systems according to DB-Engines
Ranking. This website publishes monthly rankings of database management systems according to their
popularity.
DB-Engines lists 339 different database management systems, which are classified according to their
database model (relational DBMS, key-value stores etc.). In the following pie chart,the number of sys-
tems in each category is illustrated. According to this chart, key-value stores are the second popular
database management systems (DB Engine, 2017).

Wide column stores: 10

Time Series DBMS: 23

Search engines: 17

Relational DBMS: 138

\

© 2017, DB-Engines.com

Figure 2: DBMS popularity broken down by database model

{ Content stores: 2

Event Stores: 2

Object oriented DBMS: 17

RDF stores: 18

Document stores: 44

Graph DBMS: 27

Multivalue DBMS: 10

Native XML DBMS: 8

According to DB-Engines Ranking, Redis is the most popular key-value stores among all key-value
stores. Also it has the ninth rank in comparison to other DBMS technologies which are mostly rela-
tional databases.

Score (logarithmic scale)

2k

400

200

100

40

20

April 2013
®] © Microsoft Access: 161.396

2013

DB-Engines Ranking

© December 2017, DB-Engines.com

2014 2015

2016

2017

-8 Oracle

-+ MySQL
Microsoft SQL Server
PostgreSQL

=% MongoDB

-8 DB2
Microsoft Access

- Cassandra
Elasticsearch
-& SQLite
=+~ Teradata
Solr
SAP Adaptive Server
-+ Splunk

1/14W

Figure 3: DBMS ranking according to their popularity in December 2017

15

339 systems in ranking, December 2017

Rank Score
Dec Nov Dec DBMS Database Model Dec Nov Dec
2017 2017 2016 2017 2017 2016
1, 1. 1. Oracle @ Relational DBMS 1341.54 -18.51 -62.86
2. 2 2 MySQL 3 Relational DBMS 1318.07 -3.96 -56.34
3. 3; 3. Microsoft SQL Server 3 Relational DBMS 1172.48 -42.59 -54.17
4. 4. 4 PostgreSQL 3 Relational DBMS 385.43 +5.51 +55.41
5 5. 5 MongoDB E3 Document store 330.77 +0.29 +2.09
6. 6. 6. DB2[E Relational DBMS 189.58 -4.48 +5.24
7. 7. a8. Microsoft Access Relational DBMS 125.88 -7.43 +1.18
| 8. 49 49 Redisg Key-value store 123.24 +2.05 +3.34]
9. &8 7. Cassandrafj Wide column store 123.21 -1.00 ~-11.07
10. 10. A 11. Elasticsearch 3 Search engine 119.78 +0.37 +16.51

Figure 4: DBMS ranking according to their popularity

3.5 Popular Redis uses

Redis is a well-established open source project and has been used in production for years by big com-
panies, including Twitter, GitHub, Tumblr, Pinterest, Instagram, Hulu, Flickr, and The New York Times.

Also, Redis is used often for: User Session Data Management, Real time analytics (such as counters,
leader boards, most viewed, highest—lowest ranks), Recommendations (such as purchase or article recom-
mendations based on common profile characteristics), Message queues for workflow and other jobs and
Caching both static and interactive data (Nielsen, 2016).

According to (Redis Labs, 2017) there are several use cases proposed by applying Redis to various types
of data including “Very Large Datasets”, “Geospatial data or location data” and “Time series data”.
Redis can be utilized in : industries (Financial Services, Media and Entertainment, Retail/E-Commerce,
Mobile), Fraud Detection, Personalization (Dynamic Pricing,Custom Advertising, Catalog Recommen-
dation, Credit Risk Analysis, etc.) and Social Apps (Chat, Follow Tracking, Comments, Multi-player
Games, Notifications, Ratings Tracking).

3.6 Advantages and Disadvantages of Redis

Redis is a brilliant solutions for specific application scenarios. When the provided data structures are
used in the appropriate way, Redis will drive to outstanding performance. Mostly, it is used to analyze
and process high-velocity datastore, competing in this way the DBMS that store everything in second
storage and have slow read and write operations.As Redis stores everything in primary memory, it will
offer speed in read and write of data. But it is important that while it is loading the dataset, this one
has to fit comfortably in memory.

Redis has only commands and no support for a query language. Therefore, for coding a stored procedure,
for instance, learning a programming language such as Lua is needed (Seguin, n.d.).Furthermore, Redis
is a single-threaded server which means it is not designed to benefit from multiple CPU cores but most
RDBMS are multi-processed (Oracle, PostgreSQL) or multi-threaded (MySQL, Microsoft SQL Server).In
addition, as mentioned above Redis does not provide any mechanism for backup and recovery, but repli-
cation is used to solve this.

On the other hand, there are several advantages in using Redis. Redis is a data structure server and
supports a wide variety of data types. It is open source and has an active community. Also, Redis
is simple to install and has no dependencies and stores generic data types for any purpose. Moreover,
Redis is easy to get started on a single cheap and free server. It supports good concurrency, low latency,
protocol pipelining, implementing optimistic concurrent patterns, good usability and complexity ratio.

16

4 Practical Application

“Scaling Redis at Twitter” is the name of a great talk that covers the reasons why Twitter specialized
Redis with two new data types that fit their use cases perfectly in order to get the performance they
needed. On the other hand, One of the first examples displayed on Redis’ website is a Twitter-clone
which is called Retwis.

Therefore, we have implemented a Twitter-clone application which mimics the basic design and func-
tionality of the official Twitter application such as registration, follow or unfollow other users, post
tweets, review other users’ tweets and search for a user or tweets.

4.1 Development Environment

Redis can be installed in multiple environments. For development purposes Redis has also support for
Windows Systems, maintained by Microsoft Open Tech group. For developing our application on Redis,
we have installed it in Windows and we have used the open-source Redis DB management tool called:
Redis Desktop Manager. It can be downloaded from: https://redisdesktop.com.

There are Redis clients available for over 30 programming language. We have used a PHP client API to
connect to the Redis server and to develop our application, called PHP-Redis. This API is also can be
downloaded from: https://github.com/phpredis/phpredis.

The machine configuration for running the databases and the application, the version of programming
language, Redis and MySQL are shown in the following:

Operating System: Microsoft Windows 10 / x64-based PC

Memory: 8GB

Cache: 4096MB L3 and 512MB L2

Processor: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, 2904 Mhz, 2 Core(s), 4 Logical Processor(s)

Redis version: 3.2.100
To get the redis version and all other related information, type “INFO” in “redis-cli” command prompt.

PHP Version: 7.1.11
MySQL Version: 10.1.28-MariaDB - mariadb.org binary distribution

4.2 Data Set

Since there are not any suitable dataset for our application and analysis section to compare Redis and
MySQL, we created a dataset with the following properties:

Users: 1000000 users with distinct personal information (first name, last name, gender, email, pass-
word, sign up date, country and number of following, followers and tweets).

Country: A list of all countries.

Tweets: 928222 distinct tweet text which are preprocessed by NLP steps including “Tokenization”
and “Stop words Removal”.

Words: This list contains all important words gained from all tweets after preprocessing steps.

Follow: We assign random number of followers and followings to each user. This list contains 2225000
relationships between the users.

17

4.3 Data structure in Redis

Users and tweets are the two types of objects that hold the most important information in Twitter. A
User object contains basic personal information and the number of followers, following and posted tweets.
In this section, we will explain how to design data structures in Redis, to store and retrieve users and
tweets. In the following, the process of creating the data structures for users are defined.

4.3.1 Users

Users and their information are the main parts of a social networking website such as Twitter. Therefore,
how to design the data structures for these objects are important. We have stored a user’s information in
Redis as a HASH. This information includes basic personal information such as “user id”, “first name”,
“last name”, “email address”, “password”, “gender” and “country” where the user lives. The number
people who are following a user and the user is following them are also stored as “follower” and “following”,
respectively. The number of posted tweets and the date that a user has signed up, are stored as “tweets”
and “sign up Date”. When a new user signs up, a new HASH is created with the following, follower and
tweets count set to zero, a new timestamp for the sign up time, and the required personal information.
A sample HASH that includes this information for an example user in Redis Desktop Manager is shown
in Figure.6.

User:userld

userld
firstName
lastName
gender
countryld
Email
Password
signupDate
tweets
following
follower

Figure 5: A user HASH structure

@ Redis Desktop Manager v.0.8.8.384 — X
~
e user (1000002) Redis_Fatemeh::...::user:10000002 3§
5 user:0
5 user:1 .
HASH: |user:10000002 Size: 11 TTL: -1 Rename © Delete Set TTL
5 user:10
4 user:100 row key value ~ 5 Add row
% user:1000 2 firstName Raisa © Delete row
. user:10000 3 lastName Uku
7 Reload Value
4 user:100000 * gender >
. user:1000000 5 countryld B |
= 6 email raisa.uku@gmail.com
4 user:10000002
100001 7 password 123
5 user: .
8 signupDate 1998-02-27 11:43:12
% user:100002 9 tweets 0 Page of 1
* user:100003 10 following 100000 Set Page
4 user:100004 11 Frllower 10nnNN v
< > & =
% user:100005
“ user:100006 Key: View as: | Plain Text @
% user:100007
% user:100008
% user:100009
% user:10001
4 user:100010 Value: View as: | Plain Text M
% user:100011 [
% user:100012
% user:100013
4 user:100014 N
| (207 Tz T# 1128738 T Connection: Redis_Fatemen > Response received : Array -
= Import / Export 2 . Connect to Redis Server B System log £

Figure 6: User HASH in Redis Desktop Manager

18

4.3.2 Tweets

Tweets are stored inside a HASH. When a tweet is posted, the ID of the user who posted it, text of the
tweet and the date of post are stored. Figure.7 and Figure.8 show the structure of HASH and an example
tweet, respectively.

Tweet:tweetld

tweetld
tweetText
userld
postedDate

Figure 7: A tweet HASH structure

@ Redis Desktop Manager v.0.8.8.384 = X

v [tweet (928222)
o tweet:1
5 tweet:10
© tweet:100
* tweet:1000 row key value < Add row
o tweet:10000 tweetld 10001
5 tweet:100000 tweetText Is it safe for a woman to travel alone in Ja...
. tweet:100001 postedDate 2008-09-07 18:20:28
) 100002 userld 20931 \
© tweet:100003
o tweet:100004
* tweet:100005 Page oil
o tweet:100006 Set Page
" tweet:100007 < . = =
© tweet:100008
 tweet:100009 Key: View as: | Plain Text ki

[tweet:10001

 tweet:100010
5 tweet:100011
© tweet:100012
* tweet:100013 Value: View as: | Plain Text =
o tweet:100014 ‘[

* tweet:100015 2017-12-17 11:58:18 : Connection: Fatemeh-Redis > [runCommand] HLI
. tweet:100016 2017-12-17 11:58:18 : Connection: Fatemeh-Redis > Response received :

. || 2017-12-17 11:58:18 : Connection: Fatemeh-Redis > [runCommand] HSCAN
b tuieet:100017 J 2017-12-17 11:58:18 : Connection: Fatemeh-Redis > Response received :

Fatemeh-Redis::...b0::tweet:10001 3§

HASH: |tweet:10001 Size:4 TTL: -1 Rename | | @ Delete Set TTL

& Delete row

Reload Value

ENNRE I

weet: 10001 ~

2et:10001 0 COUNT 10000

= Import / Export » « Connect to Redis Server B System log 3

Figure 8: Tweet HASH in Redis Desktop Manager

4.3.3 Followers and Following

In order to manage the lists of followers (users who follow a user) and followings (users whom a user
follows), user IDs and following dates are stored in SORTED SET (ZSETs).

When userl starts following user2, the ID of the userl is the key, the ID of the user2 is the value and
the timestamp is considered as the score in the Followings SORTED SET. On the other hand, the ID
of the user2 is the key, the ID of the userl is the value and the timestamp is the score in the Followers
SORTED SET.

In the following figures, the structure of Following and Follower SORTED SETs are shown.

Followers:userld Followings:userld

userld followingDate userld followingDate

Figure 9: Following and Follower SORTED SET'Ss structure

19

@ Redis Desktop Manager v.0.8.8.384

v followers (550001)
[followers:0
+ followers:1
followers: 10

. followers:100

. followers: 1000

i followers: 10000
followers: 100000
» followers: 10000002
» followers:100001
. followers:100002
» followers:100003
_» followers: 100004
» followers: 100005
followers: 100006
2 followers: 100007
+ followers:100008
» followers: 100009
+ followers:10001
followers: 100010
» followers:100011
» followers:100012
» followers:100013
followers: 100014
» followers:100015

ZSET: |followers:0 Size: 499999 TTL: -1 | Rename | [© Delete | | SetTTL |
row value score ~ | == Add row |
947 421245 20000111104324 \ © Delete row |
948 341936 2000011111226 ‘ @ Reload Value \
949 377536 2000011111921

950 184602 2000011112901 |
951 68760 2000011115334

952 86596 2000011120320

953 127953 2000011122455 of 500

954 471494 2000011123245 | =

955 105987 2000011123929 » R

< > e e]

Score:

View as: ‘ Plain Text -

[2UI7-12-14 1138127 : Connection: Redis_Fatemen > Response received : Array

i

= Import / Export =

& Redis Desktop Manager v.0.8.8.384

«» Connect to Redis Server

B System log 3

Figure 10: Followers SORTED SET in Redis Desktop Manager

v followings (550002)

4 followings:0

.+ followings:1

+ followings:10

.+ followings:100

v followings:1000

» followings:10000
followings: 100000
_» followings:1000000
.+ followings: 10000002
» followings:100001
followings: 100002
» followings:100003
followings: 100004
.+ followings: 100005
» followings:100006
.+ followings:100007
» followings:100008
followings: 100009
.+ followings:10001
_» followings:100010
v followings:100011
+ followings:100012
followings:100013
+ followinas:100014

row

AT OO NG R WN =
>

Redis_Fatemeh::

.0::followings:0 3§

ZSET: |followings:0

value
182433
52675
187731
413687
2711
8837
175127
320002
312263
70nA4

score
20000101000942
20000101001540
20000101001611
20000101003130
20000101003624
20000101005535
20000101005748
20000101010446
20000101010807
2000010101178

- X
Size: 499999 TTL: -1 | Rename | | & Delete | | SetTTL |
Al 4~ Add row |
‘ © Delete row |
‘ |4 Reload Value |
of 500
[Set Page
L4 —
> |[[e =]

Score:

Value:

View as: ‘ Plain Text M

i

[2UI7-12-14 11:37:14 : Connection: Redls_Fatemen > Response received : Array

= Import / Export @

«+ Connect to Redis Server

B System log 3

Figure 11: Followings SORTED SET in Redis Desktop Manager

20

4.3.4 Timeline (Home)

When a user logs in, he/she sees all his/her tweets and followings’ tweets on a page that is called home.
For this part, the list of all tweets for a user’s home page is stored in a SORTED SET. In this structure,
the tweet IDs are the SORTED SET members and the timestamps, when the tweets were posted, are the
scores. Figure.12 and Figure.15 show the structure of SORTED SET and an example home, respectively.

@ Redis Desktop Manager v.0.8.8.384

v home (1000002)
~ home:0
5 home:1
© home:10
4 home:100
% home:1000
* home:10000
“ home:100000
© home:1000000
* home:10000002
% home:100001
© home:100002
© home:100003
“ home:100004
“ home:100005
“ home:100006
© home:100007
% home:100008
* home:100009
© home:10001
“ home:100010
© home:100011
4 home:100012
© home:100013
4 home:100014

Home:userld

tweetld

postedDate

Figure 12: Home SORTED SET structure

Size: 2

TTL:

score
20010303022824
20020910180434
20030514225622
20051026210406
20060223171907
20100803064617
20120910052847
20120923082830
20130504144856
IN131013N73105

Ll

-1 Rename | | @ Delete

= Add row
& Delete row
% Reload Value

Set TTL

Page of 1
Set Page

] ®

View as: | Plain Text

~
Fatemeh-Redis::db0::home:0 3§
ZSET: |home:0
row value
1 853006
2 852932
3 943932
4 19497
5 19243
6 943920
7 943856
8 19251
9 19472
1n 10771
<
Score:
Value:
2017-12-17 00:02:48
2017-12-17 00:02:48 :
ol 2
12

Connection
Connection
Connection
9 : Connection

Fatemeh-Redis >
Fatemeh-Redis >

= Import / Export

4+ Connect to Redis Server B System log 1

Figure 13: Home SORTED SET in Redis Desktop Manager

4.3.5 Tweet Words

When a user posts a tweet, some NLP preprocessing steps are applied to the tweet in order to extract
important words. Each word and the tweet ID are stored in “word Set”. This is necessary while a user
is searching for tweets containing specific words.

Word:word

tweetld

Figure 14: Tweet Word SET structure

21

@ Redis Desktop Manager v.0.8.8.384 = X

+ word:unformat

“ word:unforseen

» word:unfortunate

SET: |word:unfriendly Size:2 TTL: -1 Rename © Delete Set TTL
» word:unfortunately
4 word:unfounded row value = Add row
 word:unfreeze 1 307081 & Delete row
+ word:unfriend 2 726962
Reload Value

* word:unfriended

» word:unfriending l

» word:unfriendly
» word:unfriends

» word:unfulfilled Page of 1

+ word:unfulfilling Set Page

= word:unfunny
© >

+ word:unfurled

» word:unfurnished Value: View as: | Plain Text
+ word:ungentlemanly

» word:unglazed

» word:ungrateful
 word:ungrounded
» word:ungrouped
 word:unguided [

+ word:ungy

» word:unhack

+ word:unhackable X
__ | [(Z0T7-1Z-14 114647 Connection: Redis_Fatemen > Response received : Array

= Import / Export © 4+ Connect to Redis Server B System log 3

Figure 15: Tweet Word SET in Redis Desktop Manager

4.4 Tables in MySQL

For the proposed application, five tables have been designed.

users: This table holds the same data as user HASH in Redis, including the personal information of a
user.

tweets: This table contains data related to tweets such as tweet text, posted date and the user ID who
posted it. It is the same as tweet HASH in Redis.

follow: This table holds the users’ IDs as “userld1” and “userld2” which means userl follows user2.
Therefore, all userId2s are the people whom userl follows them and all useridls are those who follows
user2. In addition, the date of following is stores as “followingDate”.

country: In order to run some complex queries, the country of each user is added to the application.
This table holds the name of 210 countries.

words: When a tweet is posted, some NLP (Natural Language Processing) preprocessing steps are
applied to the tweet text such as “Tokenization” and “Stop Words Removal”. The remaining words
which contains important meanings and their associated tweet ID are stored in this table. When a user
starts searching for a tweet, the application uses this table as an index to retrieve related tweets’ IDs and
in the next phase, the text of tweet is found in “tweets” table.

e twitter users ‘1 twitter words
2 userld : int(11) # tweetld : int(20)
& firstName : varchar(30) | | 5 word : varchar(50)

2 lastName : varchar(30) —

£ gender : varchar(10) vES ilerycountny

countryld : int(10) % countryld : inf(10)

5 email : varchar(50) & countryName : varchar(50)
& password : varchar(30) | [& twitter follow

@ signupDate : timestamp | | # userld1 : int(11)

userld2 : int(11)

do fwitter tweets @ followingDate : timestamp
2 tweetld : int(11)

) tweetText : varchar(200)

userld : int(11)

m postedDate : timestamp

Figure 16: Tables in MySQL

22

p h p B CfServer: 127.0.0.1 » @ Database: twitter
SEle &6 ¥ Structure | SQL , Search Query =} Export [« Import ~ Operations = Privileges dﬁ Routines ¥ More
Recent Favorites
= e Filters

= _New . Containing the word:
1‘-, information_schema
1‘-, mysql Table .~ Action Rows & Type Collation Size Overhead
#.. performance_schema [J country ¢ []Browse 4 Structure % Search ¥ Insert §# Empty @ Drop 210 InnoDB latin1_swedish_ci 16 KiB
+_ | phpmyadmin .
o twitter [] follow ¢ | _|Browse s Structure % Search %c Insert i Empty @ Drop -1,197,¢66¢ InnoDB latin1_swedish_ci ~ 47.6 mis

F‘d New [0 tweets | Browse [} Structure % Search % Insert i@ Empty @ Drop ~c0s,9%0 InnoDB latin1_swedish_ci 84.6 miz

T’f ;x)“untry [] users | Browse Iz Structure #% Search ¢ Insert g Empty @ Drop ~1,000,093 InnoDB latin1_swedish_ci ~ 76.6 mis

+ i follow . : = g - -

-Ly tweets [J] words | Browse [Structure % Search 3 Insert g Empty @ Drop ~s,637,145 InnoDB latin1_swedish_ci 202.7 miz

i

T—y users 5 tables Sum ~8,744,102 InnoDB latin1_swedish_ci 411.5 mis 0B

+_r words

Figure 17: MySQL Database

4.5 Experiment and Queries

In this section, we will review all the queries defined in the Twitter-clone application in addition to some
complex queries to compare the performance of Redis and MySQL. We ran each query for FIVE TIMES
to get the average time (the first time is omitted from the calculations). According to the requirements
of each query, We ran all the queries for 1, 1000, 10000, 100000 or 1000000 users.

4.5.1 Query 1: Registration

MySQL: When a new user wants to register, he/she enters personal information. First, the country ID
is retrieved from “country” table. Second, a new row in “users” table is created and all data is inserted.
Redis: A unique user ID is assigned to the user. Then, a new “user HASH” is created. The key of this
HASH is the user ID. The number of followings, followers and tweets are set to zero.

The average time is shown in the following table.

Number of Users MySQL Redis
1 0.0085 0.0015
100 0.2526 0.0489
1000 1.9012 0.5723
10000 3.192 1.4219

Table 10: Registration - Time Results (second)

4.5.2 Query 2: Post a Tweet

When a user logs in, he/she is directed to his/her home page where the user can post tweets.

MySQL: When a tweet is posted, a new row in “tweets” table is created, holding the userld that posted
the tweet. In addition the important words of the tweets are extracted and inserted into “words” table.
Redis: A new “tweet HASH” is created in Redis. The number of tweets for the user is updated in “user
HASH”. The tweet ID is inserted in to “home Sorted Set” of the user and all user’s followers’ “home
SORTED SET”. Finally, the important words of the tweets are extracted and inserted into “words Set”.

23

Number of Tweets MySQL Redis

1 0.0443 0.0074
100 1.3201 0.0472
1000 13.6749 0.3974
10000 23.0933 3.2217

Table 11: Post a Tweet - Time Results (second)

4.5.3 Query 3: Retrieve the Followers for a user

When a user logs in, a list of his/her followings is retrieved.
MySQL: The followers’ IDs and their names are obtained from “follow” and “users” tables.
Redis: Retrieve the required data from “followers Sorted Set” and “user HASH”.

Number of Followers MySQL Redis

1 0.9455 0.000107
100000 4.0059 0.000302
1000000 4.5887 0.000521

Table 12: Retrieve Followers - Time Results (second)

4.5.4 Query 4: Retrieve the Followings for a user

Similar to previous section, a list of user’s followings is retrieved When a user logs in.
MySQL: The followings’ IDs and their names are retrieved from “follow” and “users” tables.
Redis: The required information is obtained from “followings Sorted Set” and “user HASH”.

Number of Followings MySQL Redis

1 0.9487 0.000138
100000 3.9943 0.000561
1000000 4.3693 0.000455

Table 13: Retrieve Followings - Time Results (second)

4.5.5 Query 5: Follow a user

When a user visits other users’ pages, he/she can follow or unfollow them. In this query, we consider to
follow a user.

MySQL: When userl starts following user2, a new row is inserted in “follow” table.

Redis: In Redis, “user HASH” for both users (to update the number of followings for userl and the
number of followers for user2), “followers Sorted Set” for user2, “followings Sorted Set” for userl, and
“home Sorted Set” for userl (to add user2’s tweets to userl’s home page) are updated.

24

Number of Users to Follow MySQL Redis

1 0.0012 0.000413
1000 1.6431 0.1476
10000 15.0036 1.6697

Table 14: Follow a user - Time Results (second)

4.5.6 Query 6: Unfollow a user

MySQL: When userl decides to unfollow user2, the associated row in “follow” table is deleted.

Redis: Similar to previous query, “followers Sorted Set” for user2, “followings Sorted Set” for userl,
“user HASH” for both users and “home Sorted Set” for userl (to delete user2’s tweets from userl’s home
page) are updated.

Number of Users to Unfollow MySQL Redis
1 0.0652 0.000679
1000 0.0619 0.1329
10000 0.5631 1.4668

Table 15: Unfollow a user - Time Results (second)

4.5.7 Query 7: Retrieve all Users

MySQL: In this query, we retrieve all user’s first names, last names and user IDs from “users” table.
Redis: To retrieve each user’s personal information, all “user HASH” were scanned.

Number of Users MySQL Redis

1000000 0.5964 0.000108

Table 16: Retrieve all Users - Time Results (second)

4.5.8 Query 8: Retrieve all tweets for a user

In order to perform this query, we created a user with 900000 tweets.
MySQL: These tweets are retrieved from “tweets” and “users” tables.

Redis: Similar to previous query, all “tweet HASH” were scanned and the users’ names retrieved from
“user HASH”

Number of Tweets MySQL Redis

900000 3.8453 0.000126

Table 17: Retrieve all tweets for a user - Time Results (second)

25

4.5.9 Query 9: Search tweets

In this query, we have considered that a user searches for tweets containing a keyword.

MySQL: We used the “Full Text Search” property in MySQL.

Redis: We have also created an index for the list of words. Therefore, we defined “word SET” that each
word is a key and the tweet IDs containing that word are the values. The tweet texts are retrieved from
“tweet HASH”.

As it is shown in the table, MySQL can be as fast as Redis when it uses “Full Text Search” property.

Number of Tweets MySQL (Full Text Search) Redis

928222 0.000297 0.000275

Table 18: Retrieve all tweets containing a keyword - Time Results (second)

4.5.10 Query 10: Search users

In this query, a user can look for a specific person.

MySQL: We did not use “Text Search” property in MySQL.

Redis: We have used a SET as an index for “user HASH”. This index uses the names of users as key
and their IDs as values.

Number of Users MySQL Redis

1000000 0.3551 0.000258

Table 19: Retrieve all tweets containing a keyword - Time Results (second)

CONCLUSION for QUERY 9 AND 10 : It can be concluded that MySQL can perform as well
as Redis when its“Text Search” is used.

4.5.11 Query 11

Find a user’s followers who started following the user after his/her (user’s) first tweet.

MySQL: For this query three tables,“users”, “follow” and “tweets” are joined to extract the target
followers for the defined user.

Redis: In the first step, we examine that the user have posted any tweets. If he/she has posted tweets,
the posted date of his/her first tweet is retrieved from “tweet HASH”. Then, the required followers’ IDs
are obtained from “followers Sorted Set”. Finally their names are extracted from the associated “user
HASH”.

MySQL Redis

2.7501 0.001175

Table 20: Query 11 - Time Results (second)

26

4.5.12 Query 12

Find tweets including a word that are posted from 2003 to 2010 by users who joined twitter
in 2000.

MySQL: To answer this query three tables, “users”, “tweets” and “words” are joined to find the re-
quired tweets.

Redis: First, all the tweet IDs that contains the keyword are retrieved. Then, the related “tweet HASH”
for each tweet is examined to check whether it was posted during the specified period. Finally, the user
IDs and the names who posted the tweets are found.

MySQL Redis

3.3909 0.00544

Table 21: Query 12 - Time Results (second)

4.5.13 Query 13

Modify the male users’ countries to Belgium who has more than 10 followers and 10 fol-
lowings. (While running this query, 500000 records among 1000000 records were updated.)

MySQL: For this query three tables,“users”, “country” and “follow” are joined to update the target
users’ countries.
Redis: First, all male users are extracted from “user HASH”. Then, the number of followins and follow-
ers for each user is examined. Finally, the country value in “user HASH” is changed to Belgium for the
candidate users.

MySQL Redis

26.7254 3.8437

Table 22: Query 13 - Time Results (second)

27

5 Redis-Benchmark Utility

Redis includes the redis-benchmark utility that simulates running commands done by N clients at the
same time sending M total queries. Remember that Redis-benchmark utility is a quick and useful way
to evaluate the performance of a Redis instance on a given hardware(How fast is Redis?, 2017).

The basic syntax of Redis benchmark is as follows:

redis-benchmark [option] [option value]

In table.23 a list of available options in Redis benchmark is provided

Option Description Default Value
-h Specifies server host name 127.0.0.1
-p Specifies server port 6379
-s Specifies server socket
-a Specifies password for Redis
-c Specifies the number of parallel connections 50
-n Specifies the total number of requests 10000
-d Specifies data size of SET/GET value in bytes 2
—dbnum SELECT the specified db number 0
-k 1=keep alive, O=reconnect 1
-r Use random keys for SET/GET/INCR, ran-
dom values for SADD
-p Pipeline jnumreq, requests 1 (no pipeline)
-q Forces Quiet to Redis. Just shows query/sec
values
—Csv Output in CSV format
-1 Generates loop, Run the tests forever
-t Only runs the comma-separated list of tests
-1 Idle mode. Just opens N idle connections and
wait

Table 23: Redis benchmark options

28

In the following figure, we utilized this utility to check our machine configuration by calling 1000000
commands.

raisauku@raisavku-virtualBox:~/redis-stable/src$ redis-benchmark -q -n 1000000
PING_INLINE: 113211.82 requests per second

PING_BULK: 110083.67 requests per second

SET: 112460.63 requests per second

GET: 1109560.85 requests per second

INCR: 96227.87 requests per second

LPUSH: 114337.98 requests per second

RPUSH: 112803.16 requests per second

LPOP: 120612.71 requests per second

RPOP: 119033.45 requests per second

SADD: 122010.73 requests per second

HSET: 123395.85 requests per second

SPOP: 109769.48 requests per second

LPUSH (needed to benchmark LRANGE): 112095.06 requests per second
LRANGE_100 (first 100 elements): 45993.93 requests per second
LRANGE_300 (first 300 elements): 18249.17 requests per second
LRANGE_500 (first 450 elements): 13279.86 requests per second
LRANGE_600 (first 600 elements): 10091.33 requests per second
MSET (10 keys): 69295.27 requests per second

Figure 18: Redis-Benchmark Utility results for 1000000 commands

6 Conclusion

This report describes in detail Redis NoSQL database, which is considered as in-memory, key-value data-
store. By storing the data in the primary memory which makes it fast in both writing and reading, by
providing five advanced data structures (accompanied with a set of operations) which differentiate it from
other key-value databases and by being embraced by various well known companies, Redis is the most
popular key-value database today.

Furthermore, we have developed a simple version of a social media application, to evaluate Redis perfor-
mance against MySQL relational database, as it is ranked the second popular database by DB Engine.
As expected, the results of benchmarking prove that Redis has better performance in use cases where
processing and analyzing high-velocity data is very important.

Finally, it is important to emphasis that Redis perform well for specific scenarios. Therefore, it is mostly

used alongside a relational database or another NoSQL database to improve the overall performance of
the application.

29

7 Appendix: Redis Commands in Redis-cli and PHP-Redis

Redis-cli is the Redis command line interface, a simple program that allows to send commands to Redis,
and read the replies sent by the server, directly from the terminal.
The PHP-Redis extension provides an API for communicating with the Redis key-value store in PHP.

String: In the following example, SET and GET are Redis commands, “firstName” is the “key” used
in Redis and “Raisa” is the string “value” that is stored in Redis. Remember that a string value can be
512 megabytes long.

B! C:\Program Files\Redis\redis-cli.exe = a X

127.0.0.1:6379> SET key value [EX seconds] [PX milliseconds] [NX|XX]

B C:\Program Files\Redis\redis-cli.exe - O %
27.0.0.1:6379> SET firstName Raisa [EX seconds] [PX milliseconds] [NX|XX]

B! C:\Program Files\Redis\redis-cli.exe == a X

[127.0.0.1:6379> SET firstName Raisa

127.0.8.1:6379> GET firstName
"Raisa"
127.0.0.1:6379>

Figure 19: SET and GET commands for String Data type in Redis-cli

= new Redis();
>connect('127.98.0.1', 6379);

echo "redis Server is running:

>SET("FirstName", "Raisal")5

Figure 20: SET and GET commands for String Data type in PHP-Redis

@ Redis Desktop Manager v.0.8.8.384 = O X

v @ Redis_Fatemeh Redis_Fatemeh::db0::FirstName J§

v 11 dbo (1/1)
FirstName STRING: |FirstName TTL: -1 | Rename
db1 (0)
db2 (0) Value:
db3 (0) Raisa
Al I\

Figure 21: String Data type in Redis Desktop Manager

30

Hash: In this example, hash data type is used to store the basic information of a user. HMSET,
HGETALL, HSET, HGET are commands for Redis and “user:1” is the “key”. Every hash can store up
to 232 — 1 field-value pairs (more than 4 billion).

8 C:\Program Files\Redis\redis-cli.exe — O X

B! C:\Program Files\Redis\redis-cli.exe £ a X

Uku email raisa.uku@hotmail.com password

B! C:\Program Files\Redis\redis-cli.exe =] X

©.1:6379> HGETALL user:1
rtName"

aisa"

astName™

ku"

mail”

aisa.uku@hotmail.com"

Figure 22: HMSET and HGETALL commands for Hash Data type in Redis-cli

B! C:\Program Files\Redis\redis-cli.exe == a X
127.0.8.1:6379> HSET key field value

C:\Program Files\Redis\redis-cli.exe

:6379> HSET User:1 firstName Raisa

:éB?Q) HSET User:1 lastName Uku

2379‘) HSET user:1 email raisa.uku@hotmail.com
:237 > HSET user:1 password 123

:ZS?S:: HGET key field

6379> HSET user:1 firstName Raisa

: §

:6379> HSET user:1 lastName Uku

2]

:6379> HSET :1 email ra: .uku@hotmail.com
integer) ©
127.0.0.1:6379> HSET :1 password 123
(integer) @

6379> HGET :1 firstName

lastName

email

:6379> HGET user:1 password

127.0.0.1:6379>

Figure 23: HSET and HGET commands for Hash Data type in Redis-cli

31

"redis Server is running: ".$%redi ping();

1is->HSET("user: "firstName", "Raisa");
ET("user:1", "lastName","Uku");
"user "email™, "raisa.uku@hotmail.com");

word”, "123

'user:1", "firstName");

ET("user:1", "lastName");
"email");

, password”);

Figure 24: HSET and HGET commands for Hash Data type in PHP-Redis

@ Redis Desktop Manager v.0.8.8.384 = X
v W FateiehRedis Fatemeh-Redis::db0::user:1 3§
4 dbo (1/1)
v e HASH: [user:1 Size:4 TTL: -1 | Rename | [@ Delete | | SetTTL
b user:1
db1 (0) row key value = Add row
db2 (0) 1 firstName Raisa @ Delete row
db3 (0) 2 lastName Uku
db4 (0) 3 email raisa.uku@hotmail.com @ Reload Value
dbs (0) 4 password 123 ‘

Figure 25: Hash Data type in Redis Desktop Manager

List: In Redis, Lists are lists of strings which are sorted by insertion order. Elements can be added
to a List from left or right.The max length of a list is 232 — 1 elements (more than 4 billion of elements
in a list).

Redis();
(‘127 .8.8.1", 6379);

‘redis Server is running:

"Fatemeh");
"Shafiee

"f.shafiee@gmail.com");

SRR

GE("user:2", 8, 4);

Figure 26: LPUSH and LRANGE commands for List Data type in PHP-Redis

32

@ Redis Desktop Manager v.0.8.8.384

= a X
V! W Fatemeh:Redis Fatemeh-Redis::db0::user:2 3§
b 4 db0 (1000003/1000003)
homne (1000002) LIST: [user:2 Size:4 TTL: -1 | Rename | |@ Delete | | SetTTL
¥ user (1)

. user:2 row value = Add row
db1 (0) 1 123 = Delete row
db2 (0) 2 f.shafiee@gmail.com _
db3 (0) 3 Shafiee @ Reload Value
db4 (0) 4 Fatemeh
dbs (0)

Figure 27: List Data type in Redis Desktop Manager
B ' C\Pragram Files\Redis\raclis-cli.exe] *

mail.com

Figure 28: LPUSH and LRANGE commands for List Data type in Redis-cli

33

Set: Sets are a collection of unordered strings. Therefore adding, removing, and checking for the
existence of a string in the set can be done in O(1) time complexity. When a string is inserted in to set
twice, it is added only once. The max number of members in a set is 232 - 1 element (more than 4 billion
of members in each set).

B! C:\Program Files\Redis\redis-cli.exe =S O X

member [member

B C:\Program Files\Redis\redis-cli.exe — O X
:3 John

> SADD user:3 Smith
> SADD user:3 J.Smith@gmail.com
9> SADD user:3 123

9> SMEMBERs key

:6379> SADD user:3 John

:;379> SADD user:3 Smith

:2379> SADD user:3 J.Smith@gmail.com
:2379> SADD user:3 123

:;379> SMEMBERs user:3

3) "J.Smith@gmail.com"
4) "Smith"
127.0.0.1:6379>

Figure 29: SADD and SMEMBERS commands for Set Data type in Redis-cli

= new Redis();
>connect('127.8.0.1"', 6379);

echo "redis Server is running:

>SADD("user: "John");

>SADD ("user: "Smith");
>SADD("user: "J.Smith@gamil.com");
>SADD("user: LR 3)

Ls->SMEMBERS ("user:3");

Figure 30: SADD and SMEMBERS commands for Set Data type in PHP-Redis

@ Redis Desktop Manager v.0.8.8.384 = g X

v @ Fatemeh-Redis Fatemeh-Redis::db0::user:3 3¢

v 1 dbo (/1)
v el SET: [user:3 Size:4 TTL: -1 | Rename | [@ Delete | | SetTTL
user:3

db1 (0) ‘ row value =+ Add row

o2 (0) t 123 © Delete row

db3 (0) E John & Reload Val
Reload Value

b4 (0) s Smith 8

b5 (0) r 1.Smith@gamil.com \

Figure 31: Set Data type in Redis Desktop Manager

34

Sorted Sets: Sorted Sets are similar to Sets, but every member of a Sorted Set is associated with
a score. These scores are used to order the elements from the smallest to the greatest score. The scores
can be repeated.

B! C:\Program Files\Redis\redis-cli.exe - O X
y [NX|XX] [CH] [INCR] score member [score membe

B | C:\Program Files\Redis\redis-cli.exe - Jma X

127.0.0.1:6379> ZADD user:4 1 Paul

(integer) 1

[127.0.9.1:6379> ZADD user:4 2 Black

(integer) 1

[127.0.09.1:6379> ZADD user:4 3 paulblack@gmail.com

(integer) 1

[127.0.8.1:6379> ZADD user:4 4 123

(integer) 1

127.0.9.1:6379> ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset count]

B | C:\Program Files\Redis\redis-cli.exe — O X
:6379> ZADD user:4 1 Paul
3={ 1
[127.0.9.1:6379> ZADD user:4 2 Black
paulblack@gmail.com
123
379> ZRANGEBYSCORE user:4 1 3
) "Black"

) "paulblack@gmail.com"
[127.0.0.1:6379>

Figure 32: ZADD and ZRANGEBYSCORE commands for Sorted Set Data type in Redis-cli

= new Redis();
->connect('127.8.8.1", 6379);

echo "redis Server is running: "

->ZADD("user: "Paul");

->ZADD("user: "Black");
"paulblack@gamil.com");
B1238)

Figure 33: ZADD and ZRANGEBYSCORE commands for Sorted Set Data type in PHP-Redis

@ Redis Desktop Manager v.0.8.8.384 = X

v @ Fatemeh-Redis Fatemeh-Redis::db0::user:4 3§

v 11 dbo (1/1)
v @ oD ZSET: [user:4 Size:4 TTL: -1 | Rename | [© Delete | | SetTTL
4 user:4

db1 (0) row - value score | <r Add row

db2 (0) 1 Paul 1 & Delete row

db3 (0) 2 Black 2! —

db4 (0) 3 paulblack@gamil.com 3 @ Reload Value

4 123 4 [

dbs (0)

Figure 34: Sorted Set Data type in Redis Desktop Manager

35

References

Carlson, J. L. (2013). Redis in action. Manning. Retrieved from
https://redislabs.com/resources/ebook/

Cummings, A. B., Eftekhary, D., & House, F. G. (2015). Caching a mongodb database with redis.
Retrieved from https://www.sitepoint.com/caching-a-mongodb-database-with-redis/

Das, V. (2015). Learning redis. — Birmingham ,UK: PACKT Publishing. Retrieved from
https://redislabs.com/resources/ebook/

Db engine. (2017). Retrieved from https://db-engines.com/en/

How fast is redis? (2017). Retrieved from https://redis.io/topics/benchmarks

Nielsen, D. (2016). Popular redis uses for beginners. Retrieved from
https://redislabs.com/docs/popular-uses-redis-beginners-guide/

Redis documentation. (2017). Retrieved from https://redis.io/documentation

Redis labs. (2017). Retrieved from https://redislabs.com/

Seguin, K. (n.d.). The little redis book. Retrieved from http://openmymind.net/redis.pdf

Silva, M. D. D., & Tavares, H. L. (2015). Redis essentials. Birmingham ,UK: Packt Publishing. Retrieved
from http://shop.oreilly.com/product/9781784392451.do

What s a key-value database? (2016). Retrieved from
http://database.guide/what-is-a-key-value-database

Woudehouse, C. (2016). Sql vs. nosql databases: What’s the difference? Retrieved from
https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/

36

