
université libre de bruxelles

INFO-H415 - Advanced Databases

RavenDB & document stores

Authors:

Yasin Arslan

Jacky Trinh

Professor:
Esteban Zimányi



Contents

1 Introduction 3
1.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 What is RavenDB ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Design 5
2.1 Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Document Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Stale Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.10 Cascade Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.11 Supported language client side . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Comparison 11
3.1 RavenDB vs MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Uncompressed field names . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Global write lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Safe off by default . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.5 Offline table compaction . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Example 13
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



INFO-H415 Université Libre de Bruxelles Report

4.2.3 Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.4 RavenDB Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.5 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Pyravendb library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Log in and creating a session . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Get a Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.4 Add a Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.5 Delete a Document . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion 22

E. Zimányi 2 Year 2017-2018



Chapter 1

Introduction

1.1 Présentation

As part of the course INFO-H415 Advanced Databases, we have been asked to study a
database technology and illustrate it with an application developed in a database man-
agement system. Nowaday, there is a lot of database system and each of them has it’s own
setup and is made for specific tasks. For example, one of the most famous, MySQL is an
open-source relational database management system. It is based on the relational model,
data is stored in two-dimensional tables called relations or tables. All relational databases
use SQL ( Structured Query Language ) for querying and maintaining the database. In
our case, we will study a different kind of database system called document-oriented
database.

1.2 What is RavenDB ?

RavenDB is an open source document-oriented database, also called document store. It
is mainly used for storing, retrieving and managing document-oriented data. There is no
separation between data and the schema, this model is called semi-structured data and
has many advantages such as easily modifying the schema or providing a flexible format of
data exchange between different types of databases. The popularity of document-oriented
database has grown, it is now one of the main categories of NoSQL databases. RavenDB is
used by popular customers such as Toyota, Vodafone or JetBrains. It’s typical application
scenarios are ecommerce, financial or healthcare.

3



INFO-H415 Université Libre de Bruxelles Report

1.3 Scenario

As an example of use, we imagined the management of a large supermarket where each
order must be registered and it must be possible to access the details. The supermarket
hired 2 students from the Université Libre de Bruxelles to design a RavenDB to store
all the information and a Python3 script that will allow a registered employee with the
right permissions to access it, to modify it or even to add new information. The database
should list at least the following information : Employees, Orders, Companies/Partners
and Products.

E. Zimányi 4 Year 2017-2018



Chapter 2

Design

RavenDB uses some new concepts that are totally different from the standard relational
database. This section will provide the necessary informations in order to have some
understanding of these new concepts and features.

2.1 Document

Since RavenDB is a document-oriented database, we should first define it. A document is
a self-describing, hierarchical tree data structure which can consist of maps, collections,
and scalar values. They are formatted in plain JSON and stored in the database. The
Document Store will manage them and to organize it, RavenDB and other Document
Databases uses Collections .

Figure 2.1: Example of a document

5



INFO-H415 Université Libre de Bruxelles Report

2.2 Document Store

It is designed for storing, retrieving and managing document-oriented information. In
RavenDB, a document store initiates and manages the connection between an application
and a database instance. With the document store, we can run all operations on an
associated server instance.
The document store object possesses only one URL address and this address points to
a RavenDB server. The object can, however, operate on the other existing databases
related to the server.

2.3 Collection

RavenDB stores all the documents in the same storage space. None of them are phys-
ically grouped. In order to be efficient, we certainly need some level of organization.
For example, documents containing customers data are strictly different from documents
containing products information and we do need to talk about groups of them. Thus,
RavenDB allows us to stamp a document with a string value that will define its type (like
"Customers" and "Products").
Therefore, a collection is a set of documents that have the same tag. A tag is defined in
the Raven-Entity-Name metadata which is automatically filled in by the client based on
the type of an entity object. Since RavenDB is schema-less, there aren’t any problem if
the documents within a same collection have completely different structure.
We also have to note that a collection is a virtual concept, so it doesn’t affect how or
where the documents that are in the same collection are stored. However this concept is
useful for three features:

• Studio: An Example entity that we have stored will be visible under Examples
collection (the client automatically pluralizes the collection name). We can here
visualize a virtual concept through the studio since each RavenDB database pos-
sess the built-in Raven/DocumentsByEntityName index. This allows the studio to
retrieve only documents from the specified collection and thus group the documents
into the collections.

• Indexing: Another purpose of collection is filtering documents during indexing pro-
cess. When an index is created, we also determine what collection does it involve.
During indexing process, only the documents that belong to this collection are in-
dexed. We’ll talk later about the indexes.

• Document keys: The document’s identifier looks like examples/17 where examples
is the collection name and 17 is the identity value. This is the default convention.

E. Zimányi 6 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

Figure 2.2: Example of a Collection through the studio

2.4 Indexes

In a relational database like MySQL, when sending a query, the database performs with
a table scan. It means that all documents are analyzed and those that meet the predicate
are selected. It does seem logical and efficient... as long as the number of data stored
in the database is small but it becomes really slow when the amount of data reaches a
significant size. Thus it is not optimized. That’s why RavendDB uses indexes to speed
up the queries.
Indexes are functions used in the side of the server and define using which field and what
values document can be searched on and represent the only way to satisfy queries in
RavenDB. The indexing process is triggered in the background whenever data is added
or changed. By doing so, the server can respond quickly even if a lot of data has changed
and this allows us to spare costly table scans operations. To achieve fast response times,
RavenDB use a mapping function with LINQ-like syntax for every index and the result is
then converted to Lucene (open-source search software) index entry that lasts for future
use. This avoid re-indexation each time the query is issued.

2.5 Stale Indexes

Because RavenDB’s indexes work this way, the results might be stale. Indeed, RavenDB
assumpts that the user should never suffer from assigning a big tasks to a server. For
them, it is better to be stale than offline. Thus the queries will always have results even
if it is not already up-to-date.
Even if it involves re-indexing so many documents, RavenDB will return quickly each
client request. Since the previous request has returned so quickly, the next query can be
made a millisecond after that, and the results will be returned.

E. Zimányi 7 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

2.6 Replication

We can also enable the replication feature when creating a new database. Every now and
then, it will replicate our data from our database to another database that we choose.
This feature allows us to track the server where the document was originally written and
by doing so we can determine if a replicated document is conflicting with the existing doc-
ument. Those conflicts will be marked and will require automated or user involvement in
order to be resolved.
The replication feature will not replicate any system documents but only the data con-
tained in the database. It will even replicates the indexes every ten minutes (this can, of
course, be changed in the configuration).
The replication are done on every transaction commit. RavenDB will look up the list of
replication destinations and for each of the destination, it will query the remote instance
for the last document that was replicated and then start sending batches of updates that
happened since the last replication. This is happening in the background and in parallel.

2.7 Sharding

RavenDB has a native sharding support. The concept of sharding allows us to split
our data across multiple servers, meaning that each server holds just a portion of your
data. It is really useful when we have to handle a lot of data. For example, with the
sharding system, a big company having multiple headquarter across the world can store
the headquarter’s data on a shard which depends on the headquarter’s region. The one
located in Europe would be stored on one shard, the one located in America would be
stored on a second shard, etc...
The main idea is to put the data used by the corresponding headquarter on a shard
geolocated near the location, so the headquarter get served from a nearby server and
respond more quickly to a user. Another advantage of this system is that it reduce the
load on each server since it only has to handle a portion of the complete data

E. Zimányi 8 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

Figure 2.3: Example of multiple shards

2.8 Encryption

RavenDB also proposes an encryption bundle in order to secure our documents. By
default, it uses the popular AES-128 (Advanced Encryption Standard - 128) encryption
algorithm but can be changed if needed. The encryption is completely transparent for
the end-user and is applied to all documents stored and to all indexes as well.

2.9 Trigger

A trigger is a procedural code that is automatically executed upon a specific event on a
particular collection which is mostly used to maintain the integrity of the information on
the database. RavenDB proposes five categories of triggers:

• PUT triggers : As his name indicates, upon a specific event, an addition or a simple
modification will be done.

• DELETE triggers : Similar in shape to PUT triggers, yet in contrast to them, they
control the delete operations.

• Read triggers : This type of triggers allows us to control the access to documents and
manipulate their context when performing a simple read operations. With this, we
can forbid some users from reading some documents and also on the server side, if a
document with a link was requested, we are able to stitch such document together
with its link to create a single document.

• Index Query triggers : Query triggers have been introduced to extend the query
parsing capabilities and this give users a way to modify the queries before they are
executed against the index

E. Zimányi 9 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

• Index Update triggers : This allows us to perform custom action when an index entry
has been created or deleted.

2.10 Cascade Delete

The cascade delete is also a bundle that allows to delete a specified set of documents
and attachments when the document that owns it is deleted. For example, we can use
it to delete an attachment that is referenced by a document or to remove a set of child
documents referenced by a parent document.

2.11 Supported language client side

RavendDB supports the most basic language which is C# and also the popular ones like
Java and Python. We can also have access to the database using HTTP requests.

E. Zimányi 10 Year 2017-2018



Chapter 3

Comparison

3.1 RavenDB vs MongoDB

On the surface, RavenDB and MongoDB are really similar although MongoDB is the
most popular Document-oriented database right now. They have schemalessness, easy
replication, rich query language and can be accessed from multiple languages. But under
the hood, they work differently.

3.1.1 Memory management

In MongoDB case, the operating system is the one doing the memory management. By
doing so, they avoid to work on a memory manager and thus their memory management
is actually poor.
Since RavenDB is a managed application, they don’t have a direct control over memory
but they do manage it. There are several layers of caching in place since RavenDB knows
more than the operating system about the user’s own usage scenarios. When making a
new request, the latter would never hit the disk because RavenDB keeps track on hot
data and makes sure that it stays in memory. This is done for both indexes and obviously
documents.
The operating system memory manager is certainly more optimized but the database
know what is going on and is able to predict the usage patterns.

3.1.2 Uncompressed field names

It is considered good practice to actually shorten the field names in MongoDB to optimize
the space management.
Raven does not compress the field names and even if it does not, in contrary to MongoDB,
it is not considered a good practice to do it. We can all relate that it can easily become
a horrible mess when there are so many short field names and it becomes hard to figure

11



INFO-H415 Université Libre de Bruxelles Report

out what they mean. It is really not convenient to figure out what a document is about
with the actual content.
That is why RavenDB prefers to do a full response and request compression and also
allows to do document compression on disks as well.

3.1.3 Global write lock

MongoDB possesses a process-wide write lock, meaning that all other operations including
read are blocked because of the lock.
RavenDB also have a write lock but it does not block all operations like MongoDB. The
only operation that it blocks is actually the write operation and it does not interfere with
reads or indexes. Therefore it is more convenient.

3.1.4 Safe off by default

Unlike MongoDB, RavenDB has an unique feature called safe by default. This feature
allows the database to stop users querying for large amounts of data which is never a good
idea. Indeed, queries that return thousand of records is inefficient and will take a very
long time. Safe by default limits the number of records received by default on the client
side to 128 (which is configurable). This is attempted to stop a developer from writing
poor queries.

3.1.5 Offline table compaction

To let MongoDB compact its data on disk, we need to take the server down. In RavenDB
case, all the maintenance tasks are done while the server is still up and it can still answer
the requests from users.

E. Zimányi 12 Year 2017-2018



Chapter 4

Example

4.1 Introduction

For this part of the report, we will simulate the initialization and the launch of RavenDB
from Scratch. Once done, the python3 application will allow us to connect to access to
the database.

4.2 Server

4.2.1 License

RavenDB allows to choose between 3 licenses : Community, Professional and Enterprise.

Figure 4.1: RavenDB licenses

For this example, we choosed the free license. It is more than enough to introduce the
public to RavenDB.

13



INFO-H415 Université Libre de Bruxelles Report

4.2.2 Version

We use the latest version of RavenDB, version 3.5.5 that came out in November 2017.

Figure 4.2: RavenDB version

4.2.3 Launch

Once the download completed, we can start a bash script to launch our database and
automaticly open the RavenDB studio.

Figure 4.3: Bash script to launch RavenDB

E. Zimányi 14 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

4.2.4 RavenDB Studio

RavenDB Studio will allow the user to have a good visual interface of his databases. In
this example, we have 3 databases with respectively 3, 0 and 1058 documents. Once the
database selected, we can access to the Collection and then to any Document of that
Collection.

Figure 4.4: RavenDB Studio

Figure 4.5: All collections in the chosen database

E. Zimányi 15 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

Figure 4.6: An example of Collection

Figure 4.7: A document from the chosen Collection

E. Zimányi 16 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

4.2.5 Replication

When creating a new database, we can enable the replication feature. Then, we have to
create a document Raven/Replication/Destinations which tell RavenDB where to repli-
cate.

Figure 4.8: Exemple of replication

4.3 Client

4.3.1 Pyravendb library

To make it work on your personal computer, you will need to install pyravendb version
3.5.3.7. It can be installed using pip or by downloading the zip on the pypi website and
launching the setup.py file.

4.3.2 Log in and creating a session

To have access to the application, you will first need to log in. In this way, we block this
part of the application to employees who do not have the required permissions.

Figure 4.9: Log in phase

To connect on the RavenDB, we first need a RavenDB documennt store. For any
action we want to perform on the RavenDB, we start by obtaining a new Session object
from the document store. The Session object will contain everything needed to perform

E. Zimányi 17 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

any operation necessary. In order, you will open the session, do an action and finally
apply the changes to the RavenDB server.

Figure 4.10: Opening a session

4.3.3 Get a Document

To retrieve a Document, you will only need the ID of the Document you are looking for.
We decided to generate the .json Document and to store it in the repository ./Get, it
gives a better visual for the employees.

Figure 4.11: Getting a document

Figure 4.12: Json file produced after getting a Document

Pyravendb allows you to get a Document in different way. You can either get it as it
is stored in the database or you can directly convert it to a Python object. This allows
the programmer to work with Python objects and not json.

E. Zimányi 18 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

Figure 4.13: Getting a Document as json or object Python3

4.3.4 Add a Document

To add a Document, the employees will have to create it manually. Once the type selected
and the new Document created, it will be sent to the database and stored as json.

Figure 4.14: Adding a new Document

Figure 4.15: Visual on the new Document

You can either use a json format to send it to the database or use a Python object.
RavenDB will know where to add the Document given the object type.

E. Zimányi 19 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

Figure 4.16: Store a Document Python3

4.3.5 Delete a Document

When you want to delete an existing Document, the employees will only have to give the
ID of the Document they want to remove. If the said Document exists, it will create a
backup json file and store it in the ./Delete repository.

Figure 4.17: Deleting a Document

Figure 4.18: Backup created in case of bad move.

It works the same as Adding a new Document. You can either give it Json format or
directly Python since it has to first load it and then delete from the database.

E. Zimányi 20 Year 2017-2018



INFO-H415 Université Libre de Bruxelles Report

Figure 4.19: Delete a document Python3

E. Zimányi 21 Year 2017-2018



Chapter 5

Conclusion

To conclude, it was a very pleasant experience to learn something new. Indeed, we always
thought that the standard relational SQL database was the only kind of database that
exists. We were kind of surprised to learn that there exists a vast panoply of database.
Discovering what RavenDB could offer was great, their technologies are, as their motto
implies, optimized for efficiency. It was really easy to use and was also user-friendly. The
first thing we did after downloading and installing the server was to try out the studio
made by RavenDB. That’s where we understood the concept of collection and indexes.
With RavenDB studio, we also could create a random database with random data to play
with it and to learn the mechanisms behind. We were convinced by the optimization in
time provided by the implementation of the indexes.
For the client side application, RavenDB proposes different supports and we had to choose
one. We decided to go for Python because it was the newest to join the list but we
encountered a few problems because RavenDB’s API for this language was kind of poor.
They provided the first version of the API with the release of RavenDB version 3.5 in the
end of 2016. Indeed, for example, we could not modify a document but we had to do a
trick in order to have the same result: deleting and then adding. While this was a feature
in other supports such as Java by deleting it and adding a new one.

22



Bibliography

[1] Raven’s Documentation, https://ravendb.net/docs/article-page/3.5/python/

[2] Why I said goodbye to MongoDB, https://dzone.com/articles/why-i-said-goodbye-
mongodb

[3] Python client, https://github.com/ravendb/RavenDB-Python-Client

[4] LINQ, https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/concepts/linq/introduction-to-linq-queries

[5] Lucene, http://lucene.apache.org/

[6] Document Oriented Database, https://en.wikipedia.org/wiki/Document-
oriented_database

23


	Introduction
	Présentation
	What is RavenDB ?
	Scenario

	Design
	Document
	Document Store
	Collection
	Indexes
	Stale Indexes
	Replication
	Sharding
	Encryption
	Trigger
	Cascade Delete
	Supported language client side

	Comparison
	RavenDB vs MongoDB
	Memory management
	Uncompressed field names
	Global write lock
	Safe off by default
	Offline table compaction


	Example
	Introduction
	Server
	License
	Version
	Launch
	RavenDB Studio
	Replication

	Client
	Pyravendb library
	Log in and creating a session
	Get a Document
	Add a Document
	Delete a Document


	Conclusion

